Received 21 October 2025; revised 15 November 2025; accepted
20 November 2025
References /
Nuorodos
[1] N. Demos, S. Gras, M. Evans, P. O'Brien, G. Billingsley, and
L. Zhang, Substoichiometric silica in a multimaterial highly
reflective coating, Class. Quant. Grav.
42, 115012
(2025),
https://doi.org/10.1088/1361-6382/add2c6
[2] A. Amato, G. Cagnoli, M. Granata, B. Sassolas, J. Degallaix,
D. Forest, C. Michel, L. Pinard, N. Demos, and S. Gras, Optical
and mechanical properties of ion-beam-sputtered Nb
2O
5
and TiO
2−Nb
2O
5 thin films for
gravitational-wave interferometers and an improved measurement
of coating thermal noise in Advanced LIGO, Phys. Rev. D
103,
072001 (2021),
https://doi.org/10.1103/PhysRevD.103.072001
[3] G.-W. Truong, L.W. Perner, D.M. Bailey, G. Winkler, S.B.
Cataño-Lopez, V.J. Wittwer, T. Südmeyer, C. Nguyen, D. Follman,
and A.J. Fleisher, Mid- infrared supermirrors with finesse
exceeding 400 000, Nat. Commun.
14, 7846 (2023),
https://doi.org/10.1038/s41467-023-43367-z
[4] C.-J. Tang, C.-C. Jaing, K.-S. Lee, and C.-C. Lee, Residual
stress in Ta
2O
5–SiO
2 composite
thin-film rugate filters prepared by radio frequency ion-beam
sputtering, Appl. Opt.
47, C167 (2008),
https://doi.org/10.1364/AO.47.00C167
[5] R. Thielsch, A. Gatto, and N. Kaiser, Mechanical stress and
thermal-elastic properties of oxide coatings for use in the
deep-ultraviolet spectral region, Appl. Opt.
41, 3211
(2002),
https://doi.org/10.1364/AO.41.003211
[6] O. Stenzel, M. Schürmann, S. Wilbrandt, N. Kaiser, A.
Tünnermann, M. Mende, H. Ehlers, D. Ristau, S. Bruns, M.
Vergöhl, et al., Optical and mechanical properties of oxide UV
coatings, prepared by PVD techniques, SPIE OSD 8168, 10 (2011),
https://doi.org/10.1117/12.896775
[7] C. Malhaire, M. Granata, D. Hofman, A. Amato, V. Martinez,
G. Cagnoli, A. Lemaitre, and N. Shcheblanov, Determination of
compressive stress in thin films using micro-machined buckled
membranes,
arXiv:2305.15794
(2023),
https://doi.org/10.1116/6.0002590
[8] S. Kičas, U. Gimževskis, and S. Melnikas, Post deposition
annealing of IBS mixture coatings for compensation of film
induced stress, Opt. Mater. Express
6, 2236 (2016),
https://doi.org/10.1364/OME.6.002236
[9] D.J. Reiley and R.A. Chipman, Coating-induced wave-front
aberrations: on-axis astigmatism and chromatic aberration in
all-reflecting systems, Appl. Opt.
33, 2002 (1994),
https://doi.org/10.1364/AO.33.002002
[10] M. Bischoff, T. Nowitzki, O. Voß, S. Wilbrandt, and O.
Stenzel, Postdeposition treatment of IBS coatings for UV
applications with optimized thin-film stress properties, Appl.
Opt.
53, A212 (2014),
https://doi.org/10.1364/AO.53.00A212
[11] M. Falmbigl, K. Godin, J. George, C. Mühlig, and B. Rubin,
Effect of annealing on properties and performance of HfO
2/SiO
2
optical coatings for UV-applications, Opt. Express
30,
12326 (2022),
https://doi.org/10.1364/OE.453345
[12] C. Harthcock, H.T. Nguyen, D. Vipin, and M. Huang, Impact
of high-temperature annealing on hafnia-silica composite
coatings deposited via ion beam sputtering for high-peak power
1064 nm lasers, Opt. Mater. Express
15, 2592 (2025),
https://doi.org/10.1364/OME.572003
[13] W.-H. Wang and S. Chao, Annealing effect on
ion-beam-sputtered titanium dioxide film, Opt. Lett.
