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Abstract A new numerical algorithm for computation
of phase response curves of stable limit cycle oscilla-
tors is proposed. The idea of the algorithm originates
from a direct method that is based on computation of
the oscillator response to short finite pulses delivered
at different phases of oscillations. Here we adapt the
direct method to the case of infinitesimal perturbations
and compare our algorithm with the standard algo-
rithm based on the backward integration of the adjoint
equations. In contrast to the standard algorithm, our
algorithm does not require any backward integration
and it is easier to program since a necessity of numer-
ical interpolation for the Jacobian matrix is avoided.
In addition, we demonstrate by examples that our al-
gorithm is faster than the standard algorithm and this
advantage is especially notable for weakly stable limit
cycle oscillators.
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1 Introduction

Many physical, chemical and biological systems show
periodic activity. Mathematically they can be modeled
by limit cycle oscillators. It is well known that oscilla-
tors subjected to external signals or signals from other
oscillators may exhibit a variety of behaviors [1–3].
The analysis of such systems can be essentially sim-
plified if the perturbing signals are small. A fundamen-
tal theoretical technique for studying weakly perturbed
oscillator dynamics is the phase reduction method
(e.g. [1, 2]). The method is based on the assumption
that the oscillator is strongly attracted to its limit cycle,
so that amplitude variations can be neglected and only
phase variations need to be considered. According to
this method, equations of any weakly perturbed limit
cycle oscillator can be reduced to a single scalar equa-
tion that describes the dynamics of the phase variable.
An important characteristic of the limit cycle oscilla-
tor resulting from the phase reduction procedure is its
phase-response (or phase-resetting) curve (PRC). The
PRC describes the phase shift of the oscillation in re-
sponse to a perturbing pulse at each phase of the os-
cillation. Historically, the formalism of the PRC was
introduced by Hastings and Sweeney [4] in the con-
text of resetting the circadian rhythms [5] and later
on applied to other oscillatory systems. Knowing the
PRC one can easily predict the behavior of oscillator
when it is subjected to any small external stimuli or
signals from other oscillators. For example, the PRC
allows one to predict entrainment to periodic stimuli
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and phase locking with other coupled oscillators [3].
Furthermore, the knowledge of PRC usually suffices
to understand collective dynamical properties like co-
herent oscillations, traveling waves, and pattern for-
mation [1, 2].

The PRC is of particular importance for cardiology
and neuroscience. In cardiac systems, the concept of
PRC is useful for understanding the initiation of vari-
ous arrhythmias [6–8]. Phase reduced models consid-
erably simplify the complexity of detailed biological
models in neuroscience [9–12]. The knowledge of the
PRC reveals the bifurcation type underlying the on-
set of repetitive neuron firing [11] and facilitates the
study of interactions leading to neural synchrony [9,
10, 12]. The PRC is also useful in control problems
when constructing various neuron stimulation algo-
rithms [13, 14].

The PRC can be measured experimentally [15–17]
or evaluated theoretically [12, 18–21]. In the latter
case, one needs to know the model equations. For
some simple oscillator models, the phase reduction
procedure can be performed analytically and cor-
responding PRC can be obtained in an analytical
form [18, 19, 21]. However, in most cases the ana-
lytical methods fail and it is necessary to resort to
a numerical approach [12, 20]. There are two basic
ideas for numerical computation of PRC. One of them
is based on direct computation of the oscillator re-
sponse to short pulses delivered at different phases of
the oscillator [22]. This algorithm is simple, but in-
accurate, because it deals with the perturbations of a
finite amplitude. Another idea is to linearize the sys-
tem around the stable limit cycle and solve the linear
adjoint equations [9, 11, 23, 24]. Such an algorithm is
non-trivial since the adjoint equations are unstable and
their solution requires a backward integration. Nev-
ertheless, this algorithm is currently a standard ap-
proach for PRC computation. For example, it is im-
plemented in a popular package XPPAUT [23]. Here
we propose a simple and accurate algorithm based on
the adaptation of the direct method for the case of
infinitesimal perturbations. In addition to simplicity,
our algorithm may have the advantage of being faster
than the standard adjoint algorithm, especially when
computing PRCs of weakly stable limit cycle oscilla-
tors.

