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Floquet analysis of a quantum system with modulated periodic driving
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We consider a quantum system periodically driven with a strength which varies slowly on the scale of the
driving period. The analysis is based on a general formulation of the Floquet theory relying on the extended Hilbert
space. It is shown that the dynamics of the system can be described in terms of a slowly varying effective Floquet
Hamiltonian that captures the long-term evolution, as well as rapidly oscillating micromotion operators. We obtain
a systematic high-frequency expansion of all these operators. Generalizing the previous studies, the expanded
effective Hamiltonian is now time dependent and contains extra terms appearing due to changes in the periodic
driving. The same applies to the micromotion operators which exhibit a slow temporal dependence in addition
to the rapid oscillations. As an illustration, we consider a quantum-mechanical spin in an oscillating magnetic
field with a slowly changing direction. The effective evolution of the spin is then associated with non-Abelian
geometric phases reflecting the geometry of the extended Floquet space. The developed formalism is general and
also applies to other periodically driven systems, such as shaken optical lattices with a time-dependent shaking
strength, a situation relevant to the cold-atom experiments.
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I. INTRODUCTION

In recent years there has been a growing interest in
periodically driven quantum systems. The current surge of
activities stems, to a considerable extent, from a possibility
to control and alter the topological [1–26] and many-body
[27–42] properties of the systems by periodically driving them
[42–60]. This extends to a broad range of condensed mat-
ter [1,3,10,11,61–64], photonic [65,66], and ultracold-atom
[5,7–9,12,25,29,33,36,41–44,46,57,59,67–80] systems. An
important situation arises when the driving frequency exceeds
other characteristic frequencies of the system. In that case,
one can construct a high-frequency expansion of an effective
time-independent Hamiltonian of the system in the inverse
powers of the driving frequency [42,43,45,47–52,60,81,82].
In addition to the long-term dynamics represented by such an
effective (Floquet) Hamiltonian, there is also a fast modulation
on the scale of a single driving period described by the
micromotion operators.

In many cases, the periodic driving is changing within an
experiment. Here, we provide a general analysis of a behavior
of such a quantum system subjected to a high-frequency
perturbation which additionally changes in time. The analysis
is based on a general formulation of the Floquet theory using
an extended-space approach [60,82–89]. In addition to a fast
periodic modulation, we allow the Hamiltonian to have an extra
(slow) time dependence. We show that the dynamics of the
system can then be factorized into the following contributions:
(i) a long-term evolution is determined by a slowly varying
effective Floquet Hamiltonian; (ii) rapid oscillations are
described by micromotion operators which are additionally
slowly changing in time. This factorization represents an
extension of the Floquet approach to Hamiltonians which are
not entirely time periodic. Note that an exponential form of
the slowly varying effective evolution operator now involves
time ordering if the effective Hamiltonian does not commute
with itself at different times.

We obtain a high-frequency expansion of the effective
Hamiltonian and micromotion operators. Generalizing the

previous studies [42,45,47,49,51], the expanded effective
Hamiltonian is now time dependent and contains extra terms
due to the changes in the periodic driving. The same applies
to the micromotion operators which exhibit a slow temporal
dependence in addition to the rapid oscillations.

The theory is illustrated by considering a spin in an
oscillating magnetic field with a slowly changing direction.
In that case, the effective evolution of the spin is associated
with non-Abelian (noncommuting) geometric phases if the
oscillating magnetic field is not restricted to a single plane.
The formalism can be applied to describe other periodically
driven systems, such as shaken optical lattices with a time-
dependent shaking strength, which are relevant to the cold-
atom experiments [8,9,12,25,30,36,43,44,57,68,71].

The paper is organized as follows. In the following Sec. II
we formulate the problem and review the basic elements of the
Floquet formalism which underpin the subsequent generaliza-
tion of the approach to the case of slowly modulated driving. In
Sec. III we consider the temporal evolution of the periodically
driven system taking into account of the slow modulation of the
driving, as well as present the high-frequency expansion of the
effective Hamiltonian and micromotion operators describing
such an evolution. In Sec. IV the general formalism is applied
to the spin in an oscillating magnetic field with a slowly
changing direction. The concluding Sec. V summarizes the
findings. Details of some calculations and other auxiliary
material are presented in four appendixes. In particular,
Appendix C analyzes the Floquet effective Hamiltonian for a
one-dimensional shaken optical lattice with a slowly changing
amplitude of driving.

II. PROBLEM FORMULATION AND
BACKGROUND MATERIAL

A. Hamiltonian and equations of motion

Let us consider the time evolution of a quantum system
described by a Hamiltonian H (ωt + θ,t) which is 2π periodic
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NOVIČENKO, ANISIMOVAS, AND JUZELIŪNAS PHYSICAL REVIEW A 95, 023615 (2017)

with respect to the first argument

H (ωt + θ,t) = H (ωt + θ + 2π,t), (1)

where an angle θ defines an initial phase of the Hamiltonian.
A possibility to have an additional temporal dependence (not
necessarily periodic) is represented by the second argument
t . We will address the situation where the first argument in
H (ωt + θ,t) describes fast temporal oscillations, whereas the
second argument plays the role of a slowly varying envelope.

The Hamiltonian H (ωt + θ,t) can be expanded in a Fourier
series with respect to the first argument

H (θ ′,t) =
∞∑

l=−∞
H (l)(t)eilθ ′

, θ ′ = ωt + θ (2)

where the expansion components H (l)(t) are generally time-
dependent operators. In this way, the second argument in
H (θ ′,t) represents the temporal modulation of the amplitudes
H (l)(t) of the harmonics eilθ ′

. Since the Hamiltonian is
Hermitian, the negative frequency Fourier components are
Hermitian conjugate to the positive frequency ones: H (l)†(t) =
H (−l)(t).

