Rashad G. Abaszade
, Elvin M. Aliyev
,
Azer G. Mammadov
, Elmira A. Khanmamadova
,
Agali A. Guliyev
, Fagan G. Aliyev
, Tetiana O. Margitych
,
and Maksym O. Stetsenko
Received 22 April 2025; revised 6 October 2025; accepted 7 October
2025
References /
Nuorodos
[1] J. Hone, M.C. Llaguno, M.J. Biercuk, A.T. Johnson, B.
Batlogg, Z. Benes, and J.E. Fischer, Thermal properties of
carbon nanotubes and nanotube-based materials, Appl. Phys. A
74,
339–343 (2002),
https://doi.org/10.1007/s003390201277
[2] M. Hassani, A. Tahghighi, M. Rohani, M. Hekmati, M.
Ahmadian, and H. Ahmadvand, Robust antibacterial activity of
functionalized carbon nanotube-levofloxacine conjugate based on
in vitro and in vivo studies, Sci. Rep.
12, 10064
(2022),
https://doi.org/10.1038/s41598-022-14206-w
[3] A. Bozeya, Y.F. Makableh, R. Abu-Zurayk, A. Khalaf, and A.
Al Bawab, Thermal and structural properties of high density
polyethylene/carbon nanotube nanocomposites: A comparison study,
Chemosensors
9, 136 (2021),
https://doi.org/10.3390/chemosensors9060136
[4] R. Sharma, A.K. Sharma, and V. Sharma, Synthesis of carbon
nanotubes by arc-discharge and chemical vapor deposition method
with analysis of its morphology, dispersion and
functionalization characteristics, Cogent Eng.
2,
1094017 (2015),
https://doi.org/10.1080/23311916.2015.1094017
[5] D. Łukawski, P.H. Kaniewska, D.J. Latterini, and A.L. Raus,
Functional materials based on wood, carbon nanotubes, and
graphene: manufacturing, applications, and green perspectives,
Wood Sci. Technol.
57, 989–1037 (2023),
https://doi.org/10.1007/s00226-023-01484-4
[6] D. Bom, R. Andrews, D. Jacques, J. Anthony, B. Chen, M.S.
Meier, and J.P. Selegue, Thermogravimetric analysis of the
oxidation of multiwalled carbon nanotubes: Evidence for the
role of defect sites in carbon nanotube chemistry, Nano Lett.
2,
615 (2002),
https://doi.org/10.1021/nl020297u
[7] D. Rogala-Wielgus and A. Zieliński, Preparation and
properties of composite coatings, based on carbon nanotubes, for
medical applications, Carbon Lett.
34, 565 (2023),
https://doi.org/10.1007/s42823-023-00626-9
[8] Sh. Zhu, J. Sheng, Y. Chen, J. Ni, and Y. Li, Carbon
nanotubes for flexible batteries: Recent progress and future
perspective, Nat. Sci. Rev.
8, 261 (2021),
https://doi.org/10.1093/nsr/nwaa261
[9] M.A. Arshad, Thermo-oxidative decomposition of multi-walled
carbon nanotubes: Kinetics and thermodynamics, Fuller. Nanotub.
Car. N.
28, 23–33 (2020),
https://doi.org/10.1080/1536383X.2020.1775591
[10] Z. Latif, M. Ali, E.-J. Lee, Z. Zubair, and K.H. Lee,
Thermal and mechanical properties of nano-carbon-reinforced
polymeric nanocomposites: A review, J. Compos. Sci.
7,
441 (2023),
https://doi.org/10.3390/jcs7100441
[11] S. Sarkar, P. Kr. Das, and S. Bysakh, Effect of
heattreatment on morphology and thermal decomposition kinetics
of multiwalled carbon nanotubes, Mater. Chem. Phys.
125,
61–167 (2011),
https://doi.org/10.1016/j.matchemphys.2010.08.088
[12] A. Hassan, M.F. Iqbal, M. Stetsenko, T. Margitych, M. Azam,
Z. Kanwal, I. Irfan, Β. Li, and Y. Jiang, Near-band-edge
emission enhancement and suppression of the deep levels in
Ga-doped ZnO via surface plasmon-exciton coupling without a
dielectric spacer, J. Mater. Sci. Mater. Electron.
30(23),
20544–20550 (2019),
https://doi.org/10.1007/s10854-019-02418-2
[13] M. Swierczewska, I. Rusakova, and B. Sitharaman, Gadolinium
and europium catalyzed growth of single-walled carbon nanotubes,
Carbon
47, 3137 (2009),
https://doi.org/10.1016/j.carbon.2009.07.021
[14] L.S. Maksimenko, S.P. Rudenko, M.O. Stetsenko, I.E.
Matyash, O.M. Mischuk, Yu.V. Kolomzarov, and B.K. Serdega,
Diagnostic of resonant properties of Au-PTFE nanostructures for
sensorapplications, in:
Nanomaterials for Security,
NATO Science for Peace and Security Series A: Chemistry and
Biology (Springer, 2016),
https://doi.org/10.1007/978-94-017-7593-9_21
[15] K. Chaturvedi, A. Singhwane, A. Jaiswal, M. Mili, A.