The rest of the paper is organized as follows. In
Sect. 2 we introduce the necessary definitions and dis-
cuss briefly the known algorithms of PRC computa-
tion. The description of our algorithm is presented in

Sect. 3. In Sect. 4 we demonstrate our algorithm by
several specific examples and compare it with the stan-
dard algorithm. The paper is finished by conclusions
presented in Sect. 5.

2 PRC definition and algorithms of its
computation

Let a dynamical system be defined by ordinary differ-
ential equations

Ẋ = F(X), (1)

where X = (x1, x2, . . . , xN) represents the vector of
state variables in an N -dimensional phase space. De-
note by X(t) = �(X0, t) the solution of system (1),
where X0 = X(0) is the initial condition. Suppose
that the system has an exponentially stable limit cy-
cle with a period T . Choosing the initial condition on
the limit cycle, X0 = X0

c , we get the T -periodic trajec-
tory moving along the limit cycle: Xc(t) = �(X0

c, t),
�(X0

c, t + T ) = �(X0
c, t). The phases of the points on

the limit cycle can be defined in different ways: as a
length of the limit cycle, as an angle variable in a po-
lar coordinate system (for two-dimensional systems)
or as a variable uniformly increasing in time when
the phase point moves along the limit cycle. In the
phase reduction method, the latter definition is a stan-
dard one since it leads to the most simple phase equa-
tion. Specifically, if we assign the zero phase for the
point X0

c , then the phases of other points on the limit
cycle are

ϕ
(
Xc(t)

) = t (mod T ). (2)

The phase varies in the interval [0, T ] and satisfies a
simple differential equation ϕ̇(Xc(t)) = 1. The phase
of oscillation can be also introduced outside the limit
cycle [28, 29]. Any trajectory X(t) = �(X0, t) with
an initial condition X0 lying in the domain of attrac-
tion of the limit cycle approaches the limit cycle as
t → ∞. The phase ϕ(X0) of the point X0 is defined
as the phase of the asymptotic solution, i.e., X(t) →
Xc(t + ϕ(X0)) for t → ∞. Thus any point in the do-
main of attraction of the limit cycle has a phase. The
set of all points X with equal phases ϕ(X) = constant
forms an (N − 1)-dimensional manifold referred to
as an isochron. Such a global definition of the phases
and isochrons allows one to predict the phase shift of
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the oscillator caused by any strong pulsed perturba-
tion. An extension of the PRC definition to a neigh-
borhood of the limit cycle can be found in the recent
publication [21]. Based on parameterization method
for invariant manifolds and Lie symmetries, the au-
thors introduce a so-called “phase response surface.”
However, here we restrict ourselves to consideration
of weak perturbations.

Consider a weakly perturbed system (1):

Ẋ = F(X) + εG(t), (3)

where G(t) is a vector of time-depended perturba-
tion and ε is a small parameter. Following the Ku-
ramoto’s [1] approach the system can be reduced to
a phase equation as follows. Consider first the unper-
turbed (ε = 0) oscillator (3), and differentiate over the
time the function ϕ(X) that describes the phases of
points near the limit cycle. Using the chain rule we
obtain ϕ̇(X) = ∇ϕ(X) · F(X), where the dot between
the vectors denotes their scalar product. On the other
hand, the phase satisfies the equation ϕ̇(X) = 1, ex-
actly the same as on the limit cycle, since isochrons
are mapped to isochrons by the flow of the vector field
F(X). Thus it follows a useful equality:

∇ϕ(X) · F(X) = 1. (4)

Applying the chain rule to (3) for ε �= 0 and using (4),
one obtains the phase equation for the perturbed sys-
tem:

ϕ̇ = 1 + εG(t) · ∇ϕ
(
X(t)

)
. (5)