The quantum state of the system is described by a state
vector |φθ (t)〉 obeying a time-dependent Schrödinger equation
(TDSE):

ih̄∂t |φθ (t)〉 = H (ωt + θ,t)|φθ (t)〉. (3)

The subscript θ in the state vector |φθ (t)〉 appears because
the dynamics of the state vector |φθ (t)〉 is governed by
the Hamiltonian H (ωt + θ,t) which parametrically depends
on the phase θ . Therefore, the state vector |φθ (t)〉 evolves
differently for different phases θ entering the Hamiltonian
H (ωt + θ,t) even though |φθ (t)〉 is θ independent at the initial
time t0.1

Since the Hamiltonian H (ωt + θ,t) is 2π periodic with
respect to its phase θ , one can choose the state vector |φθ (t)〉
to have the same θ periodicity:

|φθ+2π (t)〉 ≡ |φθ (t)〉. (4)

Such a state vector can be expanded in terms of a Fourier series

|φθ (t)〉 =
∞∑

n=−∞
|φ(n)(t)〉einθ , (5)

where |φ(n)(t)〉 is an nth harmonic (in the phase variable θ ) of
the full state vector |φθ (t)〉.

B. Extension of the space

The idea of extending the Hilbert space for periodical driven
systems goes back to a classical work by Sambe [83]. The
Floquet eigenstates are then obtained by solving a stationary
Schrödinger equation governed by a time-independent Hamil-
tonian acting in the expanded space. The role of the additional
space is played by a temporal variable, the periodic harmonics
einωt forming basis states of the extra space. Subsequently,

1Subsequently, in Eq. (15) we shall adopt such a θ -independent
initial condition.

the approach has been extended to incorporate temporal
modulation of the periodic driving [60,82,84–91]. In particular,
the analysis of periodically driven quantum systems which
contain slowly changing parameters has been initiated by
Breuer and Holthaus [85,86] using a two-time (t,t ′) formalism.

Here, we make use of another (yet equivalent) approach
[82]. Specifically, we promote to a quantum variable the
phase θ entering the Hamiltonian H (ωt + θ,t), subsequently
eliminating the temporal dependence via a unitary trans-
formation (6) acting in the extended Hilbert space. It is
noteworthy that for a particular value of θ , the state vector
|φθ (t)〉 is an element of the original (physical) Hilbert space
H , and the Hamiltonian H (ωt + θ,t) operates in this space.
On the other hand, for an arbitrary phase θ the factors einθ

featured in the state vector |φθ (t)〉 Eq. (5) can be treated as
an orthonormal set of basis vectors of an auxiliary Hilbert
space T comprising θ -periodic functions in the interval
θ ∈ [0,2π ). The inner product in T is defined as an integral
(2π )−1

∫ 2π

0 e−imθ einθdθ = δnm. Thus, the state vector |φθ (t)〉
can be considered as an element of the extended Hilbert space
L = H ⊗ T . This approach corresponds to considering an
evolution of an ensemble of quantum systems governed by
a set of Hamiltonians H (ωt + θ,t) with various phases θ . In
order to distinguish between the state vectors in the spaces H
and L , we will use a convenient bra-ket notation 〈. . . | and
| . . .〉 for the physical space H and a double bra-ket notations
〈〈. . . | and | . . .〉〉 for the extended space L . Therefore, the
θ -dependent physical state vector |φθ (t)〉 will be labeled as
|φθ (t)〉〉 if it is considered as an element of L . The operators
acting in H are denoted without a hat like in Eq. (1), whereas
the operators acting in L will contain a hat over a symbol,
such as in Eq. (6).

C. Elimination of periodic temporal dependence
in the extended space

To eliminate the periodic temporal dependence of the
Hamiltonian H (ωt + θ,t) entering the TDSE (3), let us apply
a unitary transformation in the extended space [82]:

Û = exp (ωt∂/∂θ ), (6a)

Û−1 = Û † = exp (−ωt∂/∂θ ). (6b)

A hat over Û signifies that it is an operator acting in L ,
as it contains a derivative ∂/∂θ . Due to the periodic boundary
condition (4) for the state vector |φθ (t)〉 with respect to θ ,
the operator −i∂/∂θ is Hermitian in the extended space.
Consequently, the transformation Û is unitary in L .

The operator Û = Û (ωt) shifts the phase variable: Û †θÛ =
θ − ωt , so Û †Ĥ (ωt + θ,t)Û = Ĥ (θ,t) no longer has a fast
periodic temporal dependence. The transformed state vector

|ψθ (t)〉〉 = Û †|φθ (t)〉〉 ≡ |φθ−ωt (t)〉〉 (7)

obeys the TDSE

ih̄∂t |ψθ (t)〉〉 = K̂(θ,t)|ψθ (t)〉〉, (8)

governed by a Hamiltonian K̂(θ,t) = Ĥ (θ,t) − ih̄Û †∂t Û ,
where an extra term is due to the temporal dependence of
the transformation Û = Û (t).
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Using Eqs. (6), the transformed Hamiltonian acquires a
derivative with respect to the extended-space variable θ :

K̂(θ,t) = −ih̄ω
∂

∂θ
+ Ĥ (θ,t). (9)

In this way, the transformed Hamiltonian K̂(θ,t) exhibits only
a slow temporal dependence coming exclusively through the
second argument in Ĥ (θ,t).

It is noteworthy that an equation of motion equivalent to
Eq. (8) can also be obtained using a two-time (t,t ′) formalism
[60,84–89]. In the (t,θ ′) notation, the formalism treats θ ′ =
ωt + θ and t entering the time-dependent Hamiltonian H (θ ′,t)
as two independent variables. The temporal dependence of θ ′
is then reflected by a derivative ∂/∂θ ′ which enters K̂(θ ′,t)
defined in the same manner as Eq. (9). At the end of the
calculations one recovers the physical solution by setting θ ′ =
ωt + θ . In the present formalism, this operation corresponds
to returning to the original state vector |φθ (t)〉〉 = |ψθ+ωt (t)〉〉
via Eq. (7) involving the unitary transformation Û given by
Eq. (6a).