23,
1417 (1998),
https://doi.org/10.1364/OL.23.001417
[14] S. Chao, W.-H. Wang, M.-Y. Hsu, and L.-C. Wang,
Characteristics of ion-beam-sputtered high-refractive-index TiO
2-SiO
2
mixed films, J. Opt. Soc. Am. A
16, 1477 (1999),
https://doi.org/10.1364/JOSAA.16.001477
[15] G. Favaro, V. Milotti, D. Alonso Diaz Riega, N. Busdon, M.
Bazzan, M. Granata, D. Hofman, C. Michel, L. Pinard, L. Conti,
et al., Reduction of mechanical losses in ion-beam sputtered
tantalum oxide thin films via partial crystallization, Class.
Quant. Grav.
41, 105009 (2024),
https://doi.org/10.1088/1361-6382/ad3c8a
[16] M. Steinecke, K. Kiedrowski, M. Jupé, and D. Ristau, Very
thick mixture oxide ion beam sputtering films for investigation
of nonlinear material properties, Eur. Phys. J. Appl. Phys.
80,
30301 (2017),
https://doi.org/10.1051/epjap/2017170239
[17] E. Randel, A. Davenport, A. Markosyan, R. Bassiri, M.M.
Fejer, and C.S. Menoni, Ultra-low stress SiO
2 ion
beam deposition coatings, in:
Proceedings of the Optical
Interference Coatings Conference (OIC) 2019, Optical
Society of America (2019) pp. WC.5
https://doi.org/10.1364/OIC.2019.WC.5
[18] E. Çetinörgü, B. Baloukas, O. Zabeida, J.E.
Klemberg-Sapieha, and L. Martinu, Mechanical and thermoelastic
characteristics of optical thin films deposited by dual ion beam
sputtering, Appl. Opt.
48, 4536 (2009),
https://doi.org/10.1364/AO.48.004536
[19] P.F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert,
A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, et al.,
Point defects in Sc
2O
3 thin films by ion
beam sputtering, Appl. Opt.
53, A276 (2014),
https://doi.org/10.1364/AO.53.00A276
[20] H. Liu, Y. Jiang, L. Wang, J. Leng, P. Sun, K. Zhuang, Y.
Ji, X. Cheng, H. Jiao, Z. Wang, and B. Wu, Correlation between
properties of HfO
2 films and preparing parameters by
ion beam sputtering deposition, Appl. Opt.
53, A405
(2014),
https://doi.org/10.1364/AO.53.00A405
[21] Z. Qiao, Y. Pu, H. Liu, K. Luo, G. Wang, Z. Liu, and P. Ma,
Residual stress and laser-induced damage of ion-beam sputtered
Ta
2O
5/SiO
2 mixture coatings,
Thin Solid Films
592, 221 (2015),
https://doi.org/10.1016/j.tsf.2015.06.023
[22] B.J. Pond, J.I. DeBar, C.K. Carniglia, and T. Raj, Stress
reduction in ion beam sputtered mixed oxide films, Appl. Opt.
28,
2800 (1989),
https://doi.org/10.1364/AO.28.002800
[23] S. Melnikas, U. Gimževskis, and S. Kičas, Stress
compensated back side coated chirped mirror with high negative
dispersion, Opt. Laser Technol.
121, 105820 (2020),
https://doi.org/10.1016/j.optlastec.2019.105820
[24] L. O. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen,
L. Emmert, and W. Rudolph, Investigations on SiO
2/HfO
2
mixtures for nanosecond and femtosecond pulses, Proc. SPIE 7842,
10 (2010),
https://doi.org/10.1117/12.867238
[25] B. Mangote, L. Gallais, M. Commandré, M. Mende, L. Jensen,
H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, et
al., Femtosecond laser damage resistance of oxide and mixture
oxide optical coatings, Opt. Lett.
