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Non-Abelian geometric phases in periodically driven systems
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We consider a periodically driven quantum system described by a Hamiltonian which is the product of a slowly
varying Hermitian operator V (λ(t )) and a dimensionless periodic function with zero average. We demonstrate
that the adiabatic evolution of the system within a fully degenerate Floquet band is accompanied by non-Abelian
(noncommuting) geometric phases appearing when the slowly varying parameter λ = λ(t ) completes a closed
loop. The geometric phases can have significant values even after completing a single cycle of the slow variable.
Furthermore, there are no dynamical phases masking the non-Abelian Floquet geometric phases, as the former
average to zero over an oscillation period. This can be used to precisely control the evolution of quantum systems,
in particular for performing qubit operations. The general formalism is illustrated by analyzing a spin in an
oscillating magnetic field with arbitrary strength and a slowly changing direction.
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I. INTRODUCTION

Topological and many-body properties of physical systems
can be enriched by applying a periodic driving [1–11]. This
extends to a wide range of condensed matter [1,3,4,12–18],
photonic [19–23], and ultracold atom [24–56] systems. For
example, the periodic driving can induce a nonstaggered
synthetic magnetic flux [5,32,35,39,40,44,52] or facilitate the
realization of the Haldane model [1,42] for ultracold atoms
in optical lattices. To deal with periodically driven quantum
systems, it is convenient to describe their long-term dynamics
in terms of an effective time-independent Floquet Hamilto-
nian. In that case fast oscillations of the system within a
driving period are represented by a micromotion operator. If
the driving frequency exceeds other characteristic frequencies
of the system, the Floquet Hamiltonian and the micromotion
operator can be expanded in inverse powers of the driving
frequency [52,57–65].

It is quite common that the periodic driving changes in
time. For example, in typical ultracold atom experiments one
ramps up the periodic driving from zero to a stationary regime
[66]. In the previous paper [67] we have considered such a
situation where a quantum system is subjected to a periodic
driving which changes slowly in time. High-frequency expan-
sions have been obtained for the effective Hamiltonian and
for the micromotion operators showing that these operators
change in time because of the changes in the periodic driving
[67]. Furthermore the expanded effective Hamiltonian con-
tains an extra second-order term appearing due to the slow
changes in the periodic driving [67]. This can provide non-
Abelian (noncommuting) geometric phases for periodically
driven systems.

The high-frequency expansion was applied to a spin in
a fast oscillating magnetic field with a slowly changing
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amplitude [67]. If the magnetic field slowly changes its di-
rection performing a cyclic evolution in three-dimensional
space, a non-Abelian geometric phase appears after the slow
variable (the magnetic field amplitude) completes a cycle.
Yet the acquired phase represents a small second-order cor-
rection, so the slow variable should complete many cycles
to accumulate a substantial geometric phase. This is because
the high-frequency expansion is applicable only if the driving
strength is small compared to the driving frequency. The
current analysis does not rely on such an approximation for
the periodic driving. We show that the system can acquire sub-
stantial geometric phases even if the slow variable completes
just a single cycle.

We study a periodically driven quantum system charac-
terized by a Hamiltonian which is a product of a slowly
varying Hermitian operator and a fast oscillating periodic
function with a zero average. We transform the equations of
motion to a new representation by applying a time-dependent
unitary transformation. The transformation eliminates the
original Hamiltonian in the equations of motion, and there
is an extra term due to the slow changes in the periodic
driving. Neglecting the latter term, individual Floquet bands
are completely degenerate. The slow changes of the driving
couples the Floquet states. We apply the adiabatic approxi-
mation by neglecting the coupling between different Floquet
bands separated by the driving frequency times an integer.
This is equivalent to the zero order of the high-frequency
expansion [67] of the Floquet effective Hamiltonian in the
transformed representation. It is demonstrated that the adia-
batic evolution of the system within an individual degener-
ate Floquet band is accompanied by non-Abelian geometric
phases which can be sufficiently large even after completing
a single cycle of the slow variable. Furthermore, there are no
dynamical phases masking the non-Abelian Floquet geomet-
ric phases, as the former average to zero over an oscillation
period. This can be used for precisely controlling the evolu-
tion of quantum systems, in particular for performing qubit
operations.
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The paper is organized as follows. In Sec. II we define a
periodically driven system with a slowly modulated driving
and go to a new representation via a time-dependent unitary
transformation. In Sec. III we consider the adiabatic evolution
of the system within an individual Floquet band and show
that the evolution is accompanied by non-Abelian geometric
phases. In Sec. IV we analyze the operator responsible for
the geometric phases and provide explicit expressions for this
operator in specific situations. Section V illustrates the general
formalism by analyzing a spin in an oscillating magnetic field
with arbitrary strength and a slowly changing direction. The
concluding Sec. VI summarizes the findings. Technical details
of some calculations are presented in the two appendices.