D. Hamiltonian in the abstract extended space

It is convenient to characterize the basic vectors einθ only by
a number n without specifying the phase variable θ . For this let
us introduce a set of abstract basis vectors |n〉 corresponding
to an orthogonal set of θ -dependent functions: einθ ↔ |n〉 with

〈m|n〉 = δnm. In this representation (referred to as the abstract
representation), the original and transformed state vectors no
longer include the angular variable θ and can be cast in terms
of |n〉 as

|φ(t)〉〉 =
∞∑

n=−∞

∣∣φ(n)(t)
〉|n〉, (10a)

|ψ(t)〉〉 =
∞∑

n=−∞

∣∣ψ (n)(t)
〉|n〉. (10b)

On the other hand, the θ -dependent extended-space Hamil-
tonian K̂(θ,t) is now replaced by an abstract Hamiltonian K̂(t)
given by

K̂(t) =
∞∑

n=−∞
|n〉h̄ωn〈n| +

∞∑
m,n=−∞

H (m−n)(t)|m〉〈n|. (11)

In writing the first term of Eq. (11) we noted that einθ

is an eigenfunction of the operator −ih̄ω∂/∂θ featured in
Eq. (9) with an eigenvalue nh̄ω. The second term contains the
Fourier components H (l)(t) (with l = m − n) of the physical
Hamiltonian given by Eq. (2). Here we used the fact that the
exponents eilθ entering Eq. (2) provide a shift of the abstract
state vectors: |n〉 → |n + l〉.

The abstract extended-space Hamiltonian K̂ = K̂(t) can be
represented as an infinite block matrix:

K̂ =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

. . . . . . . . . . . . . . . . . .

. . . H (0) − h̄ω H (−1) H (−2) H (−3) . . .

. . . H (1) H (0) H (−1) H (−2) . . .

. . . H (2) H (1) H (0) + h̄ω H (−1) . . .

. . . H (3) H (2) H (1) H (0) + 2h̄ω . . .

. . . H (4) H (3) H (2) H (1) . . .

. . . . . . . . . . . . . . . . . .

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

, (12)

where matrix elements Kmn = 〈m|K̂|n〉 = H (m−n) + nh̄ωδn,m

are operators in the physical Hilbert space H . The action of the
individual terms comprising the extended-space Hamiltonian
is illustrated in Fig. 1.

It is instructive that adding to K̂ a unit operator Î times lh̄ω

is equivalent to transforming K̂ by a unitary operator P̂l :

K̂ + lh̄ωÎ = P̂
†
l K̂P̂l (13)

with

P̂l =
∞∑

n=−∞

∣∣n + l
〉〈n|. (14)

The operator P̂l shifts an abstract state vector by l: |n〉 →
|n + l〉. The relation (13) implies that the spectrum of K̂ is
invariant to shifting the energy by a multiple of h̄ω. In fact, the
operators K̂ and P̂

†
l K̂P̂l are related by a unitary transformation

and hence commute and have the same set of eigenstates.
This property will be used in the subsequent analysis of the
high-frequency expansion of the Hamiltonian.

E. Initial condition and subsequent evolution

Let us consider a family of θ -dependent state vectors
|φθ (t)〉. At the initial time t = t0 the state vector must be chosen
periodic in θ according to Eq. (4). For convenience, we take
a θ -independent initial condition |φθ (t0)〉 = |α〉, where |α〉 is
an initial state vector. In that case, the transformed state vector
|ψθ (t)〉 is also θ independent at the initial time t = t0:

|ψθ (t0)〉 = |φθ−ωt0 (t0)〉 = |α〉 for all θ ∈ [0,2π ). (15)

Therefore, initially one populates only the n = 0 harmonic (in
the phase variable θ ) in the Fourier expansion of the original
or transformed state vector. In the abstract notation, the initial
state vector contains only the mode |n〉 with n = 0 in Eqs. (10):

|φ(t0)〉〉 = |ψ(t0)〉〉 = |α〉|0〉. (16)

Subsequently, for t > t0 the state vector |ψθ (t)〉 becomes θ

dependent due to the θ dependence of the Hamiltonian K̂(θ,t)
governing its temporal evolution in Eq. (8). This means the
modes |n〉 with n �= 0 appear in the abstract state vector |ψ(t)〉〉
during its subsequent time evolution described by the TDSE:

ih̄∂t |ψ(t)〉〉 = K̂(t)|ψ(t)〉〉. (17)
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FIG. 1. Schematic visualization of the terms which enter the
slowly varying extended-space Hamiltonian K̂ = K̂(t) given by
Eqs. (11) and (12). Levels belonging to different Floquet bands
|n〉 are drawn in different colors. The operators H (l)(t) with l �= 0
induce transitions between different Floquet bands. The operators
H (0)(t) − nh̄ω provide the time-dependent zero-order eigenenergies
of the extended-space Hamiltonian.

The dynamics governed by this equation will be analyzed in
the next section.

III. TEMPORAL EVOLUTION AND
HIGH-FREQUENCY EXPANSION

We shall make use of the symmetries of the Hamiltonian
K̂(t) for its block diagonalization. In doing so, we shall include
also the slow temporal dependence of K̂(t). We shall con-
centrate on a high-frequency limit where ω exceeds all other
frequencies of the physical system. This will enable one to find
a high-frequency expansion of an effective Hamiltonian Heff(t)
taking into account the slow temporal dependence of K̂(t).

A. Block diagonalization

We shall look for a unitary transformation

D̂†(t)|ψ(t)〉〉 = |χ (t)〉〉 (18)

which leads to a TDSE

ih̄∂t |χ (t)〉〉 = K̂D(t)|χ (t)〉〉 (19)

governed by a block-diagonal (in the extended-space) Hamil-
tonian

K̂D(t) = D̂†(t)K̂(t)D̂(t) − ih̄D̂†(t) ˙̂D(t)

=
∑

n

|n〉[Heff(t) + nh̄ω]〈n|. (20)

Here, Heff(t) entering the block-diagonal operator K̂D(t)
represents a slowly varying Floquet Hamiltonian describing
an effective evolution of the physical system. It is instructive
that the transformed Hamiltonian K̂D(t) contains an additional
term ih̄D̂†(t) ˙̂D(t) due to the temporal dependence of the uni-
tary transformation D̂(t). Therefore, the block diagonalization
is to be carried out in a self-consistent manner with respect to
D̂(t).