37, 1478 (2012),
https://doi.org/10.1364/OL.37.001478
[26] X. Fu, M. Commandré, L. Gallais, M. Mende, H. Ehlers, and
D. Ristau, Laser-induced damage in composites of scandium,
hafnium, aluminum oxides with silicon oxide in the infrared,
Appl. Opt.
53, A392 (2014),
https://doi.org/10.1364/AO.53.00A392
[27] M. Mende, I. Balasa, H. Ehlers, D. Ristau, D. Douti, L.
Gallais, and M. Commandré, Relation of optical properties and
femtosecond laser damage resistance for Al
2O
3/AlF3
and Al
2O
3/SiO
2 composite
coatings, Appl. Opt.
53, A383 (2014),
https://doi.org/10.1364/AO.53.00A383
[28] L.O. Jensen, and D. Ristau, Coatings of oxide composites,
Proc. SPIE 8530, 15 (2012),
https://doi.org/10.1117/12.981526
[29] H. Blaschke, M. Lappschies, and D. Ristau, Performance
enhancement of ion beam sputtered oxide coatings for 193 nm,
Proc. SPIE 6720, 10 (2007),
https://doi.org/10.1117/12.752908
[30] G. Abromavičius, S. Kičas, and R. Buzelis, High temperature
annealing effects on spectral, microstructural and laser damage
resistance properties of sputtered HfO
2 and HfO
2-SiO
2
mixture-based UV mirrors, Opt. Mater.
95, 109245 (2019),
https://doi.org/10.1016/j.optmat.2019.109245
[31] H. Grüger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, and T.
Pechstein, High quality r.f. sputtered metal oxides (Ta
2O
5,
HfO
2) and their properties after annealing, Thin
Solid Films
447–448, 509 (2004),
https://doi.org/10.1016/j.tsf.2003.07.013
[32] C.-C. Lee, C.-L. Tien, W.-S. Sheu, and C.-C. Jaing, An
apparatus for the measurement of internal stress and thermal
expansion coefficient of metal oxide films, Rev. Sci. Instrum.
72, 2128 (2001),
https://doi.org/10.1063/1.1357228
[33] H. Liu, Y. Jiang, L. Wang, S. Li, X. Yang, C. Jiang, D.
Liu, Y. Ji, F. Zhang, and D. Chen, Effect of heat treatment on
properties of HfO
2 film deposited by ion-beam
sputtering, Opt. Mater.
73, 95 (2017),
https://doi.org/10.1016/j.optmat.2017.07.048
[34] G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, and L.D. Zhang,
Effect of postdeposition annealing on the thermal stability and
structural characteristics of sputtered HfO
2 films on
Si (100), Surf. Sci.
576, 67 (2005),
https://doi.org/10.1016/j.susc.2004.11.042
[35] J.-W. Park, D.-K. Lee, D. Lim, H. Lee, and S.-H. Choi,
Optical properties of thermally annealed hafnium oxide and their
correlation with structural change, J. Appl. Phys.
104,
033521 (2008),
https://doi.org/10.1063/1.2961326
[36] V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, Thermal
stability of sputtered Al
2O
3 coatings,
Surf. Coat. Technol.
204, 1576 (2010),
https://doi.org/10.1016/j.surfcoat.2009.10.002
[37] S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl,
and J.W. Bartha, Crystallization behavior of thin ALD-Al
2O
3
films, Thin Solid Films
425, 216 (2003),
https://doi.org/10.1016/S0040-6090(02)01262-2
[38] V. Milotti, G. Favaro, M. Granata, D. Forest, C. Michel, J.
Teillon, N. Busdon, M. Bazzan, H. Skliarova, and G. Ciani,
Thermal noise reduction in ion-beam sputtered HfO
2:
Ta
2O
5 thin films via high-temperature
treatment, Opt. Mater.