II. PERIODICALLY DRIVEN SYSTEM WITH A
MODULATED DRIVING

A. Hamiltonian and equations of motion

We consider a periodically driven (Floquet) quantum sys-
tem with a slowly modulated driving. The system is described
by a Hamiltonian which is the product of a slowly varying
Hermitian operator V (λ) = V (λ(t )) and a fast oscillating
dimensionless real function f (ωt + θ ):

H (ωt + θ, t ) = V (λ(t )) f (ωt + θ ), (1)

where ω is the oscillation frequency and θ defines the phase
of the oscillations. The operator V (λ) depends on time
via a set of slowly varying parameters λ = λ(t ) = {λμ(t )}
which change little over the driving period T = 2π/ω; the
subscript μ specifies individual slowly varying parameters.
Here also f (ωt + θ ) is taken to be a 2π periodic function
f (ωt + θ + 2π ) = f (ωt + θ ) with an amplitude of the order
of unity and zero average:

∫ 2π

0 f (θ ′)dθ ′ = 0. Therefore the
Fourier expansion of the Hamiltonian

H
(
θ ′, t

) =
∞∑

m=−∞
H (m)(t )eimθ ′

with θ ′ = ωt + θ (2)

does not contain a zero-frequency component, H (0)(t ) = 0,
while the other components are

H (m)(t ) = V (λ(t )) f (m), (3)

with f (m) = ∫ 2π

0 f (θ ′)e−imθ ′
dθ ′.

An example of such a system is a spin in a magnetic
field B(t ) f (ωt + θ ) [67] with a fast oscillating amplitude
∝ f (ωt + θ ) and a slowly changing direction ∝B(t ), where
B(t ) plays the role of λ(t ). In that case the slowly varying part
of the Hamiltonian is given by

V (B(t )) = gF F · B(t ), (4)

where gF is a gyromagnetic factor, F = F1ex + F2ey + F3ez

is a spin operator with Cartesian components satisfying the
usual commutation relations [Fs, Fq] = ih̄εsqrFr . Here εsqr is
the Levi-Civita symbol, and a summation over a repeated
Cartesian index r = x, y, z is implied.

A state vector |φ(t )〉 of the system belongs to the Hilbert
space H and obeys the time-dependent Schrödinger equation

(TDSE):

ih̄
∂

∂t
|φ(t )〉 = V (λ(t )) f (ωt + θ )|φ(t )〉. (5)

Previously a general perturbative analysis was carried out
to deal with the evolution of a periodically driven system
with a modulated driving using the Floquet extended-space
approach [67]. Such a perturbative treatment is generally valid
if matrix elements of the Fourier components of the periodic
Hamiltonian are small compared to the driving frequency:∣∣H (m)

αβ

∣∣ � h̄ω, and hence |Vαβ | f (m) � h̄ω, (6)

where the subscripts α and β are used to label the matrix
element of the operators. Furthermore, H (m)

αβ should change
sufficiently slowly over the driving period.

B. Transformed representation

In what follows we will consider the dynamics of the sys-
tem when the weak driving condition (6) does not necessarily
hold. For this, we will go to another representation via a
unitary operator which eliminates the original Hamiltonian in
the transformed equations of motion. Such a unitary operator
reads

R(ωt + θ,λ(t )) = exp

[
−i

F (ωt + θ )

h̄ω
V (λ(t ))

]
, (7)

where F (θ ′) is a primitive function of f (θ ′) with zero average:

dF (θ ′)/dθ ′ = f (θ ′) and
∫ 2π

0
F (θ ′)dθ ′ = 0. (8)

The calligraphy letter F is used to avoid confusion with the
spin operator F featured in Eq. (4).

The transformed state vector

|ψ (t )〉 = R†(ωt + θ, t )|φ(t )〉 (9)

obeys the TDSE

ih̄
∂

∂t
|ψ (t )〉 = W (ωt + θ, t )|ψ (t )〉, (10)

with

W (θ ′, t ) = −ih̄R†(θ ′,λ(t ))∂R(θ ′,λ(t ))/∂t, (11)

where the partial derivative ∂R/∂t is calculated for a fixed
value of the variable θ ′ = ωt + θ . Alternatively, the trans-
formed Hamiltonian can be represented as

W (θ ′, t ) = λ̇μAμ(θ ′,λ), (12)

where summation over repeated indices μ is implied, and

Aμ(θ ′,λ) = −ih̄R†(θ ′,λ)
∂R(θ ′,λ)

∂λμ

(13)

is the μth component of the vector potential A(θ ′,λ).
In this way, the transformation R(θ ′,λ(t )) eliminates the

original Hamiltonian (1) in the transformed equation of
motion (10). The new Hamiltonian W (ωt + θ, t ) given by
Eqs. (11) and (12) is due to the slow temporal changes of the
variable λ = λ(t ) entering the transformation (7). Therefore
the transformed Hamiltonian W (ωt + θ, t ) can be arbitrarily
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small even if the original weak driving (high-frequency) con-
dition (6) is violated. In particular, one has W (ωt + θ, t ) = 0
for a pure periodic driving where λ(t ) is constant.

The evolution of the transformed state vector can be repre-
sented as

|ψ (t )〉 = U (t, t0)|ψ (t0)〉, (14)

with

U (t, t0) = T exp

[
− i

h̄

∫ t

t0

W (ωt ′ + θ, t ′)dt ′
]
, (15)

where T indicates the time ordering and t0 is an initial time.
The operator W determining the evolution of the transformed
state vector will be analyzed in Sec. IV.

