[PDF] https://doi.org/10.3952/physics.2025.65.3.5

Open access article / Atviros prieigos straipsnis
 
Lith. J. Phys. 65, 162–172 (2025)
 


MECHANICAL STRESS, OPTICAL AND SURFACE PROPERTIES OF HIGH TEMPERATURE ANNEALED HfO2, Sc2O3 AND Al2O3 BINARY MIXTURE THIN FILMS DEPOSITED BY ION BEAM SPUTTERING
 
Giedrius Abromavičius
 
Optical Coating Laboratory, Center for Physical Sciences and Technology, Savanorių 231, 02300 Vilnius, Lithuania
 Email: giedrius.abromavicius@ftmc.lt

 Received 21 October 2025; revised 15 November 2025; accepted 20 November 2025

High compressive stress is one of the main drawbacks of ion beam sputtered coatings by deteriorating the flatness of optical components. Mixtures of high refractive index metal oxides with SiO2 allow one to increase the laser induced damage threshold of multilayer stacks. Study of optical, surface roughness and stress properties of HfO2–Al2O3, Sc2O3–Al2O3, HfO2–Sc2O3 binary mixtures using a broad range of post-deposition thermal annealing up to 900°C is presented. Admixing Al2O3 in moderate concentrations to HfO2 and Sc2O3 allows one to sustain a low surface roughness, to decrease the extinction of layers during thermal treatment, while obtaining –360…–560 MPa tensile stress after annealing to 500°C, depending on the particular mixture. The obtained data allow one to point out possible candidates – HfO2(56%)–Al2O3(44%), Sc2O3(70%)–Al2O3(30%), HfO2(~70%)–Sc2O3(~30%) – and the 500–600°C annealing temperature range for the design of stress compensated multilayer coatings for the UV spectral range with potentially increased laser induced damage threshold.
Keywords: ion beam sputtering, coating stress, material mixtures, UV range

JONAPLUOŠČIO DULKINIMO BŪDU SUFORMUOTŲ IR ATKAITINTŲ IKI AUKŠTŲ TEMPERATŪRŲ HfO2, Sc2O3 IR Al2O3 MIŠINIŲ SLUOKSNIŲ ĮTEMPIŲ, OPTINIŲ IR PAVIRŠINIŲ SAVYBIŲ TYRIMAS
 
Giedrius Abromavičius

Fizinių ir technologijos mokslų centro Optinių dangų laboratorija, Vilnius, Lietuva
 

Dideli vidiniai įtempiai yra vienas didžiausių jonapluoščio dulkinimo būdu suformuotų optinių dangų trūkumų, mažinančių optinių komponentų plokštiškumą. Aukšto lūžio rodiklio metalų oksidų mišiniai su SiO2 leidžia padidinti daugiasluoksnių dangų lazerio indukuotos pažaidos slenkstį. Tyrime pateikiama HfO2-Al2O3, Sc2O3-Al2O3, HfO2-Sc2O3 mišinių sluoksnių įtempių, optinių ir paviršinių savybių analizė, taikant terminį atkaitinimą plačiame temperatūrų ruože – nuo 300 iki 900 °C. Suformavus HfO2 ir Sc2O3 sluoksnius, pasižyminčius vidutinio dydžio Al2O3 frakcijomis, galima išlaikyti žemą pradinį sluoksnių paviršiaus šiurkštumą, mažėjančią ekstinkciją, taikant terminį atkaitinimą iki aukštų temperatūrų. Šie mišiniai taip pat pasižymi –360...–560 MPa tempiamaisiais įtempiais po kaitinimo iki 500 °C. Gauti duomenys leidžia identifikuoti perspektyvius HfO2(56 %)-Al2O3(44 %), Sc2O3(70 %)-Al2O3(30 %), HfO2(~70 %)-Sc2O3(~30 %) mišinius ir 500–600 °C atkaitinimo temperatūrų ruožą, tinkamus daugiasluoksnių UV optinių dangų projektavimui su kompensuotais įtempiais bei potencialiai didesniu lazerinės pažaidos slenksčiu.