163, 116901 (2025),
https://doi.org/10.1016/j.optmat.2025.116901
[39] Z.L. Pei, L. Pereira, G. Gonçalves, P. Barquinha, N.
Franco, E. Alves, A.M.B. Rego, R. Martins, and E. Fortunato,
Room-temperature cosputtered HfO
2-Al
2O
3
multicomponent gate dielectrics, Electrochem. Solid-State Lett.
12, G65 (2009),
https://doi.org/10.1149/1.3186643
[40] T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R.
Buzelis, and A. Melninkaitis, Assessment of effective-medium
theories of ion-beam sputtered Nb
2O
5–SiO
2
and ZrO
2–SiO
2 mixtures, Lith. J. Phys.
54,
99 (2014),
https://doi.org/10.3952/physics.v54i2.2918
[41] G.G. Stoney, The tension of metallic films deposited by
electrolysis, Proc. R. Soc. Lond. A
82, 172 (1909),
https://doi.org/10.1098/rspa.1909.0021
[42] J. Wang, R.L. Maier, and H. Schreiber, Crystal phase
transition of HfO
2 films evaporated by
plasma-ion-assisted deposition, Appl. Opt.
47, C189
(2008),
https://doi.org/10.1364/AO.47.00C189
[43] C.J. Stolz, F.Y. Genin, M.R. Kozlowski, D. Long, R.
Lalazari, Z. Wu, and P.-K. Kuo, Influence of microstructure on
laser damage threshold of IBS coatings, Proc. SPIE 2714, 9
(1996),
https://doi.org/10.1117/12.240403
[44] J. Gao, G. He, B. Deng, D.Q. Xiao, M. Liu, P. Jin, C.Y.
Zheng, and Z.Q. Sun, Microstructure, wettability, optical and
electrical properties of HfO
2 thin films: Effect of
oxygen partial pressure, J. Alloys Compd. 662, 339 (2016),
https://doi.org/10.1016/j.jallcom.2015.12.080
[45] C. Xu, Y. Qiang, Y. Zhu, T. Zhai, L. Guo, Y. Zhao, J. Shao,
and Z. Fan, Laser-induced damage threshold at different
wavelengths of Ta
2O
5 films annealed over a
wide temperature range, Vacuum 84, 1310 (2010),
https://doi.org/10.1016/j.vacuum.2010.02.009
[46] Z. Balogh-Michels, I. Stevanovic, A. Borzi, A. Bächli, D.
Schachtler, T. Gischkat, A. Neels, A. Stuck, and R. Botha,
Crystallization behavior of ion beam sputtered HfO
2
thin films and its effect on the laser-induced damage threshold,
J. Eur. Opt. Soc. Rapid Publ. 17, 3 (2021),
https://doi.org/10.1186/s41476-021-00147-w
[47] X.Y. Qiu, Q.M. Liu, F. Gao, L.Y. Lu, and J.-M. Liu,
Room-temperature weak ferromagnetism of amorphous HfAlO
x
thin films deposited by pulsed laser deposition, Appl. Phys.
Lett. 89, 242504 (2006),
https://doi.org/10.1063/1.2405883
[48] C. Xu, H. Dong, L. Yuan, H. He, J. Shao, and Z. Fan,
Investigation of annealing effects on the laser-induced damage
threshold of amorphous Ta
2O
5 films, Opt.
Laser Technol. 41, 258 (2009),
https://doi.org/10.1016/j.optlastec.2008.06.009
[49] Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, Annealing
effects on structure and laser-induced damage threshold of Ta
2O
5/SiO
2
dielectric mirrors, Appl. Surf. Sci. 210, 353 (2003),
https://doi.org/10.1016/S0169-4332(03)00153-3
[50] J. Shi, M. Zhu, W. Du, T. Liu, L. Zhou, Y. Jiang, J. Sun,
J. Li, and J. Shao, Picosecond laser-induced damage of HfO
2-Al
2O
3
mixture-based mirror coatings in atmosphere and vacuum
environments, Opt. Mater. Express 13, 667 (2023),
https://doi.org/10.1364/OME.483052