Like the original Hamiltonian H (ωt + θ, t ), the trans-
formed Hamiltonian W (ωt + θ, t ) is 2π periodic with respect
to the first variable and thus can be expanded in a Fourier
series with respect to the fast variable:

W (ωt + θ, t ) =
∞∑

n=−∞
W (n)(t )ein(ωt+θ ), (16)

where

W (n)(t ) = 1

2π

∫ 2π

0
W (θ ′, t )e−inθ ′

dθ ′. (17)

Expanding also the transformed state vector |ψ (t )〉 ≡
|ψ (ωt + θ, t )〉:

|ψ (ωt + θ, t )〉 =
∞∑

n=−∞
|ψ (n)(t )〉ein(ωt+θ ), (18)

the TDSE (10) provides the following equation for the slowly
changing Fourier components |ψ (n)(t )〉:

ih̄
∂

∂t
|ψ (n)(t )〉 =

∞∑
m=−∞

Knm|ψ (m)(t )〉, (19)

where

Knm = nh̄ωδnm + W (n−m)(t ) (20)

are the matrix elements of the extended space Floquet Hamil-
tonian K̂ (t ) slowly changing in time [67]. Its of-diagonal
terms Knm = W (n−m)(t ) with n 	= m describe the coupling be-
tween different Fourier components (different Floquet bands)
|ψ (n)(t )〉 and |ψ (m)(t )〉 due to the changes of the periodic
driving. The diagonal elements Knn = nh̄ω + W (0)(t ) contain
the energy of the nth Floquet manifold nh̄ω and an extra
operator W (0)(t ) emerging due to the changes of the periodic
driving. Figure 1 illustrates the coupling between different
Floquet manifolds (n 	= m) and within of the same Floquet
bands (n = m). Neglecting all coupling terms W (n−m)(t ) in
Eq. (20), the eigenstates of the operator K̂ (t ) are completely
degenerate within individual Floquet bands with quasiener-
gies nh̄ω shown by horizontal lines in Fig. 1. When the effects
due to the changes of the periodic driving are included, the
emerging operator W (0)(t ) provides the Floquet geometric
phases for the adiabatic motion within a single degenerate
Floquet manifold. We will consider this issue in more detail
in the next section.

ω
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0

W (±1) (t)
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FIG. 1. Schematic representation of coupling between the Flo-
quet bands in the transformed representation described by Eqs. (19)
and (20). The operators W (m)(t ) with m 	= 0 describe coupling
between different Floquet manifolds, whereas the operator W (0)(t )
couples the states belonging to the same degenerate Floquet band.
The latter W (0)(t ) provides non-Abelian geometric phases for the
adiabatic motion of the system within the same Floquet manifold.

III. ADIABATIC APPROACH

A. Effective evolution operator in transformed representation

We are interested in a situation where V (λ(t )) changes
sufficiently slowly, so the matrix elements of the Fourier
components of W (ωt + θ, t ) are smaller than the driving
frequency ∣∣W (n)

αβ

∣∣ � h̄ω (21)

and also change sufficiently smoothly. The condition (21) has
the same form as the original condition (6) with H replaced
by W . Since the transformed Hamiltonian W (ωt + θ, t ) given
by Eqs. (11) and (12) is due to the temporal changes of
V (λ(t )), the condition (21) relies on the slow changes of
the periodic driving rather that on its weakness. Therefore
Eq. (21) can hold even if the matrix elements |H (n)

αβ | exceed
h̄ω, and thus there is a violation of the original high-frequency
requirement (6).

Applying the condition (21), the evolution of the trans-
formed state vector can be described by means of the slowly
changing Floquet effective Hamiltonian Weff(t ) expanded in
the inverse powers of the driving frequency ω(−n) (with n �
0) [67]. The adiabatic approximation is obtained by keep-
ing only the zero-order term of the effective Hamiltonian
Weff(0)(t ) = W (0)(t ) in the transformed TDSE (10). In other
words, due to condition (21) one neglects of-diagonal terms
W (n−m)(t ) with n 	= m which describe the coupling between
different Floquet bands in Eq. (19), as illustrated in Fig. 1.
This is equivalent to the time averaging of the transformed
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Hamiltonian W (ωt + θ, t ) over fast oscillations. Conse-
quently, the evolution operator (15) can be replaced by
the effective operator for the adiabatic dynamics, U (t, t0) ≈
Ueff(0)(t, t0), with

Ueff(0)(t, t0) = T exp

[
− i

h̄

∫ t

t0

W (0)(t ′)dt ′
]
, (22)

where the time ordering T is needed if the effective Hamilto-
nian W (0)(t ) does not commute with itself at different times,
[W (0)(t ′),W (0)(t ′′)] 	= 0.

B. Non-Abelian geometric phases

Calling on Eq. (12) for W (ωt + θ, t ), the adiabatic evolu-
tion operator (22) can be represented as

Ueff(0)(t, t0) = T exp

[
− i

h̄

∫ t

t0

A(0)
μ (λ(t ′))dλμ(t ′)

]

= exp [i
(t, t0)], (23)

where

A(0)
μ (λ) = 1

2π

∫ 2π

0
Aμ(θ ′,λ)dθ ′ (24)

is the zero-frequency Fourier component of Aμ(ωt + θ,λ).
The evolution operator Ueff(0)(t, t0) does not depend on

the speed of the change of the parameters λ = λ(t ). The
operator Ueff(0)(t, t0) is defined exclusively by the trajectory
along which the parameters λ = {λμ} evolve. In particular,
if the slowly varying parameters λ = λ(t ) undergo a cyclic
evolution and return to their original values, λ(t ) = λ(t0),
the operator Ueff(0)(t, t0) = exp (i
) is determined by the ge-
ometry of such a closed trajectory. Therefore the operator

 featured in the exponent describes the geometric phase
acquired during the cyclic evolution. When the parameters
λ = {λμ} complete two consecutive closed loop trajectories,
the evolution of the system is described by the product of two
geometric phase factors, exp (i
1) and exp (i
2), correspond-
ing to each closed loop. If the two factors do not commute,
one arrives at non-Abelian geometric phases. Thus the present
work extends the previous studies of non-Abelian geometric
phases [68–70] to the periodically driven (Floquet) system.
In particular, non-Abelian geometric phases are formed for a
spin in an oscillating magnetic field with a slowly changing
direction, as we will see in Sec.V.