Denoting

N̂ =
∞∑

n=−∞
|n〉n〈n| and Î =

∞∑
n=−∞

|n〉〈n|, (21)

one can write

K̂D(t) = h̄ωN̂ + Heff(t)Î . (22)

It is noteworthy that Heff(t) is not necessarily diagonal in
the physical space. Furthermore, the block diagonalization is
not a unique procedure. It is defined only up to a unitary
transformation in the physical space, the same for each block
comprising K̂D in Eqs. (20)–(22). However, performing a high-
frequency expansion in the powers of 1/ω, the block-diagonal
operator K̂D becomes unique provided the zero-order term of
the diagonalization operator D̂ is set to a unit operator D̂(0) =
Î . In fact, in the limit of an infinite frequency H (l)/ω → 0,
the off-diagonal elements H (l) (with l �= 0) of the extended-
space Hamiltonian K̂ can be neglected by replacing K̂ →
h̄ωN̂ + H (0)Î . This means that for H (l)/ω → 0 one can take
D̂ = D̂(0) = Î .

Note also that a block diagonalization similar to that in
Eq. (20) has been employed in Ref. [49] when dealing with a
high-frequency expansion of the effective Hamiltonian Heff

(see also Refs. [42,45,47,49,51]). However, in the present
situation the extended-space Hamiltonian K̂(t) additionally
depends on a slow time, so the effective Hamiltonian Heff(t)
and the diagonalization operator D̂ are also time dependent.
Furthermore, an extra term ih̄D̂† ˙̂D in Eq. (20) provides
additional contributions to the high-frequency expansions of
these operators due to the temporal changes of the components
H (l)(t) entering the physical Hamiltonian (2), as we shall see
in Sec. III D.

In this way, our formalism combines two approaches: a
systematic high-frequency expansion of Heff(t) via a degener-
ate perturbation theory in the extended Floquet space [49], as
well as an adiabatic perturbation theory [88,92] with respect
to the basis vectors |n〉 of the subspace T due to the temporal
changes of the block-diagonalization operator D̂(t).

The relation (13) implies that the unitary operator D̂

diagonalizing K̂ is invariant with respect to the shift operator:
D̂(t) = P̂

†
l D̂(t)P̂ l . This is the case if D̂ has the following form

[49]:

D̂(t) =
∞∑

m,n=−∞
D(m−n)(t)|m〉〈n| =

∞∑
l=−∞

D(l)(t)P̂l . (23)

B. Temporal evolution in the extended space

Since K̂D(t) entering the TDSE (19) is block diagonal, the
temporal evolution of the transformed state vector |χ (t)〉〉 =∑

n |χn(t)〉|n〉 is described by a set of uncoupled TDSEs
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for the constituting state vectors |χn(t)〉 governed by the
Hamiltonians Heff(t) + nh̄ω. As a result, the time evolution
of the transformed state vector |χ (t)〉〉 is given by

|χ (t)〉〉=
∞∑

n=−∞
exp[−inω(t−t0)]|n〉Ueff(t,t0)|χn(t0)〉, (24)

where a unitary operator Ueff(t,t0) describes a quantum
evolution in the physical space H generated by the effective
Hamiltonian Heff(t):

ih̄∂tUeff(t,t0) = Heff(t)Ueff(t,t0), Ueff(t0,t0) = I. (25)

If the effective Hamiltonian does not commute with itself at
different times [Heff(t ′),Heff(t ′′)] �= 0, a formal solution to this
equation involves a time ordering

Ueff(t,t0) = T exp

[
− i

h̄

∫ t

t0

Heff(t
′)dt ′

]
. (26)

For sufficiently slow changes of Heff(t ′) the adiabatic approx-
imation [93,94] can be applied to find the evolution operator
Ueff(t,t0) on the basis of instantaneous eigenstates of Heff(t ′).

Combining Eqs. (16) and (18), the initial condition for
the transformed state vector reads as |χ (t0)〉〉 = D̂†(t0)|0〉|α〉,
giving

|χn(t0)〉 = D(−n)†(t0)|α〉, (27)

where D(m−n) = 〈m|D̂(t)|n〉 is an operator acting in the phys-
ical space H . Substituting Eq. (27) into (24), the extended-
space state vector |ψ(t)〉〉 = D̂(t)|χ (t)〉〉 can be expressed in
terms of the initial state vector |α〉 and the matrix elements of
the transformation operator D̂(t):

|ψ(t)〉〉 =
∞∑

n,l=−∞

∣∣l〉D(l−n)(t)e−inω(t−t0)Ueff(t,t0)D(−n)†(t0)|α〉.

(28)

C. Temporal evolution in the physical space

Transition to the θ representation |ψ(t)〉〉 → |ψθ (t)〉〉 is
carried out replacing |l〉 → eilθ in Eq. (28). Using Eq. (7),
one arrives at the extended-space state vector in the original
representation |φθ (t)〉〉 = |ψθ+ωt (t)〉〉. It can be treated as
a state vector |φθ (t)〉 of the physical space H exhibiting
a parametric dependence on the phase θ featured in the
Hamiltonian H (θ + ωt,t):

|φθ (t)〉 = UMicro(ωt + θ,t)Ueff(t,t0)U †
Micro(ωt0 + θ,t0)|α〉,

(29)

where

UMicro(ωt + θ,t) =
∞∑

n=−∞
D(n)(t)ein(ωt+θ) (30)

is a unitary operator describing the micromotion (see
Appendix A). It can be cast in the exponential form UMicro =
exp (−iSMicro), where a Hermitian operator SMicro featured in
the exponent is usually referred to as a micromotion operator
(known also as a kick operator) [42,45,47,49,81]. We will use

the term “micromotion operator” also for the unitary operator
UMicro.

Equation (29) represents a generalization of the Floquet
theorem to periodically modulated Hamiltonians H (ωt + θ,t)
containing an extra temporal dependence. The dynamics of the
system is then described in an effective manner by the slowly
varying Hamiltonian Heff = Heff(t) via the unitary operator
Ueff(t,t0) defined by Eqs. (25) and (26).2 Additionally, the so-
lution (29) contains the micromotion operator UMicro(ωt + θ,t)
calculated at the initial and final times t = t0 and t .