References / Nuorodos

[1] N. Demos, S. Gras, M. Evans, P. O'Brien, G. Billingsley, and L. Zhang, Substoichiometric silica in a multimaterial highly reflective coating, Class. Quant. Grav. 42, 115012 (2025),
https://doi.org/10.1088/1361-6382/add2c6
[2] A. Amato, G. Cagnoli, M. Granata, B. Sassolas, J. Degallaix, D. Forest, C. Michel, L. Pinard, N. Demos, and S. Gras, Optical and mechanical properties of ion-beam-sputtered Nb2O5 and TiO2−Nb2O5 thin films for gravitational-wave interferometers and an improved measurement of coating thermal noise in Advanced LIGO, Phys. Rev. D 103, 072001 (2021),
https://doi.org/10.1103/PhysRevD.103.072001
[3] G.-W. Truong, L.W. Perner, D.M. Bailey, G. Wink­ler, S.B. Cataño-Lopez, V.J. Wittwer, T. Südmeyer, C. Nguyen, D. Follman, and A.J. Fleisher, Mid- infrared supermirrors with finesse exceeding 400 000, Nat. Commun. 14, 7846 (2023),
https://doi.org/10.1038/s41467-023-43367-z
[4] C.-J. Tang, C.-C. Jaing, K.-S. Lee, and C.-C. Lee, Residual stress in Ta2O5–SiO2 composite thin-film rugate filters prepared by radio frequency ion-beam sputtering, Appl. Opt. 47, C167 (2008),
https://doi.org/10.1364/AO.47.00C167
[5] R. Thielsch, A. Gatto, and N. Kaiser, Mechanical stress and thermal-elastic properties of oxide coatings for use in the deep-ultraviolet spectral region, Appl. Opt. 41, 3211 (2002),
https://doi.org/10.1364/AO.41.003211
[6] O. Stenzel, M. Schürmann, S. Wilbrandt, N. Kai­ser, A. Tünnermann, M. Mende, H. Ehlers, D. Ris­tau, S. Bruns, M. Vergöhl, et al., Optical and mechanical properties of oxide UV coatings, prepared by PVD techniques, SPIE OSD 8168, 10 (2011),
https://doi.org/10.1117/12.896775
[7] C. Malhaire, M. Granata, D. Hofman, A. Amato, V. Martinez, G. Cagnoli, A. Lemaitre, and N. Shcheb­lanov, Determination of compressive stress in thin films using micro-machined buckled membranes, arXiv:2305.15794 (2023),
https://doi.org/10.1116/6.0002590
[8] S. Kičas, U. Gimževskis, and S. Melnikas, Post deposition annealing of IBS mixture coatings for compensation of film induced stress, Opt. Mater. Express 6, 2236 (2016),
https://doi.org/10.1364/OME.6.002236
[9] D.J. Reiley and R.A. Chipman, Coating-induced wave-front aberrations: on-axis astigmatism and chromatic aberration in all-reflecting systems, Appl. Opt. 33, 2002 (1994),
https://doi.org/10.1364/AO.33.002002
[10] M. Bischoff, T. Nowitzki, O. Voß, S. Wilbrandt, and O. Stenzel, Postdeposition treatment of IBS coatings for UV applications with optimized thin-film stress properties, Appl. Opt. 53, A212 (2014),
https://doi.org/10.1364/AO.53.00A212
[11] M. Falmbigl, K. Godin, J. George, C. Mühlig, and B. Rubin, Effect of annealing on properties and performance of HfO2/SiO2 optical coatings for UV-applications, Opt. Express 30, 12326 (2022),
https://doi.org/10.1364/OE.453345
[12] C. Harthcock, H.T. Nguyen, D. Vipin, and M. Huang, Impact of high-temperature annealing on hafnia-silica composite coatings deposited via ion beam sputtering for high-peak power 1064 nm lasers, Opt. Mater. Express 15, 2592 (2025),
