[PDF]     https://doi.org/10.3952/physics.2025.65.3.1

Open access article / Atviros prieigos straipsnis
 
 
Lith. J. Phys. 65, 125–136 (2025)
 


SUBCYCLE VECTOR OPTICAL PULSED BULLETS CARRYING OPTICAL ANGULAR MOMENTUM
 
Klemensas Laurinavičius, Justas Berškys, and Sergej Orlov
Coherent Optics Laboratory, Center for Physical Sciences and Technology, Saulėtekio 3, 10257 Vilnius, Lithuania
Email: klemensas.laurinavicius@ftmc.lt

Received 23 June 2025; revised 18 August 2025; accepted 15 September 2025

The generation and experimental realization of nondiffracting and nondispersive light pulses remain a difficult challenge in the field of optics. Recent advances in ultrafast optics allow for the production of high-power, few-cycle pulses with a significant fluence. Applying these capabilities to nondiffracting and nondispersive beams requires a thorough mathematical framework for describing highly focused vector pulses. In this study, we investigate vector optical bullets propagating in free space and in dielectric media, considering multiple polarization states such as linear, azimuthal and radial ones. We also note the differences between the vectorial and scalar models. Furthermore, we explore various group velocities: superluminal, subluminal and negative. Special attention is given to higher-order topological charges, revealing their influence on the spatial structure and propagation dynamics of these pulses. Finally, we demonstrate the possibility of generating subcycle duration pulsed beams, both in vacuum and in dielectric material, while preserving their nondiffracting and nondispersive characteristics, and investigate their spatial intensity distributions and temporal durations while also showcasing individual component influences on the total intensities.
Keywords: subcycle pulses, nondiffracting, optical bullets, optical angular momentum


SUBCIKLINIAI VEKTORINIAI OPTINIAI IMPULSAI, NEŠANTYS OPTINĮ JUDESIO KIEKIO MOMENTĄ
Klemensas Laurinavičius, Justas Berškys, Sergej Orlov
Valstybinio mokslinių tyrimų instituto Fizinių ir technologijos mokslų centro Koherentinės optikos laboratorija, Vilnius, Lietuva
 
Nedifraguojančių ir dispersijai atsparių šviesos impulsų generavimas ir eksperimentinis realizavimas išlieka sudėtingu iššūkiu optikos srityje. Naujausi pasiekimai ultrasparčioje optikoje leidžia generuoti didelės galios kelių ciklų impulsus. Šių savybių pritaikymas difrakcijai ir dispersijai atspariems pluoštams reikalauja išsamios matematinės bazės, aprašančios aštriai fokusuotus vektorinius impulsus. Tyrime nagrinėjami vektoriniai optiniai impulsai, sklindantys laisvoje erdvėje ir dielektrinėje terpėje, atsižvelgiant į įvairias poliarizacijos būsenas, tokias kaip tiesinė, azimutinė ir radialinė. Taip pat pažymimi skirtumai tarp vektorinių ir skaliarinių modelių. Be to, nagrinėjami įvairūs grupiniai greičiai: didesni už šviesos greitį, mažesni už šviesos greitį bei neigiamo grupinio greičio atvejai. Ypatingas dėmesys skiriamas aukštesniems topologiniams krūviams, atskleidžiant jų poveikį šių impulsų erdvinei struktūrai ir sklidimo dinamikai. Galiausiai parodoma galimybė generuoti subciklinės trukmės impulsinius pluoštus tiek vakuume, tiek dielektrinėse medžiagose, išlaikant jų atsparumą difrakcijai ir dispersijai, bei tiriamas jų erdvinio intensyvumo pasiskirstymas ir laikinė trukmė, kartu analizuojant atskirų sandų įtaką bendram intensyvumui.