It is instructive that the effective Hamiltonian Heff(t) and
hence the unitary operator Ueff(t,t0) describing an effective
long-time evolution in Eq. (29) do not depend on the phase
θ entering the original Hamiltonian H (θ + ωt,t). Only the
micromotion operators UMicro(ωt + θ,t) and SMicro(ωt + θ,t)
are θ dependent. Yet, in comparison to the previous studies
[42,45,47,49], the operator UMicro(ωt + θ,t) includes not
only the fast micromotion represented by the exponential
factors ein(ωt+θ) in Eq. (30), but also an additional temporal
dependence due to slow changes of the transformation D̂(t)
diagonalizing the extended-space Floquet Hamiltonian K̂(t)
in Eq. (20). In particular, this is the case if the periodic
perturbation is switched on and off in a smooth manner,
which is relevant to, e.g., shaken optical lattices with a time-
dependent shaking strength [8,9,12,25,30,36,43,44,57,68,71].
In that case, the micromotion operator featured in Eq. (29)
reduces to the unit operator

U
†
Micro(ωt + θ,t)|t=t0 = 1 (31)

at the initial time t0, when the periodic perturbation starts
slowly switching on. In that case, the extended-space Hamilto-
nian K̂(t) given by Eq. (12) is block diagonal at the initial time
t = t0 when the periodic perturbation is off, so no subsequent
block diagonalization is needed.

D. High-frequency expansion

Knowing the effective Hamiltonian Heff(t) and the mi-
cromotion operator UMicro(ωt + θ,t) one can use Eqs. (29)
and (25) and (26) to find the time evolution of the state
vector |φθ (t)〉 which parametrically depends on the phase θ .
Usually, both operators Heff(t) and UMicro(ωt + θ,t) can not be
determined analytically. However, for sufficiently high driving
frequencies, they can be expressed as a series expansion in the

2Previously, the notion of time-dependent effective Hamiltonians
was used in the Supplemental Material of Ref. [78] to describe
a slow ramp of a dynamical optical lattice with a subwavelength
spacing. The ramp was split into a set of stroboscopic pieces, in
which the modulation was assumed to be constant in amplitude. In
such an approach, the obtained time-dependent effective Hamiltonian
contains a contribution that depends on the initial phase of the drive.
However, this should not be considered as a genuine contribution
to the effective Hamiltonian. The latter Heff(t) is associated with a
long-time dynamics and should be independent of the initial phase,
as in the case of the stationary driving [45,49,81].
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terms of the powers of ω−1. This can be done if off-diagonal
matrix elements of the extended-space Hamiltonian (12) are
small compared to the driving frequency |H (l)

αβ | � h̄ω, and the
spectral width of the physical system is much smaller than
driving frequency |εα − εβ | = |H (0)

αα − H
(0)
ββ | � h̄ω. Further-

more, the operators H (l) should change little over a period
of oscillations: |Ḣ (l)

αβ | � ω|H (l)
αβ |. The latter condition appears

because the matrix elements of the operator ih̄D̂†(t) ˙̂D(t)
featured in Eq. (20) should be much smaller than ω.

In some cases, such as in shaken optical lattices
[8,9,12,25,30,36,43,44,57,68,71], the spectrum of the physical
system extends beyond the driving frequency, so the condition
|εα − εβ | � h̄ω does not hold for the states with high energies
εα . Yet, if these states are not directly accessible from the initial
state of the system, the high-frequency expansion can still be
used to describe the dynamics of the system at the intermediate
times when the higher states are not yet populated [42]. In
particular, it was demonstrated [95] that for time-periodic
systems the truncated high-frequency expansion can remain
applicable even when the condition |εα − εβ | � h̄ω is not
met. On the other hand, in many-body systems the adiabatic
approximation may break down not only at very high ramp
rates, but also at very slow ones due to avoided crossings of
Floquet many-body resonances [42,89,92,96]. This effect is
not captured by the high-frequency expansion, but it should
become smaller and smaller with increasing the ramp rates and
driving frequency.

A general formalism of the high-frequency expansion is
presented in Appendix B. Here, we summarize the findings.

The effective Hamiltonian expanded in the powers of ω−1

reads as

Heff = Heff(0) + Heff(1) + Heff(2) + . . . , (32)

where the nth term Heff(n) is proportional to ω−n. The first
three expansion terms are

Heff(0) = H (0), (33a)

Heff(1) = 1

h̄ω

∞∑
m=1

1

m
[H (m),H (−m)], (33b)

Heff(2) = 1

(h̄ω)2

∑
m�=0

⎧⎨
⎩[H (−m),[H (0),H (m)]]−ih̄[H (−m),Ḣ (m)]

2m2

+
∑

n�={0,m}

[H (−m),[H (m−n),H (n)]]
3mn

⎫⎬
⎭, (33c)

where the (slow) temporal dependence of the components
H (n) = H (n)(t) is kept implicit.

Note that the second-order contribution proportional to
[H (−m),Ḣ (m)] stems from projecting onto a selected Floquet
band (with n = 0) of an extra term −ih̄D̂†(t) ˙̂D(t) entering
Eq. (20). This provides a geometric phase [93] for an adiabatic
motion in the selected Floquet band. The geometric phase can
be non-Abelian if more than one quantum state is involved
in the adiabatic motion [97–99]. In Sec. IV we shall consider
an example providing non-Abelian geometric phases for the
adiabatic motion in the Floquet band.

Expanding the Hermitian micromotion operator SMicro

entering UMicro = exp (−iSMicro) in the series SMicro =
SMicro(1) + SMicro(2) + . . . , the first- and the second-order terms
read as

SMicro(1)(θ
′,t) = 1

ih̄ω

∑
m�=0

1

m
H (m)eimθ ′

, (34a)

SMicro(2)(θ
′,t) = 1

2i(h̄ω)2

∑
m�=0

⎧⎨
⎩ 1

m2
[H (m),H (0)] +

∑
n�=0

1

mn
[H (n),H (m−n)] + 2ih̄

m2
Ḣ (m)

⎫⎬
⎭eimθ ′

, (34b)

where θ ′ = ωt + θ .
On the other hand, the expansion of the operator UMicro(θ ′,t) up to the ω−3 order is given by

UMicro(θ ′,t) = 1H − 1

h̄ω

∑
m�=0

1

m
H (m)eimθ ′ + 1

2(h̄ω)2

∑
m�=0

∑
n�=0

ei(m+n)θ ′ H (m)H (n)

nm

+ 1

2(h̄ω)2

∑
m�=0

eimθ ′

⎧⎨
⎩ [H (0),H (m)] − 2ih̄Ḣ (m)

m2
−
∑
n�=0

[H (n),H (m−n)]

nm

⎫⎬
⎭+ O(ω−3). (35)

Although the operator UMicro is unitary, it becomes nonunitary
if approximated with a finite number of terms. For instance, in
Eq. (35) the unitarity holds up to the ω−3 order.