https://doi.org/10.1364/OME.572003
[13] W.-H. Wang and S. Chao, Annealing effect on ion-beam-sputtered titanium dioxide film, Opt. Lett. 23, 1417 (1998),
https://doi.org/10.1364/OL.23.001417
[14] S. Chao, W.-H. Wang, M.-Y. Hsu, and L.-C. Wang, Characteristics of ion-beam-sputtered high-refractive-index TiO2-SiO2 mixed films, J. Opt. Soc. Am. A 16, 1477 (1999),
https://doi.org/10.1364/JOSAA.16.001477
[15] G. Favaro, V. Milotti, D. Alonso Diaz Riega, N. Busdon, M. Bazzan, M. Granata, D. Hofman, C. Michel, L. Pinard, L. Conti, et al., Reduction of mechanical losses in ion-beam sputtered tantalum oxide thin films via partial crystallization, Class. Quant. Grav. 41, 105009 (2024),
https://doi.org/10.1088/1361-6382/ad3c8a
[16] M. Steinecke, K. Kiedrowski, M. Jupé, and D. Ristau, Very thick mixture oxide ion beam sputtering films for investigation of nonlinear material properties, Eur. Phys. J. Appl. Phys. 80, 30301 (2017),
https://doi.org/10.1051/epjap/2017170239
[17] E. Randel, A. Davenport, A. Markosyan, R. Bas­siri, M.M. Fejer, and C.S. Menoni, Ultra-low stress SiO2 ion beam deposition coatings, in: Proceedings of the Optical Interference Coatings Conference (OIC) 2019, Optical Society of America (2019) pp. WC.5
https://doi.org/10.1364/OIC.2019.WC.5
[18] E. Çetinörgü, B. Baloukas, O. Zabeida, J.E. Klem­berg-Sapieha, and L. Martinu, Mechanical and thermoelastic characteristics of optical thin films deposited by dual ion beam sputtering, Appl. Opt. 48, 4536 (2009),
https://doi.org/10.1364/AO.48.004536
[19] P.F. Langston, E. Krous, D. Schiltz, D. Patel, L. Emmert, A. Markosyan, B. Reagan, K. Wernsing, Y. Xu, Z. Sun, et al., Point defects in Sc2O3 thin films by ion beam sputtering, Appl. Opt. 53, A276 (2014),
https://doi.org/10.1364/AO.53.00A276
[20] H. Liu, Y. Jiang, L. Wang, J. Leng, P. Sun, K. Zhuang, Y. Ji, X. Cheng, H. Jiao, Z. Wang, and B. Wu, Correlation between properties of HfO2 films and preparing parameters by ion beam sputtering deposition, Appl. Opt. 53, A405 (2014),
https://doi.org/10.1364/AO.53.00A405
[21] Z. Qiao, Y. Pu, H. Liu, K. Luo, G. Wang, Z. Liu, and P. Ma, Residual stress and laser-induced damage of ion-beam sputtered Ta2O5/SiO2 mixture coatings, Thin Solid Films 592, 221 (2015),
https://doi.org/10.1016/j.tsf.2015.06.023
[22] B.J. Pond, J.I. DeBar, C.K. Carniglia, and T. Raj, Stress reduction in ion beam sputtered mixed oxide films, Appl. Opt. 28, 2800 (1989),
https://doi.org/10.1364/AO.28.002800
[23] S. Melnikas, U. Gimževskis, and S. Kičas, Stress compensated back side coated chirped mirror with high negative dispersion, Opt. Laser Technol. 121, 105820 (2020),
https://doi.org/10.1016/j.optlastec.2019.105820
[24] L. O. Jensen, M. Mende, H. Blaschke, D. Ristau, D. Nguyen, L. Emmert, and W. Rudolph, Investigations on SiO2/HfO2 mixtures for nanosecond and femtosecond pulses, Proc. SPIE 7842, 10 (2010),
https://doi.org/10.1117/12.867238
[25] B. Mangote, L. Gallais, M. Commandré, M. Men­de, L. Jensen, H. Ehlers, M. Jupé, D. Ristau, A. Melninkaitis, J. Mirauskas, et al., Femtosecond laser damage resistance of oxide and mixture oxide optical coatings, Opt. Lett. 37, 1478 (2012),