Tilwari, R.K. Mohapatra, A.K. Srivastava, and S. Verma, Robust
synthesis and characteristics of novel one-dimensional
gadolinium oxide nanorods decorated multiwalled carbon nanotubes
based antibacterial nanocomposites for health care applications,
Inorg. Chem. Commun.
157, 111324 (2023),
https://doi.org/10.1016/j.inoche.2023.111324
[16] D.-K. Lee, J. Yoo, H. Kim, B.-H. Kang, and S.-H. Park,
Electrical and thermal properties of carbon nanotube polymer
composites with various aspect ratios, Materials
15,
1356 (2022),
https://doi.org/10.3390/ma15041356
[17] M. Stetsenko, T. Margitych, S. Kryvyi, L. Maksimenko, A.
Hassan, S. Filonenko, B. Li, J. Qu, E. Scheer, and S. Snegir,
Nanoparticle self-aggregation on surface with 1, 6-hexanedithiol
functionalization, Nanomaterials
10, 512 (2020),
https://doi.org/10.3390/nano10030512
[18] L. Najmi and Z. Hu, Effects of topological parameters on
thermal properties of carbon nanotubes via molecular dynamics
simulation, J. Compos. Sci.
8, 37 (2024),
https://doi.org/10.3390/jcs8010037
[19] R.G. Abaszade, O.A. Kapush, and A.M. Nabiyev, Properties of
carbon nanotubes doped with gadolinium, J. Optoelectron. Biomed.
Mater.
12(3), 61–65 (2020),
[PDF]
[20] R.G. Abaszade, O.A. Kapush, S.A. Mamedova, A.M. Nabiyev,
S.Z. Melikova, and S.I. Budzulyak, Gadolinium doping influence
on the properties of carbon nanotubes, Phys. Chem. Solid State
21(3),
404–408 (2020),
https://doi.org/10.15330/pcss.21.3.404-408
[21] R.G. Abaszade, M.B. Babanli, V.O. Kotsyubynsky, A.G.
Mammadov, E. Gür, О.A. Kapush, M.O. Stetsenko, and R.I.
Zapukhlyak, Influence of gadolinium doping on structural
properties of carbon nanotube, Phys. Chem. Solid State
24(1),
53–158 (2023),
https://doi.org/10.15330/pcss.24.1.153-158
[22] A.G. Mammadov, R.G. Abaszade, M.B. Babanli, V.O.
Kotsyubynsky, E. Gur, B.D. Soltabayev, T.O. Margitych, and
M.O. Stetsenko, Photoconductivity of gadolinium-doped carbon
nanotubes, IJTPE
15(3), 53–58 (2023),
[PDF]
[23] A.G. Mammadov, R.G. Abaszade, V.O. Kotsyubynsky, E.Y.
Gur, I.Y. Bayramov, E.A. Khanmamadova, and O.A. Kapush,
Photoconductivity of carbon nanotubes, IJTPE
14(3),
155–160 (2022),
[PDF]
[24] R.G. Abaszade, E.M. Aliyev, M.B. Babanli, V.O.
Kotsyubynsky, R.I. Zapukhlyak, A.G. Mamedov, H.F. Budak, A.E.
Kasapoglu, E. Gur, T.O. Mar gitych, and M.O. Stetsenko,
Investigation of thermal properties of carbonnanotubes and
carboxyl group-functionalizedcarbon nanotubes, Phys. Chem. Solid
State
24(3), 530–535 (2023),
https://doi.org/10.15330/pcss.24.3.530-535
[25] R.G. Abaszade, A.G. Mammadov, E.A. Khanmamedova, F.G.
Aliyev, V.O. Kotsyubynsky, E. Gür, B.D. Soltabayev, T.O.
Margitych, M.O. Stetsenko, A. Singh, and S. Arya,
Photoconductivity of functionalized carbon nanotubes, Dig. J.
Nanomater.Biostruct.
19(2), 837–843 (2024),
https://doi.org/10.15251/djnb.2024.192.837
[26] S. Makhno, X. Wan, O. Lisova, P. Gorbyk, H. Tang, Y. Shi,
D. Wang, M. Kartel, K. Ivanenko, S. Hozhdzinskyi, et al.,
Conducting rubber anisotropy of electrophysical and mechanical
prop erties, Polymers
17(4), 492 (2025),
https://doi.org/10.3390/polym17040492
[27] R.G. Abaszade, E.M. Aliyev, A.G. Mammadov, E.A.
Khanmamadova, A.A. Guliyev, F.G. Aliyev, R.I. Zapukhlyak, H.F.
Budak, A.E. Kasapoglu, T.O. Margitych, et al., Investigation of
thermal properties of gadolinium doped carbon nanotubes, Phys.
Chem. Solid State
25(1), 142–147(2024),
https://doi.org/10.15330/pcss.25.1.142-147
[28] B. Kumanek and D. Janas, Thermal conductivity of carbon
nanotube networks: A review, J. Mater. Sci.
54,
7397–7427 (2019),
https://doi.org/10.1007/s10853-019-03368-0