Generalizing Refs. [42,45,47,49,51], the expanded effec-
tive Hamiltonian and micromotion operators are now time
dependent due to the temporal dependence of the components
H (m) = H (m)(t) entering the expansions. For instance, if the

amplitude of the periodic perturbation applied to the system
slowly increases from zero reaching a saturation value at t , the
operator UMicro(t) is the unit operator at t = t0, and reaches
a stationary oscillating solution at the saturation times t .
Furthermore, in the present situation the effective Hamiltonian
and micromotion operators acquire additional terms due to
the slow temporal dependence of the harmonics H (m)(t).
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Specifically, the term proportional to [H (−m),Ḣ (m)] appears
as the second-order correction to the effective Hamiltonian
in Eq. (33c). On the other hand, the terms proportional to
Ḣ (m) represent the first-order correction to the micromotion
operators in Eqs. (34b) and (35).

The high-frequency expansion of the Hamiltonian is often
restricted to the zero and first orders, in which the extra term
∝ [H (−m),Ḣ (m)] does not show up. In that case, one can
simply replace the time-independent effective Hamiltonian
obtained for the stationary driving by the time-dependent
one. For example, shaking of optical lattices is known to
renormalize intersite tunneling amplitudes [28,42,43,47,100]
which acquire a slow temporal dependence in the case of a
slowly varying driving. In Appendix C, this is illustrated for a
one-dimensional shaken optical lattice with a slowly changing
amplitude of driving.

In the following Sec. IV we will consider a spin in
an oscillating magnetic field with a changing direction. In
that case, there are no zero- and first-order contributions
to the effective Hamiltonian. Therefore, the second-order
term proportional to [H (−m),Ḣ (m)] represents a dominant
contribution which plays a vital role in the system dynamics
providing non-Abelian geometric phases.

IV. SPIN IN AN OSCILLATING MAGNETIC FIELD

Let us apply the general formalism to a spin in a fast
oscillating magnetic field B(t) cos (ωt + θ ) with a slowly
varying amplitude B(t). Such a system is described by a
Hamiltonian

H (ωt + θ,t) = gF F · B(t) cos (ωt + θ ), (36)

where gF is a gyromagnetic factor, F = F1ex + F2ey + F3ez

is a spin operator satisfying the usual commutation relations
[Fl,Fm] = ih̄εlmnFn. Here, εlmn is a Levi-Civita symbol, and
a summation over a repeated Cartesian index n = 1,2,3 is
implied. The nonzero Fourier components of the Hamiltonian
(36) are

H (1) = H (−1) = gF

2
F · B(t). (37)

We now obtain the effective Hamiltonian and the micromo-
tion operators up to the second order in ω−1 inclusively. Calling
on Eqs. (32) and (33), the truncated effective Hamiltonian
reads as

Heff = Heff(2) = −ih̄

(h̄ω)2
[H (1),Ḣ (1)]

= −ih̄g2
F

(2h̄ω)2 BkḂl[Fk,Fl]

= g2
F (2ω)−2εklmBkḂlFm

= g2
F (2ω)−2F · (B × Ḃ). (38)

Using Eq. (34a), the first-order micromotion operator is given
by

SMicro(1)(ωt + θ,t) = gF

h̄ω
F · B(t) sin (ωt + θ ). (39)

The second-order contribution to the micromotion given by
(34b) appears now due to ramping of the magnetic field:

SMicro(2)(ωt + θ,t) = gF

h̄ω2
F · Ḃ(t) cos (ωt + θ ). (40)

According to Eq. (38), the change in the orientation of
the magnetic field provides an effective Hamiltonian Heff

proportional to the spin perpendicular to both the magnetic
field B and its derivative Ḃ, i.e., perpendicular to the rotation
plane for the magnetic field. If the plane of the rotation is
changing, the Hamiltonian does not commute with itself at
different times, so the time ordering is needed in the evolution
operator Ueff(t,t0) presented in Eq. (42) below. The effective
evolution of the spin is then associated with non-Abelian
(noncommuting) geometric phases, as we shall see below.

It is to be emphasized that in the present situation the
geometric phases appear because the effective evolution of
the physical system involves the adiabatic elimination of the
Floquet bands with m �= 0 in the extended space, as generally
illustrated in Fig. 1. Thus, the emerging non-Abelian phases
reflect the geometry of the extended Floquet space rather than
that of the physical one.

To see the geometric nature of the effective Hamiltonian
(38), it is convenient to represent it in terms of a geometric
vector potential A:

Heff = A · Ḃ, A = g2
F (2ω)−2(F × B). (41)

The evolution operator (26) then takes the form

Ueff(t,t0) = T exp

[
− i

h̄

∫ t

t0

A · dB(t ′)
]
. (42)

The operator Ueff(t,t0) is thus determined by a path of the
magnetic field, not by a speed of its change, showing a
geometric origin of the acquired phases.

In particular, performing an anticlockwise rotation of the
magnetic field B by an angle ϕ in a plane orthogonal to a
unit vector n ∝ B × Ḃ, the corresponding evolution operator
is defined by a spin along the rotation direction: F · n. If
additionally an amplitude B of the rotating magnetic field
is not changing, the evolution operator (42) simplifies to

Ueff(n,ϕ) = exp

[
− i

h̄
γϕF · n

]
, γϕ = ϕ

g2
F B2

4ω2
. (43)

After making l rotations, the angle is given by ϕ = 2πl, where
l is an integer. In that case, the magnetic field B(t) comes back
to its original value. Therefore, the exponent γϕF · n/h̄ can be
identified as a Wilczek-Zee phase operator [97] representing a
non-Abelian generalization to the Berry phase [93]. The cor-
responding eigenvalues γϕmF linearly depend on the spin pro-
jection mF along the rotation axis n. For a single loop (l = 1)
the phase γϕ is much smaller than the unity because of the
assumption of the high-frequency driving. Performing many
loops (l � 1), one may accumulate a considerable phase γϕ . It
is noteworthy that two consecutive rotations along nonparallel
axes n′ and n′′ do not commute [Ueff(n′,ϕ′),Ueff(n′′,ϕ′′)] �= 0.
This demonstrates a non-Abelian character of the problem.