References / Nuorodos

[1] H. Rubinsztein-Dunlop, A. Forbes, M.V. Berry, M.R. Dennis, D.L. Andrews, M. Mansuripur, C. Denz, C. Alpmann, P. Banzer, T. Bauer, et al., Roadmap on structured light, J. Opt. 19, 013001 (2016),
https://doi.org/10.1088/2040-8978/19/1/013001
[2] V. Shvedov, A.R. Davoyan, C. Hnatovsky, N. Engheta, and W. Krolikowski, A long-range polarization-controlled optical tractor beam, Nat. Photon. 8, 846 (2014),
https://doi.org/10.1038/nphoton.2014.242
[3] F. Mitri, R. Li, L. Guo, and C. Ding, Optical tractor Bessel polarized beams, J. Quant. Spectrosc. Radiat. Transf. 187, 97 (2017),
https://doi.org/10.1016/j.jqsrt.2016.09.023
[4] M.E. Friese, T.A. Nieminen, N.R. Heckenberg, and H. Rubinsztein-Dunlop, Optical alignment and spinning of laser-trapped microscopic particles, Nature 394, 348 (1998),
https://doi.org/10.1038/28566
[5] G. Milione, A. Dudley, T.A. Nguyen, O. Chakraborty, E. Karimi, A. Forbes, and R.R. Alfano, Measuring the self-healing of the spatially inhomogeneous states of polarization of vector Besselmbeams, J. Opt. 17, 035617 (2015),
https://doi.org/10.1088/2040-8978/17/3/035617
[6] T. Vettenburg, H.I. Dalgarno, J. Nylk, C. Coll-Lladó, E. Ferrier, T. Čižmár, F.J. Gunn-Moore, and K. Dholakia, Light-sheet microscopy using an Airy beam, Nat. Methods 11, 541 (2014),
https://doi.org/10.1038/nmeth.2922
[7] Y.-X. Ren, H. He, H. Tang, and K.K. Wong, Non-diffracting light wave: Fundamentals and biomedical applications, Front. Phys. 9, 698343 (2021),
https://doi.org/10.3389/fphy.2021.698343
[8] M. Kretschmar, A. Hadjipittas, B. Major, J. Tümmler, I. Will, T. Nagy, M. Vrakking, A. Emmanouilidou, and B. Schütte, Attosecond investigation of extreme-ultraviolet multi-photon multi-electron ionization, Optica 9, 639 (2022),
https://doi.org/10.1364/OPTICA.456596
[9] A. Zong, B.R. Nebgen, S.-C. Lin, J.A. Spies, and M. Zuerch, Emerging ultrafast techniques for studying quantum materials, Nat. Rev. Mater. 8, 224 (2023),
https://doi.org/10.1038/s41578-022-00530-0
[10] A. Dubietis and A. Couairon, Ultrafast Super continuum Generation in Transparent Solid-state Media (Springer, 2019),
https://doi.org/10.1007/978-3-030-14995-6
[11] A. Dubietis and A. Matijošius, Table-top optical parametric chirped pulse amplifiers: past and present, Opto-Electron. Adv. 6, 220046 (2023),
https://doi.org/10.29026/oea.2023.220046
[12] Y. Shen, Q. Zhan, L.G. Wright, D.N. Christodoulides, W. Wise, A.E. Willner, K.-H. Zou, Z. Zhao, M.A. Porras, A. Chong, et al., Roadmap on spatio-temporal light fields, J. Opt. 25, 093001 (2023),
https://doi.org/10.1088/2040-8986/ace4dc
[13] T. Nagy, P. Simon, and L. Veisz, High-energy few-cycle pulses: post-compression techniques, Adv. Phys. X 6, 1845795 (2021),
https://doi.org/10.1080/23746149.2020.1845795
[14] R.M. Arkhipov, M.V. Arkhipov, A.V. Pakhomov, P.A. Obraztsov, and N.N. Rosanov, Unipolar and subcycle extremely short pulses: Recent results and prospects (brief review), JETP Lett. 117, 8 (2023),
https://doi.org/10.1134/S0021364022602652
