[PDF]      https://doi.org/10.3952/physics.2025.65.3.3

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 65, 147–153 (2025)


EFFECT OF LOW-CONCENTRATION GADOLINIUM DOPING ON THE THERMAL PROPERTIES OF MWCNT COMPOSITES
Rashad G. Abaszadea,b, Elvin M. Aliyevc, Azer G. Mammadova, ‪Elmira A. Khanmamadovaa, Agali A. Guliyeva, Fagan G. Aliyevb, F.G. Abaszadehd, Tetiana O. Margityche, Emre Gürf, and Maksym O. Stetsenkog
aAzerbaijan State Oil and Industry University, Baku, Azerbaijan
bAzerbaijan University of Architecture and Construction, Baku, Azerbaijan
cUniversity of Birmingham, Edgbaston, United Kingdom
 
dNational Aviation Academy, Baku, Azerbaijan
eKyiv Institute for Nuclear Research, National Academy of Sciences of Ukraine, Kyiv, Ukraine
fEskisehir Osmangazi University, Eskisehir, Turkey
gKey Laboratory of Optoelectronic Devices and Systems, College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, PR China
Email: abaszada@gmail.com; stetsenkomax@gmail.com

Received 22 April 2025; revised 6 October 2025; accepted 7 October 2025

In this study,the thermal properties of multiwalled carbon nanotubes doped with 5 wt% gadolinium were analyzed. Thermogravimetric analysis/differential scanning calorimetry (TGA/DSC) and transmission electron microscopy were successfully employed for material characterization. Transformations in the TGA profiles of the synthesized carbon-based nanocomposite were investigated. The specific heat capacity value of that nanocomposite was attributed to the influence of Gd doping. For gadolinium-doped MWCNTs, a Cp value of 826.4 J/(kg·K) was observed at 630.4 K. These findings highlight the potential of rare-earth-doped carbon nanomaterials for use in thermal interface materials and other heat management applications in advanced electronics and energy systems.
Keywords: carbon nanotubes, gadolinium, TEM, TGA, specific heat capacity

NAUJI APIBENDRINTIEJI ERMITO POLINOMAI SU TRIMIS KINTAMAISIAIS, GAUTI KVANTINĖS OPTIKOS METODU, IR JŲ TAIKYMAI
Rashad G. Abaszadea,b, Elvin M. Aliyevc, Azer G. Mammadova, ‪Elmira A. Khanmamadovaa, Agali A. Guliyeva, Fagan G. Aliyevb, F.G. Abaszadehd, Tetiana O. Margityche, Emre Gürf, Maksym O. Stetsenkog

aAzerbaidžano valstybinis naftos ir pramonės universitetas, Baku, Azerbaidžanas
bAzerbaidžano architektūros ir statybos universitetas, Baku, Azerbaidžanas
cBirmingamo universitetas, Edžbastonas, Birmingamas, Jungtinė Karalystė
dNacionalinė aviacijos akademija, Baku, Azerbaidžanas
eUkrainos nacionalinė mokslų akademija, Kyjivas, Ukraina
fEskišechyro Osmangazi universitetas, Eskišechyras, Turkija
gŠendženo universitetas, Šendženas, Kinija