For small perturbations, the trajectory of the system
remains close to the limit cycle and thus the gradient of
the phase in (5) can be evaluated on the point Xc(ϕ) of
the limit cycle lying on the same isochron as the point
X(t), ∇ϕ(X(t)) ≈ ∇ϕ(Xc(ϕ)). This T -periodic vector
function is called the infinitesimal PRC, or simply the
PRC. Its j th component is defined as

PRCj (ϕ) = ∂ϕ(Xc(ϕ))

∂xj

. (6)

Finally, the phase reduced model of the perturbed sys-
tem (3) to first order in ε is given by

ϕ̇ = 1 + εG(t) · PRC(ϕ). (7)

The PRC contains all necessary information about the
dynamical system, which allows us to predict the be-
havior of the phase in the presence of any small time-
depended perturbation. In the following sections we
discuss briefly two main numerical methods currently
used for PRC computation.

2.1 Direct method

This method [22] is based on direct computation of
the system response to a simple class of specific per-
turbations. Suppose that the initial condition of the un-
perturbed system (1) is placed on the limit cycle with
some defined phase ϕ: X0 = Xc(ϕ). Now add a small
perturbation �xj to the j th component of the initial
vector X0, leaving other components unperturbed. Ac-
cording to the PRC definition (6), the phase of the per-
turbed systems changes by the amount �xj PRCj (ϕ)

provided �xj is small. This means that the solution
of the system (1) with the perturbed initial condition
converges to X(t) → Xc(ϕ + �xj PRCj (ϕ) + t) as
t → ∞.

In practice, this algorithm is realized as follows. For
a given ϕ, the system (1) is integrated for two different
initial conditions, one taken on the limit cycle Xc(ϕ)

and another shifted by a distance �xj in the direc-
tion of the j th component of the vector field. After
sufficiently long time, the second solution approaches
the limit cycle and then one estimates the phase differ-
ence �ϕ(ϕ) between these two solutions. The PRC is
evaluated as PRCj (ϕ) = �ϕ(ϕ)/�xj . This algorithm
provides probably the most simple way for numeri-
cal estimation of the PRC. However, this algorithm is
not accurate since it operates with the finite perturba-
tion �xj , whereas the PRC is defined for the infinites-
imal perturbations.

2.2 Adjoint method

The adjoint method is based on the Malkin’s approach
[25–27], which gives an alternative way of deriva-
tion of the phase reduced equation. According to this
approach, the phase dynamics of the perturbed sys-
tem (3) in the first order to ε is given by

ϕ̇ = 1 + εG(t) · Q(ϕ), (8)

where the T -periodic vector function Q satisfies the
linear adjoint equation

Q̇ = −{
DF

(
Xc(t)

)}T Q (9)
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with the initial condition Q(0) · F(Xc(0)) = 1. Here
{DF(Xc(t))}T is the transposed Jacobian of F at the
point Xc(t) on the limit cycle. Note that the condition
Q(t) · F(Xc(t)) = 1 holds for any t , because it is easy
to show that d

dt
{Q(t) · F(Xc(t))} = 0.

Comparing (7) and (8) we see that PRC(ϕ) =
Q(ϕ). Thus (9) provides an alternative way for numer-
ical computation of the PRC. Unfortunately, the so-
lution of the adjoint equation (9) is not a trivial prob-
lem. Due to the periodicity requirement Q(T ) = Q(0),
we encounter a boundary value problem. Since the Ja-
cobian in (9) depends on the periodic orbit Xc(t), it
seems rational to integrate (9) together with (1) by
choosing its initial condition on the periodic orbit.
However, such a direct integration is impossible since
the adjoint equation (9) is unstable. Ermentrout [9, 11]
proposed to integrate (9) backwards in time and imple-
mented this idea in the XPPAUT package [23]. When
integrating backwards, the solution of (9) approaches
the periodic solution corresponding to the PRC. How-
ever, the backward integration of (9) together with (1)
is impossible since now the periodic solution Xc(t) be-
comes unstable. Therefore, when integrating (9) back-
wards in time some numerical interpolation of the Ja-
cobian matrix is needed. The latter has to be obtained
from the forward integration of (1). Another shortcom-
ing of this algorithm is that the solution of the ad-
joint equation (9) converges slowly to the PRC when
the limit cycle is weakly stable. The adjoint method
is currently the standard algorithm for PRC compu-
tation, therefore we compare it with our algorithm in
Sect. 5.