[15] C. Brahms, F. Belli, and J.C. Travers, Infrared attosecond field transients and UV to IR few-femtosecond pulses generated by high-energy soliton self-compression, Phys. Rev. Res. 2, 043037 (2020),
https://doi.org/10.1103/PhysRevResearch.2.043037
[16] E. Siminos, I. Thiele, and C. Olofsson, Laser wakefield driven generation of isolated carrier-envelope-phase tunable intense subcycle pulses, Phys. Rev. Lett. 126, 044801 (2021),
https://doi.org/10.1103/PhysRevLett.126.044801
[17] S.A. Akhmanov and S.Y. Nikitin, Physical Optics (Oxford University Press, 1997),
https://doi.org/10.1093/oso/9780198517955.001.0001
[18] J.N. Hodgson, Optical Absorption and Dispersion in Solids (Springer Science & Business Media, 2012),
https://doi.org/10.1007/978-1-4613-3321-0
[19] S. Orlov, A. Piskarskas, and A. Stabinis, Localized optical subcycle pulses in dispersive media, Opt. Lett. 27, 2167 (2002),
https://doi.org/10.1364/OL.27.002167
[20] S. Orlov and A. Stabinis, Angular dispersion of diffraction-free optical pulses in dispersive medium, Opt. Commun. 240, 1 (2004),
https://doi.org/10.1016/j.optcom.2004.06.014
[21] P. Saari and H. Sõnajalg, Pulsed Bessel beams, Laser Phys. 7, 32 (1997),
[PDF]
[22] K. Reivelt and P. Saari, Optical generation of focus wave modes, JOSA A 17, 1785 (2000),
https://doi.org/10.1364/JOSAA.17.001785
[23] M.A. Porras, G. Valiulis, and P. Di Trapani, Unified description of Bessel X waves with cone dispersion and tilted pulses, Phys. Rev. E 68, 016613 (2003),
https://doi.org/10.1103/PhysRevE.68.016613
[24] C.J. Zapata-Rodríguez and M.A. Porras, X-wave bullets with negative group velocity in vacuum, Opt. Lett. 31, 3532 (2006),
https://doi.org/10.1364/OL.31.003532
[25] M.A. Salem and H. Bağcı, Reflection and transmission of normally incident full-vector X waves on planar interfaces, JOSA A 29, 139 (2012),
https://doi.org/10.1364/JOSAA.29.000139
[26] H.E. Kondakci and A.F. Abouraddy, Diffraction-free space–time light sheets, Nat. Photonics 11, 733 (2017),
https://doi.org/10.1038/s41566-017-0028-9
[27] M. Yessenov, L.A. Hall, K.L. Schepler, and A.F. Abouraddy, Space-time wave packets, Adv. Opt. Photon. 14, 455 (2022),
https://doi.org/10.1364/AOP.450016
[28] J. Davila-Rodriguez and J.C. Gutiérrez-Vega, Helical Mathieu and parabolic localized pulses, JOSA A 24, 3449 (2007),
https://doi.org/10.1364/JOSAA.24.003449
[29] R. Butkus, S. Orlov, A. Piskarskas, V. Smilgevicius, and A. Stabinis, Phase matching of optical X-waves in nonlinear crystals, Opt. Commun. 244, 411 (2005),
https://doi.org/10.1016/j.optcom.2004.09.047
[30] S. Orlov, A. Stabinis, V. Smilgevicius, G. Valiulis, and A. Piskarskas, Parametric excitation of X-waves by down-conversion of Bessel beams in nonlinear crystals, Opt. Lett. 32, 68 (2007),
https://doi.org/10.1364/OL.32.000068
[31] K. Laurinavičius, S. Orlov, and A. Gajauskaitė, Azimuthally and radially polarized pulsed Bessel-X vortices, Optik 270, 169998 (2022),
https://doi.org/10.1016/j.ijleo.2022.169998
[32] K. Laurinavičius, S. Orlov, and A. Gajauskaitė, Vector optical bullets in dielectric media: Polarization structures and group-velocity effects, Appl. Sci. 14, 3984 (2024),
https://doi.org/10.3390/app14103984