It is noteworthy that the non-Abelian geometric phases
emerge because the system is subjected to the periodic driv-
ing. The periodic driving provides degenerate manifolds of
Floquet states (shown by horizontal lines in Fig. 1) if one
neglects W (ωt + θ, t ) appearing due to the slow changes
of the driving. Such a degeneracy of the Floquet bands is
related to the fact that the instantaneous eigenenergies of the
Hamiltonian (1) average to zero over the driving period. The
slow change of the driving induces the non-Abelian geometric
phase factors represented by W (0)(t ) = λ̇μA(0)

μ (λ), and which
in turn describe the coupling within a degenerate Floquet band
in the evolution operator given by Eqs. (22) or (23).

We are interested mostly in a situation where the period-
ically driven quantum system is characterized by a Hilbert
space of finite dimension. In that case the number of the

Floquet states within each degenerate Floquet band n (rep-
resented by horizontal lines in Fig. 1) equals the num-
ber of the basis state vectors |α〉, i.e., to the dimension
of the Hilbert space H . In particular, for the spin in the
magnetic field described by Eq. (4), the Hilbert space H
spans all spin projection states with quantum numbers mF =
− fF ,−( fF − 1), . . . ,+ fF . The number of degenerate states
then equals 2 fF + 1 for each Floquet band, where fF is the
spin quantum number.

C. Return to the original representation and Floquet states

Returning to the original representation

|φ(t )〉 ≡ |φ(ωt + θ, t )〉 = R(ωt + θ,λ(t ))|ψ (t )〉, (25)

the adiabatic evolution of the state vector is given by

|φ(ωt + θ, t )〉
= e−iS(ωt+θ,t )Ueff(0)(t, t0)eiS(ωt0+θ,t0 )|φ(t0)〉, (26)

where the oscillating Hermitian operator

S(ωt + θ, t ) = F (ωt + θ )

h̄ω
V (λ(t )) (27)

describes the fast micromotion of the state vector (26) due
to the periodic driving. The solution |φ(ωt + θ, t )〉 is thus 2π

periodic with respect to the first variable ωt + θ . Additionally,
|φ(ωt + θ, t )〉 slowly changes with respect to the second
variable t due to the temporal dependence of the operator
V (λ(t )) determining S(ωt + θ, t ) and Ueff(0)(t, t0).

If there is no periodic driving at the initial time, V (λ(t0)) =
0, and the driving is ramped up slowly afterwards, the evo-
lution is not affected by micromotion due to the ramping
of the periodic driving: S(ωt0 + θ, t0) = 0. If additionally
the periodic perturbation is ramped down slowly before the
final time t , there is no contribution due to the micromotion
at the final time either, i.e., S(ωt + θ, t ) = 0, and Eq. (26)
reduces to

|φ(ωt + θ, t )〉 = Ueff(0)(t, t0)|φ(t0)〉. (28)

In this way, if the driving is ramped up and down slowly,
the micromotion does not contribute to the overall adiabatic
evolution of the state vector |φ(ωt + θ, t )〉. The evolution is
determined exclusively by the operator Ueff(0)(t, t0) containing
the non-Abelian geometric phases. This can be used for pre-
cisely controlling the dynamics of the quantum system, such
as for manipulating of qubits. A specific sequence of ramping
up and down of the driving will be discussed in Sec. V E for a
spin in the oscillating magnetic field.

For purely periodic driving where λ(t ) = λ is con-
stant, the operator V (λ) is not changing, so that U (t, t0) =
Ueff(0)(t, t0) = 1 and S(ωt + θ, t ) = S(ωt + θ ). In that case
Eq. (26) becomes an exact Floquet solution which
does not have an additional slow temporal dependence:
|φ(ωt + θ, t )〉 ≡ |φ(ωt + θ )〉. By taking a set of states
|φ(t0)〉 = |α〉 which form an orthonormal basis in the Hilbert
space H , one arrives at the corresponding set of the Floquet
solutions:

|φα (ωt + θ )〉 = e−iS(ωt+θ )eiS(ωt0+θ )|α〉. (29)
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The solutions (29) are strictly periodic |φα (ωt + θ + 2π )〉 =
|φα (ωt + θ )〉 and thus satisfy the Floquet theorem [71] with
zero quasienergies (modulus the driving energy h̄ω) for any
initial state |α〉.