Note that Govaerts and Sautois [24] have recently
proposed a modification for the adjoint method. Here
the PRC is obtained as a by-product of the bound-
ary value problem for the limit cycle of the stable or-
bit. The boundary value problem is solved by colloca-
tion at Gauss points. The method starts from an ini-
tial guess of the periodic orbit and then uses an iter-
ation procedure in order to obtain the true solution.
The method is useful in the context of the numerical
continuation of orbits with a variable parameter of the
system. The authors stress that “the method is not very
relevant if only one or a few PRCs are needed.” This
differs from our proposed method, which is efficient
for computation of a single PRC for a fixed value of a
parameter.

3 Adaptation of the direct method to infinitesimal
perturbations

To adapt the direct method to the infinitesimal pertur-
bations we employ the variational equation

δẊ = DF
(
Xc(t + ϕ)

)
δX (10)

that describes the dynamics of infinitesimal deviations
from the limit cycle. Here Xc(t + ϕ) is the limit cy-
cle solution of the system (1) with the initial con-
dition X0 = Xc(ϕ) that represents the point on the
limit cycle with the phase ϕ. Note that (10) can be
integrated together with (1) since they both are sta-
ble. Thus contrary to the adjoint method here we do
not need any numerical interpolation of the Jacobian
in (10).

To obtain the j th component of the PRC at the
phase ϕ we choose the initial condition for the vari-
ational equation (10) as δxk(0) = δjk , where δjk is the
Kronecker’s delta. This means that the initial vector
δX(0) has all zero components except j that is equal
to one. Let us now integrate (10) for an integer number
p of periods and obtain δX(pT ). Due to the stability
of the limit cycle the vector δX(pT ) becomes paral-
lel to the velocity vector V(ϕ) ≡ Ẋ(ϕ) = F(Xc(ϕ))

as p → ∞. The PRCj (ϕ) by definition is equal
to the phase shift of the perturbed trajectory at the
point Xc(ϕ), i.e., limp→∞ δX(pT ) = V(ϕ)PRCj (ϕ).
Alternatively, this equality can be written as follows:

PRCj (ϕ) = lim
p→∞

VT (ϕ)δX(pT )

VT (ϕ)V(ϕ)
. (11)

This expression allows us to compute the PRC by
a simple forward integration of the variational equa-
tion (10) together with (1) that defines the limit cycle
solution.

This algorithm can be yet improved. According to
(11) we have to integrate the above system of equa-
tions for several periods p, until the deviation vector
δX(pT ) becomes parallel to the velocity vector V(ϕ).
The number of required periods can be extremely large
if the limit cycle is weakly stable. We can avoid the ne-
cessity of integration for several periods if instead of
variational equation (10) we employ the equation for
the fundamental matrix. It suffices to know the funda-
mental matrix solution for only one period of the limit
cycle in order to extract the information on the PRC.
Below we describe the algorithm for the computation
of the fundamental matrix and subsequent extraction
of the PRC from this matrix.
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3.1 Computation of the fundamental matrix

To compute the PRC at different phases ϕ of the limit
cycle, we define the N ×N fundamental matrix �ϕ(t)

governed by the differential equation

�̇ϕ(t) = DF
(
Xc(t + ϕ)

)
�ϕ(t) (12)

with the initial condition �ϕ(0) = IN , where IN is
the N × N identity matrix. The PRC computation re-
quires the knowledge of the fundamental matrix for
a given ϕ at t = T , i.e., �ϕ(T ). Let us split the
period T into n equal intervals �t = T/n ≡ �ϕ

and define n nodal points Xc(ϕi) on the limit cy-
cle with the equally spaced phases ϕi = i�ϕ, i =
0, . . . , n − 1. Let us also denote �ϕi