References / Nuorodos

[1] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B. Batlogg, Z. Benes, and J.E. Fischer, Thermal properties of carbon nanotubes and nanotube-based materials, Appl. Phys. A 74, 339–343 (2002),
https://doi.org/10.1007/s003390201277
[2] M. Hassani, A. Tahghighi, M. Rohani, M. Hek­mati, M. Ahmadian, and H. Ahmadvand, Robust antibacterial activity of functionalized carbon nanotube-levofloxacine conjugate based on in vitro and in vivo studies, Sci. Rep. 12, 10064 (2022),
https://doi.org/10.1038/s41598-022-14206-w
[3] A. Bozeya, Y.F. Makableh, R. Abu-Zurayk, A. Kha­laf, and A. Al Bawab, Thermal and structural properties of high density polyethylene/carbon nanotube nanocomposites: A comparison study, Chemosensors 9, 136 (2021),
https://doi.org/10.3390/chemosensors9060136
[4] R. Sharma, A.K. Sharma, and V. Sharma, Synthesis of carbon nanotubes by arc-discharge and chemical vapor deposition method with analysis of its morphology, dispersion and functionalization characteristics, Cogent Eng. 2, 1094017 (2015),
https://doi.org/10.1080/23311916.2015.1094017
[5] D. Łukawski, P.H. Kaniewska, D.J. Latterini, and A.L. Raus, Functional materials based on wood, carbon nanotubes, and graphene: manufacturing, applications, and green perspectives, Wood Sci. Technol. 57, 989–1037 (2023),
https://doi.org/10.1007/s00226-023-01484-4
[6] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S. Meier, and J.P. Selegue, Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes:  Evidence for the role of defect sites in carbon nanotube chemistry, Nano Lett. 2, 615 (2002),
https://doi.org/10.1021/nl020297u
[7] D. Rogala-Wielgus and A. Zieliński, Preparation and properties of composite coatings, based on carbon nanotubes, for medical applications, Carbon Lett. 34, 565 (2023),
https://doi.org/10.1007/s42823-023-00626-9
[8] Sh. Zhu, J. Sheng, Y. Chen, J. Ni, and Y. Li, Carbon nanotubes for flexible batteries: Recent progress and future perspective, Nat. Sci. Rev. 8, 261 (2021),
https://doi.org/10.1093/nsr/nwaa261
[9] M.A. Arshad, Thermo-oxidative decomposition of multi-walled carbon nanotubes: Kinetics and thermodynamics, Fuller. Nanotub. Car. N. 28, 23–33 (2020),
https://doi.org/10.1080/1536383X.2020.1775591
[10] Z. Latif, M. Ali, E.-J. Lee, Z. Zubair, and K.H. Lee, Thermal and mechanical properties of nano-carbon-reinforced polymeric nanocomposites: A review, J. Compos. Sci. 7, 441 (2023),
https://doi.org/10.3390/jcs7100441
[11] S. Sarkar, P. Kr. Das, and S. Bysakh, Effect of heattreatment on morphology and thermal decomposition kinetics of multiwalled carbon nanotubes, Mater. Chem. Phys. 125, 61–167 (2011),
https://doi.org/10.1016/j.matchemphys.2010.08.088
[12] A. Hassan, M.F. Iqbal, M. Stetsenko, T. Margitych, M. Azam, Z. Kanwal, I. Irfan, Β. Li, and Y. Jiang, Near-band-edge emission enhancement and suppression of the deep levels in Ga-doped ZnO via surface plasmon-exciton coupling without a dielectric spacer, J. Mater. Sci. Mater. Electron. 30(23), 20544–20550 (2019),
https://doi.org/10.1007/s10854-019-02418-2
[13] M. Swierczewska, I. Rusakova, and B. Sitharaman, Gadolinium and europium catalyzed growth of single-walled carbon nanotubes, Carbon 47, 3137 (2009),
https://doi.org/10.1016/j.carbon.2009.07.021
[14] L.S. Maksimenko, S.P. Rudenko, M.O. Stetsenko, I.E. Matyash, O.M. Mischuk, Yu.V. Kolomzarov, and B.K. Serdega, Diagnostic of resonant properties of Au-PTFE nanostructures for sensorapplications, in: Nanomaterials for Security, NATO Science for Peace and Security Series A: Chemistry and Biology (Springer, 2016),
https://doi.org/10.1007/978-94-017-7593-9_21