https://doi.org/10.1364/OL.37.001478
[26] X. Fu, M. Commandré, L. Gallais, M. Mende, H. Ehlers, and D. Ristau, Laser-induced damage in composites of scandium, hafnium, aluminum oxides with silicon oxide in the infrared, Appl. Opt. 53, A392 (2014),
https://doi.org/10.1364/AO.53.00A392
[27] M. Mende, I. Balasa, H. Ehlers, D. Ristau, D. Douti, L. Gallais, and M. Commandré, Relation of optical properties and femtosecond laser damage resistance for Al2O3/AlF3 and Al2O3/SiO2 composite coatings, Appl. Opt. 53, A383 (2014),
https://doi.org/10.1364/AO.53.00A383
[28] L.O. Jensen, and D. Ristau, Coatings of oxide composites, Proc. SPIE 8530, 15 (2012),
https://doi.org/10.1117/12.981526
[29] H. Blaschke, M. Lappschies, and D. Ristau, Performance enhancement of ion beam sputtered oxide coatings for 193 nm, Proc. SPIE 6720, 10 (2007),
https://doi.org/10.1117/12.752908
[30] G. Abromavičius, S. Kičas, and R. Buzelis, High temperature annealing effects on spectral, microstructural and laser damage resistance properties of sputtered HfO2 and HfO2-SiO2 mixture-based UV mirrors, Opt. Mater. 95, 109245 (2019),
https://doi.org/10.1016/j.optmat.2019.109245
[31] H. Grüger, C. Kunath, E. Kurth, S. Sorge, W. Pufe, and T. Pechstein, High quality r.f. sputtered metal oxides (Ta2O5, HfO2) and their properties after annealing, Thin Solid Films 447–448, 509 (2004),
https://doi.org/10.1016/j.tsf.2003.07.013
[32] C.-C. Lee, C.-L. Tien, W.-S. Sheu, and C.-C. Jaing, An apparatus for the measurement of internal stress and thermal expansion coefficient of metal oxide films, Rev. Sci. Instrum. 72, 2128 (2001),
https://doi.org/10.1063/1.1357228
[33] H. Liu, Y. Jiang, L. Wang, S. Li, X. Yang, C. Jiang, D. Liu, Y. Ji, F. Zhang, and D. Chen, Effect of heat treatment on properties of HfO2 film deposited by ion-beam sputtering, Opt. Mater. 73, 95 (2017),
https://doi.org/10.1016/j.optmat.2017.07.048
[34] G. He, M. Liu, L.Q. Zhu, M. Chang, Q. Fang, and L.D. Zhang, Effect of postdeposition annealing on the thermal stability and structural characteristics of sputtered HfO2 films on Si (100), Surf. Sci. 576, 67 (2005),
https://doi.org/10.1016/j.susc.2004.11.042
[35] J.-W. Park, D.-K. Lee, D. Lim, H. Lee, and S.-H. Choi, Optical properties of thermally annealed hafnium oxide and their correlation with structural change, J. Appl. Phys. 104, 033521 (2008),
https://doi.org/10.1063/1.2961326
[36] V. Edlmayr, M. Moser, C. Walter, and C. Mitterer, Thermal stability of sputtered Al2O3 coatings, Surf. Coat. Technol. 204, 1576 (2010),
https://doi.org/10.1016/j.surfcoat.2009.10.002
[37] S. Jakschik, U. Schroeder, T. Hecht, M. Gutsche, H. Seidl, and J.W. Bartha, Crystallization behavior of thin ALD-Al2O3 films, Thin Solid Films 425, 216 (2003),
https://doi.org/10.1016/S0040-6090(02)01262-2
[38] V. Milotti, G. Favaro, M. Granata, D. Forest, C. Michel, J. Teillon, N. Busdon, M. Bazzan, H. Skliarova, and G. Ciani, Thermal noise reduction in ion-beam sputtered HfO2: Ta2O5 thin films via high-temperature treatment, Opt. Mater. 163, 116901 (2025),