As shown in Appendix D, the acquired geometric phase
γϕF · n/h̄ entering the evolution operator (43) stems from the
rotational frequency shift [101] representing a correction to
it. The correction term to the effective Hamiltonian presented
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FIG. 2. An example of a spin driven by an oscillating magnetic
field. The scheme involves four stages which include raising of the
magnetic field along the z axis (a), subsequent rotation of the magnetic
field along the y and x axes (b), (c), and switching off the magnetic
field which again points along the z axis (d).

by Eq. (D3c) is proportional to the spin along the rotation
direction, in agreement with Eqs. (38) and (43).

The effect of the geometric phases can be measured
using, for instance, the following sequence illustrated in
Fig. 2. Initially at t = t0 the oscillating magnetic field and
its derivative are zero: B(t0) → 0 and Ḃ(t0) → 0. Therefore,
according to Eq. (31), the micromotion is absent at the initial
time: UMicro(ωt0 + θ,t0) = 1. Subsequently, for t0 < t < t1 the
magnetic field strength increases until reaching a steady-state
value B = B0. In doing so, the direction of the magnetic
field is kept fixed along the z axis [B(t) ‖ ez], as indicated
in Fig. 2(a). The effective Hamiltonian Heff is then zero.
Therefore, apart from the micromotion there is no other
dynamics at this stage: Ueff(t1,t0) = 1. In the next interval
t1 < t < t2 the magnetic field maintains a constant amplitude
B0 and changes its direction, so nonzero effective Hamiltonian
Heff contributes to the temporal evolution of the system. During
that stage, the magnetic field may perform a number rotations
along different axes nj , described by noncommuting unitary
operators Ueff(nj ,ϕj ). This is illustrated in Figs. 2(b) and 2(c)
showing two rotations: along the y and x axes (nj = ey, ex). In
the final interval t2 < t < t3, the magnetic field is decreasing
without changing its direction, so that Heff = 0 and hence
Ueff(t3,t2) = 1. At the final time t = t3, the magnetic field
and its derivative go to zero B(t3) → 0 and Ḃ(t3) → 0
[see Fig. 2(d)], so the micromotion vanishes.

Since there is no micromotion at the initial and final
times UMicro(ωt0 + θ,t0) = UMicro(ωt3 + θ,t3) = 1, according
to Eq. (29) the state vector at the final time is related to that at
the initial time by a θ -independent effective evolution operator

2 3 4 5 6 7
0

0.5

1

|c ↑
,↓

(2
π
l/

Ω
)|2

ω/Ω

|c↑|2

|c↓|2

FIG. 3. The probabilities |c↑(2πl/�)|2 and |c↓(2πl/�)|2 to find
the spin in the states |↑〉 (blue asterisk and solid line) and |↓〉
(red circles and dashed line) after l = 10 rotations of the magnetic
field. The probabilities have been calculated numerically (symbols)
and from the effective evolution Eqs. (45) (continuous lines). The
characteristic amplitude of the magnetic field is taken to be such that
gF B/� = 1.

Ueff(t3,t0) = Ueff(t2,t1):

|φθ (t3)〉 = Ueff(t3,t0)|α〉 = Ueff(t2,t1)|α〉. (44)

In this way, the long-time dynamics of state vector is described
by the same effective evolution operator Ueff(t3,t0) for an
arbitrary phase θ entering the Hamiltonian H (ωt + θ,t). This
makes the scheme insensitive to the phase θ and a way the
magnetic field is switched on and off.

It is noteworthy that the dynamics of a spin adiabatically
following a slowly changing magnetic field was considered by
Berry [93]. In that case, an adiabatic elimination of the second
spin component provided a geometric (Berry) phase after a
cyclic evolution. Such a geometric phase is Abelian because
the effective dynamics involves a single-spin component
adiabatically following the magnetic field.

In the present situation relying on a fast oscillating
magnetic field with a changing direction, the spin is no longer
adiabatically following the magnetic field. Therefore, the spin
degree of freedom is no longer frozen and the emergence
of the non-Abelian phases is possible. The non-Abelian
geometric phases arise now due to adiabatic elimination of the
extended-space Floquet bands with m �= 0 [shown in Fig. 1
and in Fig. 4(a) in Appendix D], rather than of the physical
states, as it is usually the case [97–99].

Finally, let us compare the analytical expression (43) for the
effective dynamics with numerical simulations. For this we nu-
merically calculate the exact evolution of a spin- 1

2 particle gov-
erned by the Hamiltonian (36), in which the amplitude of the
oscillating magnetic field B(t) = B[ez cos(�t) − ey sin(�t)]
rotates in the yz plane. After preparing the system in a spin-up
state |α〉 = |↑〉, we allow the magnetic field vector B(t) to
make l = 10 rotations in the yz plane. This transforms the
state vector to a superposition of the spin-up and -down states:
c↑(tl)|↑〉 + c↓(tl)|↓〉, with tl = 2πl/�. The corresponding
probabilities |c↑(2πl/�)|2 and |c↓(2πl/�)|2 calculated nu-
merically for l = 10 are depicted by asterisks and circles in
Fig. 3. To remove the fast oscillations due to the micromotion
operators, the numerical simulations have been performed by
taking the values of the driving frequency ω such that lω/�

remains integer.
On the other hand, the effective evolution described by

Eq. (43) yields the following analytical expressions for these
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probabilities:

|c↑(2πl/�)|2 = cos2

(
πlg2

F B2

4ω2

)
, (45a)

|c↓(2πl/�)|2 = sin2

(
πlg2

F B2

4ω2

)
. (45b)

As one can see from Fig. 3, the numerical results agree well
with the analytical ones (shown in solid lines) when the
driving frequency ω exceeds considerably the frequency of
the magnetic field rotation: ω � �.