IV. ANALYSIS OF OPERATOR W (ωt + θ, t )

A. General equations

It is convenient to define a variable

c = c(ωt + θ ) = F (ωt + θ )

h̄ω
(30)

and treat W (ωt + θ, t ) = W̃ (c, t ) as a function of c and the
slow time t . Differentiating W̃ (c, t ) given by Eqs. (11), (7),
and (30) with respect to c, one arrives at the following
equation (see Appendix A):

∂W̃

∂c
= −h̄V̇ + i[V,W̃ ] (31)

subject to the initial condition

W̃ (c, t ) = 0 for c = 0. (32)

Here we write the full time derivative V̇ rather than the partial
derivative ∂V/∂t , because the slowly changing operator V =
V (λ(t )) does not depend on c.

The solution to Eq. (31) can be expanded in powers of c,
giving

W̃ (c, t ) = ih̄

{
ic

1!
V̇ + (ic)2

2!
[V, V̇ ]

+ (ic)3

3!
[V, [V, V̇ ]] + · · ·

}
. (33)

B. Weak driving

Let us now consider the weak driving where Eq. (6) holds,
and thus it is sufficient to keep the leading terms of the
expansion (33). The first term in Eq. (33) proportional to
c = F (ωt + θ )/h̄ω does not have the zero-frequency Fourier
component and thus does not contribute to the effective Flo-
quet Hamiltonian Weff(0) = W (0)(t ). Yet this term provides the
leading contribution to the Fourier components W (m)(t ) ≈
iV̇ f (m)/mω with m 	= 0. Thus the adiabatic condition (21)
takes the form

|V̇αβ | f (m) � mh̄ω2 for m 	= 0 (34)

in the case of the weak driving.
The second term in the expansion (33) yields the effective

Hamiltonian for the weak driving:

Weff(0)(t ) = W (0)(t ) ≈ −ip

2h̄ω2
[V (t ), V̇ (t )], (35)

with

p = 1

2π

∫ 2π

0
F2(θ ′)dθ ′. (36)

For a harmonic driving, one has f (θ ) = cos θ and F (θ ) =
sin θ , giving p = 1/2. In that case the effective Hamiltonian
(35) coincides with Eq. (38) of Ref. [67] obtained in the

second order of the high-frequency expansion of the effective
Hamiltonian in the original representation.

Generally it is not possible to obtain simple analytical
expressions for the Floquet effective Hamiltonian Weff(0)(t ) =
W (0)(t ), similar to Eq. (35), beyond the weak driving regime.
Yet such expressions can be obtained for specific models, such
as for the spin in the oscillating magnetic field. This will be
considered in Sec. V A.

C. V (t ) commutes with itself at different times

If V (t ) commutes with itself at different times, then
[V, V̇ ] = 0, so only the first term remains in the expansion
(33), giving

W (ωt + θ, t ) = −F (ωt + θ )V̇ /ω. (37)

Since F (ωt + θ ) averages to zero, the operator W (ωt + θ, t )
does not have the Fourier component W (0)(t ), so the effective
Hamiltonian is equal to zero, W (0)(t ) = 0. Therefore, in order
to have a nontrivial evolution giving W (0)(t ) 	= 0, the operator
V (t ) should not commute with itself at different times. For the
spin in the fast oscillating magnetic field, this is the case if the
direction of the magnetic field changes (B × Ḃ 	= 0), as we
will see next.

V. SPIN IN OSCILLATING MAGNETIC FIELD

A. Explicit expression for operator W

For the spin in an oscillating magnetic field, described by
the Hamiltonian (4), the operator W can be derived exactly for
arbitrary strength of the periodic driving (see Appendix B):

W (ωt + θ, t ) = − gFF
ω

(B · Ḃ)B · F
B2

− sin

(
BgFF

ω

)
[(B × Ḃ) × B] · F

B3

−
[

cos

(
BgFF

ω

)
− 1

]
(B × Ḃ) · F

B2
(38)

with F = F (ωt + θ ) and B = B(t ). We will use this relation
to analyze the dynamics of the spin in the oscillating magnetic
field.

B. Effective Hamiltonian Weff (0)(t ) = W (0)(t )

The first term in Eq. (38) averages to zero and does
not contribute to the effective Hamiltonian W (0)(t ). In what
follows we will consider the harmonic driving where f (θ ) =
cos θ and hence F (θ ) = sin θ . In that case the second term of
Eq. (38) also averages to zero and thus does not contribute to
W (0)(t ). Therefore the effective Hamiltonian originates from
the third term of Eq. (38) and is given by

W (0)(t ) = [1 − J0(gF B/ω)]

B2
F · (B × Ḃ), (39)

where J0(a) = 1
2π

∫ 2π

0 eia sin θdθ is the zero-order Bessel func-
tion, B = |B|, and the time dependence of B = B(t ) is kept
implicit. For gF B/ω � 1, Eq. (39) reduces to the previous
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FIG. 2. Dependence of �spin/� on the ratio gF B/ω.

result [67] applicable for the weak driving:

W (0)(t ) ≈ g2
F

4ω2
F · (B × Ḃ). (40)

Introducing a unit vector along the magnetic field
b = B/B, one has b × ḃ = �n, where � can be interpreted
as a frequency of the magnetic field rotation around an instan-
taneous rotation axis pointing along a unit vector n. With these
notations Eq. (39) takes the form

W (0)(t ) = �[1 − J0(gF B/ω)]F · n. (41)

C. Adiabatic evolution

If the magnetic field rotates with a frequency � in a plane
perpendicular to a fixed axis n, the effective Hamiltonian
given by Eq. (39) or (41) describes the spin rotation around
n with a frequency

�spin = �[1 − J0(a)], with a = gF B/ω. (42)

For a � 1, the frequency �spin ≈ �a2/4 is much smaller
than the rotation frequency � of the magnetic field. With
an increase of a, the frequency �spin increases. In particular,
for a ≈ 2.4 the Bessel function J0(a) becomes zero, and the
spin rotates with the same frequency as the magnetic field:
�spin = � (see Fig. 2). By further increasing a, one arrives at a
regime where J0(a) < 0, and the frequency �spin exceeds �.
The maximum frequency of the spin rotation �spin = 1.36�

is achieved for a ≈ 3.83 where the Bessel function J0(a) has
its minimum, as illustrated in Fig. 2.