https://doi.org/10.1016/j.optmat.2025.116901
[39] Z.L. Pei, L. Pereira, G. Gonçalves, P. Barquinha, N. Franco, E. Alves, A.M.B. Rego, R. Martins, and E. Fortunato, Room-temperature cosputtered HfO2-Al2O3 multicomponent gate dielectrics, Electrochem. Solid-State Lett. 12, G65 (2009),
https://doi.org/10.1149/1.3186643
[40] T. Tolenis, M. Gaspariūnas, M. Lelis, A. Plukis, R. Buzelis, and A. Melninkaitis, Assessment of effective-medium theories of ion-beam sputtered Nb2O5–SiO2 and ZrO2–SiO2 mixtures, Lith. J. Phys. 54, 99 (2014),
https://doi.org/10.3952/physics.v54i2.2918
[41] G.G. Stoney, The tension of metallic films deposited by electrolysis, Proc. R. Soc. Lond. A 82, 172 (1909),
https://doi.org/10.1098/rspa.1909.0021
[42] J. Wang, R.L. Maier, and H. Schreiber, Crystal phase transition of HfO2 films evaporated by plasma-ion-assisted deposition, Appl. Opt. 47, C189 (2008),
https://doi.org/10.1364/AO.47.00C189
[43] C.J. Stolz, F.Y. Genin, M.R. Kozlowski, D. Long, R. Lalazari, Z. Wu, and P.-K. Kuo, Influence of microstructure on laser damage threshold of IBS coatings, Proc. SPIE 2714, 9 (1996),
https://doi.org/10.1117/12.240403
[44] J. Gao, G. He, B. Deng, D.Q. Xiao, M. Liu, P. Jin, C.Y. Zheng, and Z.Q. Sun, Microstructure, wettability, optical and electrical properties of HfO2 thin films: Effect of oxygen partial pressure, J. Alloys Compd. 662, 339 (2016),
https://doi.org/10.1016/j.jallcom.2015.12.080
[45] C. Xu, Y. Qiang, Y. Zhu, T. Zhai, L. Guo, Y. Zhao, J. Shao, and Z. Fan, Laser-induced damage threshold at different wavelengths of Ta2O5 films annealed over a wide temperature range, Vacuum 84, 1310 (2010),
https://doi.org/10.1016/j.vacuum.2010.02.009
[46] Z. Balogh-Michels, I. Stevanovic, A. Borzi, A. Bächli, D. Schachtler, T. Gischkat, A. Neels, A. Stuck, and R. Botha, Crystallization behavior of ion beam sputtered HfO2 thin films and its effect on the laser-induced damage threshold, J. Eur. Opt. Soc. Rapid Publ. 17, 3 (2021),
https://doi.org/10.1186/s41476-021-00147-w
[47] X.Y. Qiu, Q.M. Liu, F. Gao, L.Y. Lu, and J.-M. Liu, Room-temperature weak ferromagnetism of amorphous HfAlOx thin films deposited by pulsed laser deposition, Appl. Phys. Lett. 89, 242504 (2006),
https://doi.org/10.1063/1.2405883
[48] C. Xu, H. Dong, L. Yuan, H. He, J. Shao, and Z. Fan, Investigation of annealing effects on the laser-induced damage threshold of amorphous Ta2O5 films, Opt. Laser Technol. 41, 258 (2009),
https://doi.org/10.1016/j.optlastec.2008.06.009
[49] Y. Zhao, Y. Wang, H. Gong, J. Shao, and Z. Fan, Annealing effects on structure and laser-induced damage threshold of Ta2O5/SiO2 dielectric mirrors, Appl. Surf. Sci. 210, 353 (2003),
https://doi.org/10.1016/S0169-4332(03)00153-3
[50] J. Shi, M. Zhu, W. Du, T. Liu, L. Zhou, Y. Jiang, J. Sun, J. Li, and J. Shao, Picosecond laser-induced damage of HfO2-Al2O3 mixture-based mirror coatings in atmosphere and vacuum environments, Opt. Mater. Express 13, 667 (2023),
https://doi.org/10.1364/OME.483052