(t) ≡ �i (t). To
determine �i (T ) for any nodal point, it suffices to
integrate (12) in small time intervals t ∈ [0,�ϕ] be-
tween the neighboring nodal points and obtain a se-
quence of the auxiliary matrixes �0(�ϕ), �1(�ϕ),
. . . , �n−1(�ϕ). Then the desired matrix �i (T ) at any
nodal point i can be computed as a product of the
above matrixes:

�i (T ) = �i−1(�ϕ) · · ·�0(�ϕ)

× �n−1(�ϕ) · · ·�i (�ϕ). (13)

Note that the total time of integration of (12) when
computing all auxiliary matrixes �i (�ϕ) is equal to
the period of the limit cycle. The required matrixes
�i (T ) are obtained by multiplication of the matrixes
�i (�ϕ) in different sequences according to (13). In
Sect. 3.2 we show how to extract the value PRC(ϕi)

from the determined matrix �i (T ).

3.2 Extracting the PRC from the fundamental matrix

We now describe the procedure of determination of
the PRC at the ith nodal point from the known ma-
trix �i (T ). To simplify the description we omit the in-
dex i in the expressions presented below, but we keep
in mind that it is valid for any phase ϕ.

Using the fundamental matrix �(T ), the deviation
δX(pT ) in (11) can be presented in the form

δX(pT ) = �p(T )δX(0). (14)

We should remind that all components of the initial
perturbation δX(0) are equal to zero, except the j th
component, which is equal to one. It means that here

we deal with the j th component of the PRC. To sim-
plify expression (14) we use the method of spectral de-
composition based on the Floquet theory. We suppose
that the fundamental matrix is nonsingular and define
its right Rk and left Lk eigenvectors:

�(T )Rk = μkRk, (15)

LT
k �(T ) = μkLT

k , (16)

where μk , k = 1, . . . ,N , are the Floquet multipliers of
the limit cycle. They satisfy the characteristic equation

det
[
�(T ) − μIN

] = 0. (17)

One of the multiplies that describes an evolution of
small deviations along the limit cycle is equal to one,
μ1 = 1. The absolute values of other multipliers of the
stable limit are less than one:

|μN | < |μN−1| < · · · < |μ2| < 1. (18)

The left and right eigenvectors corresponding to dif-
ferent multipliers are orthogonal to each other:

LT
k Rl = 0, when l �= k. (19)

We now expand the initial perturbation δX(0) in
terms of the right eigenvectors,

δX(0) = c1R1 + · · · + cN RN, (20)

and substitute this expression into (14). Due to the in-
equalities (18), (14) in the limit of large p transforms
to

lim
p→∞ δX(pT ) = lim

p→∞

N∑

k=1

μ
p
k ckRk = c1R1. (21)

The right eigenvector corresponding to the first mul-
tiplier μ1 = 1 can be chosen equal to the velocity
vector, R1 = V, since V satisfies an obvious equality
�(T )V = V. Then substituting (21) into (11) we ob-
tain that the PRC is equal to the first coefficient in the
expansion (20):

PRCj = c1. (22)

We now multiply (20) by the left eigenvector LT
1

and due to the orthogonality property (19) we obtain
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LT
1 δX(0) = c1LT

1 R1. Substituting R1 = V and using
(22) we get

PRCj = LT
1 δX(0)

LT
1 V

. (23)

Since the initial perturbation δX(0) has only j th non-
zero component, the numerator in this equation can
be simplified to LT

1 δX(0) = L1[j ], where L1[j ] is the
j th component of the vector L1. Thus the j th com-
ponent of the vector PRC is related to the j th com-
ponent of the vector L1. It means that the entire PRC
vector is proportional to the left eigenvector L1 and
we obtain the final equation for the PRC vector in the
form

PRC(ϕ) = L1(ϕ)

LT
1 (ϕ)V(ϕ)

. (24)

This equation constitutes the basis of our algorithm.
We see that the problem of PRC computation reduces
to the problem of evaluation of the left eigenvector L1

that satisfies the matrix equation LT
1 [�(T ) − IN ] = 0.