[15] K. Chaturvedi, A. Singhwane, A. Jaiswal, M. Mili, A. Tilwari, R.K. Mohapatra, A.K. Srivastava, and S. Verma, Robust synthesis and characteristics of novel one-dimensional gadolinium oxide nanorods decorated multiwalled carbon nanotubes based antibacterial nanocomposites for health care applications, Inorg. Chem. Commun. 157, 111324 (2023),
https://doi.org/10.1016/j.inoche.2023.111324
[16] D.-K. Lee, J. Yoo, H. Kim, B.-H. Kang, and S.-H. Park, Electrical and thermal properties of carbon nanotube polymer composites with various aspect ratios, Materials 15, 1356 (2022),
https://doi.org/10.3390/ma15041356
[17] M. Stetsenko, T. Margitych, S. Kryvyi, L. Mak­si­menko, A. Hassan, S. Filonenko, B. Li, J. Qu, E. Scheer, and S. Snegir, Nanoparticle self-aggregation on surface with 1, 6-hexanedithiol functionalization, Nanomaterials 10, 512 (2020),
https://doi.org/10.3390/nano10030512
[18] L. Najmi and Z. Hu, Effects of topological parameters on thermal properties of carbon nanotubes via molecular dynamics simulation, J. Compos. Sci. 8, 37 (2024),
https://doi.org/10.3390/jcs8010037
[19] R.G. Abaszade, O.A. Kapush, and A.M. Nabiyev, Properties of carbon nanotubes doped with gadolinium, J. Optoelectron. Biomed. Mater. 12(3), 61–65 (2020),
[PDF]
[20] R.G. Abaszade, O.A. Kapush, S.A. Mamedova, A.M. Nabiyev, S.Z. Melikova, and S.I. Budzulyak, Gadolinium doping influence on the properties of carbon nanotubes, Phys. Chem. Solid State 21(3), 404–408 (2020),
https://doi.org/10.15330/pcss.21.3.404-408
[21] R.G. Abaszade, M.B. Babanli, V.O. Kotsyubynsky, A.G. Mammadov, E. Gür, О.A. Kapush, M.O. Stets­enko, and R.I. Zapukhlyak, Influence of gadolinium doping on structural properties of carbon nanotube, Phys. Chem. Solid State 24(1), 53–158 (2023),
https://doi.org/10.15330/pcss.24.1.153-158
[22] A.G. Mammadov, R.G. Abaszade, M.B. Babanli, V.O. Kotsyubynsky, E. Gur, B.D. Soltabayev, T.O. Mar­gi­tych, and M.O. Stetsenko, Photo­conductivity of gadolinium-doped carbon nanotubes, IJTPE 15(3), 53–58 (2023),
[PDF]
[23] A.G. Mammadov, R.G. Abaszade, V.O. Kot­syu­bynsky, E.Y. Gur, I.Y. Bayramov, E.A. Khan­mamadova, and O.A. Kapush, Photoconductivity of carbon nanotubes, IJTPE 14(3), 155–160 (2022),
[PDF]
[24] R.G. Abaszade, E.M. Aliyev, M.B. Babanli, V.O. Kot­syubynsky, R.I. Zapukhlyak, A.G. Mamedov, H.F. Budak, A.E. Kasapoglu, E. Gur, T.O. Mar­ gitych, and M.O. Stetsenko, Investigation of thermal properties of carbonnanotubes and carboxyl group-functionalizedcarbon nanotubes, Phys. Chem. Solid State 24(3), 530–535 (2023),
https://doi.org/10.15330/pcss.24.3.530-535
[25] R.G. Abaszade, A.G. Mammadov, E.A. Khan­mamedova, F.G. Aliyev, V.O. Kotsyubynsky, E. Gür, B.D. Soltabayev, T.O. Margitych, M.O. Stetsenko, A. Singh, and S. Arya, Photoconductivity of functionalized carbon nanotubes, Dig. J. Nanomater.Biostruct. 19(2), 837–843 (2024),
https://doi.org/10.15251/djnb.2024.192.837
[26] S. Makhno, X. Wan, O. Lisova, P. Gorbyk, H. Tang, Y. Shi, D. Wang, M. Kartel, K. Ivanenko, S. Hozhdzinskyi, et al., Conducting rubber anisotropy of electrophysical and mechanical prop erties, Polymers 17(4), 492 (2025),
https://doi.org/10.3390/polym17040492
[27] R.G. Abaszade, E.M. Aliyev, A.G. Mammadov, E.A. Khanmamadova, A.A. Guliyev, F.G. Aliyev, R.I. Za­pukhlyak, H.F. Budak, A.E. Kasapoglu, T.O. Mar­gitych, et al., Investigation of thermal properties of gadolinium doped carbon nanotubes, Phys. Chem. Solid State 25(1), 142–147(2024),
https://doi.org/10.15330/pcss.25.1.142-147
[28] B. Kumanek and D. Janas, Thermal conductivity of carbon nanotube networks: A review, J. Mater. Sci. 54, 7397–7427 (2019),
https://doi.org/10.1007/s10853-019-03368-0