If the direction n of the rotation axis is changing, the
Hamiltonian W (0)(t ) does not commute with itself at different
times, and the time ordering is needed in the effective evolu-
tion operator (22). Therefore the effective evolution of the spin
is associated with non-Abelian (noncommuting) geometric
phases. In the present situation, the magnetic field B(t ) plays
the role of the slowly varying λ(t ) featured in Sec. III B,
so the effective Hamiltonian (39) can be represented in terms
of the non-Abelian vector potential A(0)(t ):

W (0)(t ) = Ḃ · A(0), (43)

with

A(0) = [1 − J0(gF B/ω)]

B2
(B × F). (44)

The evolution operator Ueff(0)(t, t0) is then given by Eq. (23)
with λ(t ) replaced by B(t ).

In particular, one can perform a cyclic anticlockwise ro-
tation of the magnetic field B in a plane orthogonal to a fixed

unit vector n without changing the modulus B. Using Eq. (43),
the evolution operator (23) then reads

U (n)
eff(0) = exp

[
− i

h̄
γ F · n

]
, γ = 2π [1 − J0(gF B/ω)]. (45)

The operator γ F · n/h̄ provides the geometric phase γ mF for
the spin with the projection mF along the rotation axis n.
For weak driving (gF B/ω � 1) the geometric phase γ mF is
much smaller than unity, and the magnetic field B has to
complete many rotation cycles to accumulate a considerable
geometric phase [67]. On the other hand, if gF B is comparable
with ω, a sizable geometric phase is acquired during a single
cycle. Therefore two consecutive rotations along nonparallel
axes n and n′ do not commute, [U (n)

eff(0),U (n′ )
eff(0)] 	= 0, and the

corresponding geometric phases γ F · n/h̄ and γ F · n′/h̄ are
non-Abelian.

Previously, Berry analyzed a spin that adiabatically follows
a slowly changing magnetic field [72]. After the magnetic
field vector completes a closed loop trajectory and returns
to its initial value, the state vector for the spin acquires a
geometric (Berry) phase factor. Such a phase factor belongs
to the Abelian group U (1). For the periodically driven spin
considered here, the adiabatic evolution of the state vector in
the degenerate Floquet manifold is described by the geometric
phase operator Ueff(0)(t, t0) = exp (i
) belonging to the non-
Abelian group SU (2). Therefore the periodic driving enriches
the system. Note that in the present situation the non-Abelian
Floquet geometric phases appear by adiabatically eliminating
other Floquet bands rather than by eliminating other states of
the physical Hilbert space H , as is the case for nondriven
systems [68–70].

D. Adiabatic condition and micromotion

The previous analysis of the spin in the oscillating mag-
netic field [67] relies on the high-frequency assumption for the
magnetic field amplitude, gF fF B(t ) � ω, and for its changes.
Now we require only that B(t ) changes sufficiently slowly, so
that the adiabatic condition (21) holds for W given by Eq. (38).
The general expression for the adiabatic condition given by
Eqs. (21) and (38) is quite cumbersome. Yet if

gF fF |Ḃ(t )|/ω � ω, (46)

the adiabatic condition is fulfilled for any strength of the
magnetic field. In other words, if (46) holds, then the adiabatic
condition (21) is fulfilled but not vice versa.

The micromotion is described by the Hermitian operator
S(ωt + θ, t ) entering the full evolution operator in Eq. (26).
Using Eqs. (4) and (27), the micromotion operator reads for
the spin in the magnetic field

S(ωt + θ, t ) = gF

h̄ω
F · B(t ) sin (ωt + θ ). (47)

The micromotion increases with increasing the magnetic field
strength and becomes substantial when the high-frequency
condition (gF fF B(t ) � ω) no longer holds. Yet, if the mag-
netic field is ramped up and down slowly, the micromotion
does affect the overall evolution of the system, as was gener-
ally shown in Eq. (28) and will be discussed in more detail
next.
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FIG. 3. Comparison of the analytical (solid lines) and exactly
calculated (symbols) evolution for the spin 1 ( fF = 1). Here |cm′

F
|2

are the probabilities for the spin projection along the z axis to be
m′

F = 0, ±1 at the final time t = t3. At the initial time t = t0 the
spin is along the z axis (mF = 1). Blue circles, red diamonds, and
green squares correspond to |c1|2, |c0|2, and |c−1|2, respectively. The
effective evolution described by the operator Ueff(0)(t2, t1) =
U

(ey )
eff(0) provides the following probabilities: |c{1,0,−1}|2 =

{cos4 (γ /2), sin2 (γ )/2, sin4 (γ /2)} plotted by the solid lines,
with γ defined in Eq. (45). The ratio ρ = �gF B0/ω

2 equals
ρ = 0.1, ρ = 0.3, and ρ = 1 in panels (a), (b), and (c), respectively.