[33] M. Zamboni-Rached, E. Recami, and H.E. Hernández-Figueroa, New localized superluminal solutions to the wave equations with finite total energies and arbitrary frequencies, Eur. Phys. J. D, 21, 217 (2002),
https://doi.org/10.1140/epjd/e2002-00198-7
[34] H. Valtna, K. Reivelt, and P. Saari, Methods for generating wideband localized waves of superluminal group velocity, Opt. Commun. 278, 1 (2007),
https://doi.org/10.1016/j.optcom.2007.05.059
[35] H.E. Kondakci and A.F. Abouraddy, Optical space-time wave packets having arbitrary group velocities in free space, Nat. Commun. 10, 929 (2019),
https://doi.org/10.1038/s41467-019-08735-8
[36] K. Laurinavičius and S. Orlov, Localized vector optical nondiffracting subcycle pulses, Appl. Sci. 14, 11538 (2024),
https://doi.org/10.3390/app142411538
[37] J. Stratton, Electromagnetic Theory, IEEE Press Series on Electromagnetic Wave Theory (Wiley, 2007),
[PDF]
[38] P.M. Morse and H. Feshbach, Methods of Theoretical Physics, Part II (McGraw-Hill, New York, 1953),
[PDF]
[39] K. Volke-Sepulveda, V. Garcés-Chávez, S. Chávez-Cerda, J. Arlt, and K. Dholakia, Orbital angular momentum of a high-order Bessel light beam, J. Opt. B 4, S82 (2002),
https://doi.org/10.1088/1464-4266/4/2/373
[40] J. Lekner, Angular momentum of electromagnetic pulses, J. Opt. A 6, S128 (2004),
https://doi.org/10.1088/1464-4258/6/3/021
[41] A.P. Stabinis and G. Valiulis, Ultratrumpųjų šviesos impulsų netiesinė optika (Vilniaus universitetas, 2008) [in Lithuanian]
[42] S. Orlov and U. Peschel, Complex source beam: A tool to describe highly focused vector beams analytically, Phys. Rev. A 82, 063820 (2010),
https://doi.org/10.1103/PhysRevA.82.063820
[43] R. Dorn, S. Quabis, and G. Leuchs, The focus of light – linear polarization breaks the rotational symmetry of the focal spot, J. Mod. Opt. 50, 1917 (2003),
https://doi.org/10.1080/0950034031000095812
[44] R. Dorn, S. Quabis, and G. Leuchs, Sharper focus for a radially polarized light beam, Phys. Rev. Lett. 91, 233901 (2003),
https://doi.org/10.1103/PhysRevLett.91.233901
[45] H. Liang, P. Krogen, Z. Wang, H. Park, T. Kroh, K. Zawilski, P. Schunemann, J. Moses, L.F. DiMauro, F.X. Kärtner, et al., High-energy mid-infrared sub-cycle pulse synthesis from a parametric amplifier, Nat. Commun. 8, 141 (2017),
https://doi.org/10.1038/s41467-017-00193-4
[46] Z. Wu, X. Zeng, Z. Li, Z. Zhang, X. Wang, X. Wang, J. Mu, Y. Zuo, J. Su, H. Peng, et al., Generation of subcycle isolated attosecond pulses by pumping ionizing gating, Phys. Rev. Res. 6, 013126 (2024),
https://doi.org/10.1103/PhysRevResearch.6.013126
[47] T. Fuji and Y. Nomura, Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen, Appl. Sci. 3, 122 (2013),
https://doi.org/10.3390/app3010122
[48] J. Ouyang, S. Ding, Z.-J. Zhu, Q.-L. Zhang, X. Han, and Q.-S. Jia, Transmission metasurface for X-wave generation, in: Proceedings of the 2024 IEEE International Symposium on Antennas and Propagation and INC/USNCURSI Radio Science Meeting (APS/INCUSNCURSI) (IEEE, 2024) pp. 1805–1806,
https://doi.org/10.1109/AP-S/INC-USNC-URSI52054.2024.10686809