Because the determinant of this system is equal to
zero, the value of one of components of the vector LT

1
can be assigned arbitrarily. We choose the first compo-
nent equal to one, LT

1 [1] = 1. Then the other compo-
nents LT

1 [2 : N ] are obtained by solving the reduced
system of N − 1 linear equations:

LT
1 [2 : N ]{�(T )[2 : N;2 : N ] − IN−1

}

= −�(T )[1;2 : N ]. (25)

Here �(T )[2 : N;2 : N ] is a submatrix of the matrix
�(T ) formed by removing the first row and the first
column of the original matrix.

We use (24) to evaluate the PRC for the phases
at the nodal points ϕi = i�ϕ, where the values of
the fundamental matrix �i (T ) are defined. The nodal
points do not need to be taken very densely. To com-
pute the values of the PRC for the phases between
the nodal points, we can use the adjoint equation (9).
Specifically, the PRC for the phases in the interval
ϕ ∈ [ϕi,ϕi+1] can be determined by integrating the ad-
joint equation

d

dϕ
Q(ϕ) = −{

DF
(
Xc(ϕ)

)}T Q(ϕ) (26)

with the initial condition Q(ϕi) = PRC(ϕi) at the
nodal point ϕi determined from (24). Although (26)

is unstable, in a small interval [ϕi,ϕi + �ϕ] it can be
integrated forwards in time. For sufficiently small �ϕ,
the value Q(ϕi+1) on the end ϕi+1 of the interval ob-
tained from the adjoint equation (26) almost coincides
with the value PRC(ϕi+1) in the next nodal point de-
termined from (24), Q(ϕi+1) ≈ PRC(ϕi+1). Note that
this step of the algorithm is not mandatory. The inte-
gration between the nodal points can be avoided if they
are chosen sufficiently dense. However, the increase of
the number n of the nodal points reduces the speed of
the algorithm.

3.3 Main steps of the algorithm

To summarize our algorithm we list the main steps.

Step 1. Define n nodal points on the limit cycle
with equally spaced phases ϕi = i�ϕ and com-
pute the auxiliary matrixes �i (�ϕ) by integrating
(12) and (1) in the interval t ∈ [0,�ϕ] for different
ϕ = ϕi .

Step 2. At each nodal point, evaluate the fundamental
matrix �i (T ). To this end, multiply the auxiliary ma-
trixes �i (�ϕ) in different sequences, as prescribed
by (13).

Step 3. Solve the linear system (25) to determine
the left eigenvector L1(ϕi) and using (24) evaluate
PRC(ϕi) at each nodal point.

Step 4. If one needs to know the values of the PRC
between the nodal points, then integrate forwards the
adjoint equation (26) with the predefined (in Step 3)
initial conditions at the nodal points.

4 Numerical demonstrations

We have tested our algorithm for a variety of dynam-
ical systems and compared its speed with that of the
standard algorithm based on the backward integration
of the adjoint equation. Here we present the results for
three dynamical systems: the Morris–Lecar [30], the
Hodgin–Huxley [31] and the Hindmarsh–Rose [32]
neuron models. The equations of these models as
well as the values of the parameters are presented
in the Appendix. Both algorithms where realized in
the MATLAB environment and the computations were
performed on the same computer (2.8 GHz CPU and
4.0 GB RAM). All differential equations were solved
by the Runge–Kutta 4,5 method using the ode45
solver with the precision 10−9.
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The number n of the nodal points in our algorithm
was chosen such that to guarantee a given precision
of the solution of the adjoint equation (26) in the in-
tervals between the nodal points. Specifically, we esti-
mated the differences εi = |Q(ϕi) − PRC(ϕi)|, where
Q(ϕi) is the solution of (26) on the end of the in-
terval [ϕi−1, ϕi] with the initial condition Q(ϕi−1) =
PRC(ϕi−1), with PRC(ϕi) being the PRC value on
the ith nodal point determined from (24). We chose
the minimal number of nodal points in such a way as
to provide the precision εi < 10−2 for all nodal points.