E. Specific sequence of the magnetic field

The non-Abelian geometric phases can be measured
using, for example, the following sequence for the oscillating
magnetic field. At the initial time t = t0 the magnetic field is
zero (B(t0) → 0) and is ramped up smoothly afterwards, so
there is no contribution by the micromotion due to switching
on the magnetic field: S(θ + ωt0, t0) = 0. For t0 < t < t1
the amplitude of magnetic field increases from zero to a
steady-state value B(t ) = B0ez without changing its direction.
Therefore the effective Hamiltonian Weff(0) = W (0) is zero in
this stage, giving Ueff(0)(t1, t0) = 1. During the subsequent
evolution at t1 < t < t2 the magnetic field changes its
direction while keeping constant the modulus B. For example,
the magnetic field can undergo two consecutive cycles of
rotation, around the y and x axes, described by noncommuting
unitary operators U

(ey )
eff(0) and U (ex )

eff(0) given by Eq. (45), and the

effective evolution operator reads Ueff(0)(t2, t1) = U (ex )
eff(0)U

(ey )
eff(0).

Note that for t1 < t < t0 the magnetic field strength
can be considerable, and the high-frequency condition
gF fF B(t ) � ω does not necessarily hold. Therefore the
evolution operator Ueff(0)(t2, t1) can significantly alter the state
vector of the system. Finally, for t2 < t < t3 the magnetic
field is ramped down to zero without changing its direction,
giving Ueff(0)(t3, t2) = 1 and S(θ + ωt3, t3) = 0. In this way,
the full evolution of the state vector from t = t0 to t = t3
is given by Eq. (28) with t replaced by t3. The evolution of
the state vector is thus described exclusively by the operator
Ueff(0)(t2, t1), which does not depend on the details of the
ramping up and down of the magnetic field.

In Fig. 3 we have checked the validity of the description of
the evolution of the system in terms of the effective evolution
operator Ueff(0)(t2, t1). We have plotted the exact and effective
evolution of the spin 1 system ( fF = 1) from t = t0 to t = t3
for different angular frequencies � of rotation of the magnetic
field direction during the second stage where t1 < t < t2. We
have considered the case where the magnetic field completes
a single cycle of rotation around the y axis from t = t1 to t =
t2, so that Ueff(0)(t2, t1) = U

(ey )
eff(0). The angular frequency � is

chosen such that the ratio ρ = �gF B0/ω
2 is not changing in

the same plot. The exact and analytical results agree well if
the rotation is sufficiently slow, ρ � 1, and thus the adiabatic
condition (46) holds.

VI. CONCLUDING REMARKS

We have considered the evolution of a periodically driven
quantum system governed by the Hamiltonian H (ωt + θ, t ),
which is the product of a slowly varying Hermitian operator
V (λ(t )) and a fast oscillating periodic function f (ωt + θ )
with zero average. The analysis does not rely on the high-
frequency approximation [67] for the original Hamiltonian
H (ωt + θ, t ), so the driving frequency ω can be both larger or
smaller than the matrix elements of the slowly changing op-
erator V (λ(t ))/h̄. We have shown that the adiabatic evolution
of the system within a degenerate Floquet band is accompa-
nied by the non-Abelian (noncommuting) Floquet geometric
phases, which can be significant even after completing a single
cycle of the slow variable λ = λ(t ). On the other hand, for the
weak driving the geometric phases acquired during a cyclic
evolution of the slow variable are small, and the slow variable
should complete many cycles to accumulate considerable
geometric phases [67].

Without the periodic driving f (ωt + θ ) the spin adiabat-
ically follows the slowly changing magnetic field, and the
adiabatic elimination of other spin states provides the Berry
phase factor [72], which belongs to the Abelian group U (1).
The periodic driving enriches the system, and the non-Abelian
geometric phases appear by adiabatically eliminating other
Floquet bands rather than by eliminating other states of the
physical Hilbert space H , as is the case for nondriven sys-
tems [68–70]. In the latter nondriven systems non-Abelian
geometric phases can be formed if there is a manifold of
degenerate physical states well separated from other states,
such as a pair of degenerate dark states in the tripod atom-light
coupling scheme [73–77] or a pair of degenerate spin-up
and spin-down states emerging in the nuclear quadrupole
resonance [70] and for diatomic molecules [69,78]. Note also
that the previous studies of the Floquet adiabatic perturbation
theory [9] dealt with the nondegenerate Floquet states, so the
emerging geometric phases are Abelian.

A distinctive feature of the present periodically driven
system is that the Floquet eigen-energies are fully degenerate
within individual Floquet bands even if the eigenenergies of
the slowly varying part of the original Hamiltonian V (λ(t ))
are not degenerate. Therefore the non-Abelian geometric
phases emerge in a very straightforward way, and no de-
generacy of the physical states is needed. Furthermore, the
individual Floquet bands are characterized by zero energy
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(modulus the driving frequency), so there are no unwanted
dynamical phases accompanying the non-Abelian geometric
phases during the adiabatic evolution of the system within in-
dividual Floquet bands. This is because the dynamical phases
average to zero over an oscillation period.