In the standard algorithm based on the backward
integration of the adjoint equation (9), we used the cu-
bic spline data interpolation of the Jacobian matrix. To
define a precision of the adjoint method, we estimated
the difference |Q(pT )−Q((p −1)T )|, where p is the
number of periods of the backward integration. The in-
tegration was stopped when this difference decreased
to the value less than 10−2.

When estimating the computation time of both al-
gorithms, the time needed for the calculation of the
limit cycle has been excluded. We have assumed that
the initial conditions and the period of the limit cycle
are known at the start point and have estimated only
the time needed for the PRC computation.

For neuron models, only the first component of the
PRC vector is of interest since perturbations are usu-
ally applied only to the first equation that describes
the dynamics of the membrane potential. Therefore, in
all figures presented below we show only the curve
PRC1(ϕ). Both algorithms lead to the same results
which in the figures are indistinguishable. However,
our algorithm is 10–100 times faster than the standard
algorithm.

In Fig. 1 we show the membrane potential and the
PRC for the Morris–Lecar neuron model. The compu-
tation time needed to reproduce these results with our
algorithm is 10.3 times less than that needed for the
standard algorithm. Similar results for the Hodgkin–
Huxley neuron model are presented in Fig. 2. Here the
parameters are chosen in such a way that the system
possesses two stable limit cycles. The (V ,m) projec-
tions of both limit cycles are shown in Fig. 2(a), while
the PRCs for these limit cycles are presented in Fig. 2,
(b) and (c). Again, for this system our algorithm is 36.9
times faster than the standard algorithm.

The advantages of our algorithm are particularly
notable for the case when the limit cycle is weakly
stable. This may happen when the dynamical system

Fig. 1 The membrane potential (a) and the first component of
the PRC (b) for the Morris–Lecar neuron model. Our algorithm
is 10.3 times faster than the standard algorithm. The number of
the nodal points is n = 100

is close to a bifurcation point. Here we demonstrate
such a situation for the Hodgkin–Huxley model when
the parameters are close the saddle-node bifurcation
of the limit cycles. In Fig. 3 we show the dependence
of the computation time on the bifurcation parame-
ter I0 (an external dc current) when computing the
PRC with the standard algorithm. Close to the bifur-
cation point I ∗

0 ≈ 9.84 µA/cm2 the computation time
increases drastically to the values of 103 s. The rea-
son for inefficiency of the adjoint method is that the
convergence rate to the periodic solution of the ad-
joint equation during the backward integration is de-
fined by the leading Floquet multiplier of the limit cy-
cle, such that the convergence rate is directly related
to the stability of the limit cycle. In contrast, our algo-
rithm is independent of the bifurcation parameter; the
computation time for our algorithm is equal approxi-
mately to 2 s for any value of the bifurcation parame-
ter I0.

Finally, we tested our algorithm for a complex
limit cycle that appears in the Hindmarsh–Rose neu-
ron model in the bursting regime. The results are pre-
sented in Fig. 4. For this model, our algorithm is 74.2
times faster than the standard algorithm.

5 Conclusions

In this paper, we have proposed a new algorithm for
numerical computation of the phase response curves
of the stable limit cycles. The idea of the algorithm is
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Fig. 2 The (V ,m) projections of two coexisting stable limit
cycles of the Hodgkin–Huxley neuron model (a) and the corre-
sponding PRCs (b) and (c). Our algorithm is 36.9 times faster
than the standard algorithm. The number of the nodal points is
n = 100

based on the adaptation of the direct method to the in-
finitesimal perturbations. Contrary to the standard al-
gorithm based on the backward integration of the lin-
ear adjoint equations, our algorithm does not require
the backward integration and as a result we avoid the
necessity of numerical interpolation of the Jacobian
matrix. By testing our algorithm for several neuron
models, we have shown that it is 10–100 times faster
than the standard algorithm. The algorithm has par-
ticular advantage when computing the phase response
curves of weakly stable oscillators, e.g. close to bifur-
cation points of the limit cycles. In such a case, the
standard algorithm may become very slow, whereas
the speed of our algorithm is independent of the bifur-
cation parameter. Another advantage of our algorithm
is that it can be readily adapted for parallel compu-
tation. All steps of our algorithm can be easily paral-