The adiabatic evolution of periodically driven systems is
generally accompanied by micromotion. Yet the effects of
the micromotion can be avoided if the periodic driving is
ramped up slowly at the initial stage and subsequently ramped
down slowly at the final stage. The dynamics of the state
vector given by Eq. (28) is then represented exclusively by the
operator Ueff(0)(t, t0) describing the non-Abelian geometric
phases emerging for the adiabatic evolution of the system
within a degenerate Floquet band. The geometric phases are
determined by the trajectory of the slowly varying parameters
λ rather than by the speed at which these parameters change.
This can be used for precisely controlling the evolution of
quantum systems, in particular for realization of fault-tolerant
quantum gates [79].
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APPENDIX A: EQUATION FOR OPERATOR W

Differentiating W (ωt + θ, t ) = W̃ (c, t ) given by Eqs. (11),
(7), and (30) with respect to c for fixed slow time t , one has

∂W̃

∂c
= h̄V R† ∂

∂t
R − h̄R† ∂

∂t
(RV ). (A1)

Since h̄R† ∂
∂t (RV ) = h̄V̇ + iW̃V , Eq. (A1) yields the differen-

tial equation for W̃ :

∂W̃

∂c
= −h̄V̇ + i[V,W̃ ] (A2)

subject to the initial condition: W̃ (c, t ) = 0 for c = 0.

APPENDIX B: OPERATOR W FOR SPIN IN
OSCILLATING MAGNETIC FIELD

Let us now find a solution to Eq. (A2) for a spin in an
oscillating magnetic field. In that case the slowly varying part
of the Hamiltonian is given by Eq. (4). We are looking for a
solution in the form

W̃ (c, t ) = F · X. (B1)

Substituting Eq. (B1) into (A2), one arrives at the following
equation for the vector X = X(c, t ):

∂X
∂c

= −h̄gF Ḃ − h̄gF B × X, (B2)

with the initial condition X(c, t ) = 0 for c = 0. A solution to
this equation is

X(c, t ) = − ch̄gF
(B · Ḃ)B

B2

− sin (ch̄gF B)
(B × Ḃ) × B

B3

− [cos (ch̄gF B) − 1]
B × Ḃ

B2
. (B3)

Equations (B1), (B3), and (30) provide the explicit expression
for W̃ (c, t ) = W (ωt + θ, t ) presented by Eq. (38).
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Lett. 111, 125301 (2013).

[37] Z.-F. Xu, L. You, and M. Ueda, Phys. Rev. A 87, 063634
(2013).

[38] V. Galitski and I. B. Spielman, Nature (London) 494, 49 (2013).
[39] N. Goldman, G. Juzeliūnas, P. Öhberg, and I. B. Spielman, Rep.

Progr. Phys. 77, 126401 (2014).
[40] M. Aidelsburger, M. Lohse, C. Schweizer, M. Atala, J. T.

Barreiro, S. Nascimbène, N. R. Cooper, I. Bloch, and N.
Goldman, Nat. Phys. 11, 162 (2015).

[41] M. Atala, M. Aidelsburger, M. Lohse, J. T. Barreiro, B. Paredes,
and I. Bloch, Nat. Phys. 10, 588 (2014).

[42] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237 (2014).

[43] H. Zhai, Rep. Prog. Phys. 78, 026001 (2015).
[44] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,

Nat. Phys. 11, 859 (2015).
[45] N. Fläschner, B. S. Rem, M. Tarnowski, D. Vogel, D.-S.

Lühmann, K. Sengstock, and C. Weitenberg, Science 352, 1091
(2016).

[46] J. C. Budich, Y. Hu, and P. Zoller, Phys. Rev. Lett. 118, 105302
(2017).

[47] F. Meinert, M. J. Mark, K. Lauber, A. J. Daley, and H.-C.
Nägerl, Phys. Rev. Lett. 116, 205301 (2016).

[48] K. Jiménez-García, L. J. LeBlanc, R. A. Williams, M. C. Beeler,
C. Qu, M. Gong, C. Zhang, and I. B. Spielman, Phys. Rev. Lett.
114, 125301 (2015).

[49] S. Nascimbene, N. Goldman, N. R. Cooper, and J. Dalibard,
Phys. Rev. Lett. 115, 140401 (2015).

[50] P. M. Perez-Piskunow, L. E. F. Foa Torres, and G. Usaj, Phys.
Rev. A 91, 043625 (2015).

[51] X. Luo, L. Wu, J. Chen, Q. Guan, K. Gao, Z.-F. Xu, L. You, and
R. Wang, Sci. Rep. 6, 18983 (2016).

[52] A. Eckardt, Rev. Mod. Phys. 89, 011004 (2017).
[53] M. Reitter, J. Näger, K. Wintersperger, C. Sträter, I. Bloch,

A. Eckardt, and U. Schneider, Phys. Phys. Lett. 119, 200402
(2017).

[54] L. W. Clark, B. M. Anderson, L. Feng, A. Gaj, K. Levin, and C.
Chin, Phys. Rev. Lett. 121, 030402 (2018).

[55] L. Asteria, D. T. Tran, T. Ozawa, M. Tarnowski, B. S. Rem, N.
Fläschner, K. Sengstock, N. Goldman, and C. Weitenberg, Nat.
Phys. 15, 449 (2019).

[56] B. Shteynas, J. Lee, F. C. Top, J.-R. Li, A. O. Jamison, G.
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