Fig. 3 The computation time of the PRC via the standard algo-
rithm versus the bifurcation parameter I0 for the Hodgin–Hux-
ley neuron model. The computation time of our algorithm is
independent of the bifurcation parameter and is equal approx-
imately to 2 s. For all PRCs, the number of the nodal points is
n = 100

Fig. 4 The membrane potential (a) and the first component of
the PRC (b) for the Hindmarsh–Rose neuron model. Our algo-
rithm is 74.2 times faster than the standard algorithm. The num-
ber of the nodal points is n = 1000

lelized since the computations at the different nodal
points are independent of each other.
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Appendix

5.1 Morris–Lecar neuron model

The equations of the Morris–Lecar model are [30]:
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CV̇ = −gCam∞(V )(V − VCa) − gKω(V − VK)

− gl(V − Vl) + I0, (27)

ω̇ = φ
[
ω∞(V ) − ω

]
/τω(V ),

where

m∞(V ) = 0.5
{
1 + tanh

[
(V − V1)/V2

]}
,

ω∞(V ) = 0.5
{
1 + tanh

[
(V − V3)/V4

]}
, (28)

τω(V ) = 1/ cosh
[
(V − V3)/(2V4)

]
.

The values of the parameters are: C = 5.0 µF/cm2,
gCa = 4.0 µS/cm2, gK = 8.0 µS/cm2, gl = 2.0 µS/cm2,
VCa = 120 mV, VK = −80 mV, Vl = −60 mV,
V1 = −1.2 mV, V2 = 18.0 mV, V3 = 12.0 mV, V4 =
17.4 mV, φ = 1/15 s−1, I0 = 40 µA/cm2.

5.2 Hodgkin–Huxley neuron model

The equations of the Hodgkin–Huxley model are [31]:

CV̇ = −gNam
3h(V − VNa) − gKn4(V − VK)

− gl(V − Vl) + I0,

ṁ = αm(V )(1 − m) − βm(V )m,

ḣ = αh(V )(1 − h) − βh(V )h,

ṅ = αn(V )(1 − n) − βn(V )n,

(29)

where

αm(V ) = (2.5 − 0.1V )/
[
exp(2.5 − 0.1V ) − 1

]
,

βm(V ) = 4 exp(−V/18),

αh(V ) = 0.07 exp(−V/20),

βh(V ) = 1/
[
exp(3 − 0.1V ) + 1

]
,

αn(V ) = (0.1 − 0.01V )/
[
exp(1 − 0.1V ) − 1

]
,

βn(V ) = 0.125 exp(−V/80).

(30)

The values of the parameters for the regime with
two coexisting stable limit cycles (Fig. 2) are: C =
1 µF/cm2, gNa = 120 mS/cm2, gK = 36 mS/cm2,
gl = 0.3 mS/cm2, VNa = 85.7 mV, VK = −11 mV,
Vl = 10.559 mV, I0 = 41 µA/cm2. The regime close
to a saddle-node bifurcation of the limit cycles (Fig. 3)
is obtained with the same set of the parameters, except
VNa = 115 mV, VK = −40 mV, and I0 is taken as the
bifurcation parameter.

5.3 Hindmarsh–Rose neuron model

The equations of the Hindmarsh–Rose model are [32]:

ẋ = y − ax2 − x3 − z + I,

ẏ = 1 − bx2 − y,

ż = r
[
s(x − xR) − z

]
.

(31)

The values of the parameters corresponding to the
bursting regime are: a = 3, I = 1.3, b = 5, r = 0.001,
s = 4, xR = −1.6.
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