V. CONCLUDING REMARKS

We have considered a quantum system described by the
Hamiltonian H (ωt + θ,t) which is 2π periodic with respect
to the first argument ωt + θ and allows for an additional (slow)
temporal dependence represented by the second argument. The
periodic time dependence of the Hamiltonian has been elimi-
nated applying the extended-space formulation of the Floquet
theory [82]. Consequently, the original Schrödinger equation
(3) has been transformed into an equivalent Schrödinger-type
equation of motion (17) governed by the extended-space
Hamiltonian (11) containing only a slow temporal dependence.

Using such an approach, Eq. (29) has been obtained
describing the evolution of the system in terms of a long-term
dynamics governed by the θ -independent unitary operator
Ueff(t,t0), as well as the θ -dependent micromotion operators
UMicro(ωt + θ,t) taken at the initial and final times t = t0 and
t . The former operator Ueff(t,t0) is determined by the effective
Hamiltonian Heff = Heff(t) slowly changing in time. The latter
UMicro(ωt + θ,t) not only describes the fast periodic motion,
but also exhibits an additional slow temporal dependence.

We have provided a general framework for a combined
analysis of a high-frequency perturbation and slow changes
in the periodic driving. The micromotion operators and the
effective Hamiltonian have been systematically constructed in
terms of a series in the powers of ω−1. Analytical expressions
(32), (33), and (35) give the expansions to the second order in
ω−1 inclusively.

In the limit of a strictly time-periodic Hamiltonian H =
H (ωt + θ ), the expansions reproduce the ones presented in
previous studies [42,45,47,49,51]. Yet, in a more general situ-
ation considered here, the effective Hamiltonian and the micro-
motion operators incorporate the dependence on the slow time.
Thus, they change their form during the course of the evolution.
Furthermore, the effective Hamiltonian and micromotion oper-
ators contain additional second-order contributions emerging
entirely from the slow temporal dependence of the Fourier
components composing the original Hamiltonian in Eq. (2).

To show the effect of the additional terms on the dynamics,
in Sec. IV we have studied a spin F̂ in a magnetic field
oscillating rapidly along a slowly changing direction. If the
changes in the orientation of the magnetic field are not
restricted to a single plane, the effective evolution of the spin
provides non-Abelian geometric phases.

The general theory is applicable to other driven systems,
such as periodically modulated optical lattices with a
time-dependent forcing strength. Such a situation is relevant
to cold-atom experiments [8,9,12,25,30,36,43,44,57,68,71].

Shaking of optical lattices is known to renormalize intersite
tunneling amplitudes [28,42,43,47,100]. In the case of a
slowly varying driving, the tunneling amplitudes acquire a
slow temporal dependence. In Appendix C this is illustrated
for a one-dimensional optical lattice affected by a slowly
changing shaking.

If the periodic modulation is absent at the initial time t0 and
is slowly switched on afterwards, the micromotion operator
U

†
Micro(ωt0 + θ,t0) reduces to a unit operator in Eq. (29). In that

case, the temporal evolution of the system is described by the
effective Hamiltonian Heff = Heff(t) slowly changing in time,
and fast oscillating micromotion operator UMicro(ωt + θ,t)
calculated only at the final time.
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APPENDIX A: UNITARITY OF THE OPERATOR
UMicro(ωt + θ,t)

Here, we will show that the micromotion operator
UMicro(ωt + θ,t) is unitary in the physical space. By definition,
the operator D̂(t) is unitary in the extended space:

D̂†D̂ =
∑

n

|n〉1H 〈n|,

where 1H is a unit operator in the physical Hilbert space
H . On the other hand, using (23) for D̂(t) and the fact that
P̂lP̂m = P̂m+l , one finds

D̂†D̂ =
∑
m,n

D(m)†D(n)P̂−mP̂n =
∑
m,l

D(m)†D(l+m)P̂l .

Comparing the two equations, one obtains the following
condition for D(m):

∞∑
m=−∞

D(m)†D(m+l) = 1H δl0. (A1)

Consequently, one finds that the micromotion operator given
by Eq. (30) is indeed unitary:

U
†
MicroUMicro =

∑
m,n

D(m)†(t)D(n)(t)ei(n−m)ωt = 1H . (A2)

APPENDIX B: EXPANSION OF THE EFFECTIVE
HAMILTONIAN IN THE POWERS OF 1/ω

1. Basic initial equations

It is convenient to represent the abstract extended-space
Hamiltonian (11) as

K̂ = h̄ωN̂ + K̂ ′, with K̂ ′ =
+∞∑

m=−∞
H (m)P̂m, (B1)

where N̂ is the “number” operator in the Floquet basis given
by Eq. (21), and P̂m is defined by (14). Below we will use
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some properties of the operators P̂m, namely,

[P̂m,N̂ ] = −mP̂m, P̂mP̂n = P̂m+n, and
[
P̂m,P̂n

] = 0.

(B2)
We are looking for a unitary transformation

D̂(t) = e−iŜ(t) (B3)

which makes the Hamiltonian K̂ given Eq. (B1) diagonal in
the abstract extended space:

D̂†K̂D̂ − ih̄D̂† ˙̂D = eiŜK̂e−iŜ − ih̄eiŜ d

dt
e−iŜ = K̂D, (B4)

where

K̂D(t) = h̄ωN̂ + Heff(t)P̂0 (B5)

is block diagonal.

2. High-frequency expansion

We are interested in a situation where the spectrum of Heff is
confined in an energy range much smaller than the separation
between the Floquet bands h̄ω. In that case, the effective
Hamiltonian Heff can be expanded in powers of the inverse

driving frequency 1/ω:

Heff = Heff(0) + Heff(1) + Heff(2) + . . . , (B6)

where the j th term Heff(j ) is of the order of 1/ωj . As
we shall see later on, the zero-order term Heff(0) coincides
with the contribution due to the zero-frequency component
H (0) of the physical Hamiltonian.

The Hermitian operator Ŝ featured in the unitary transfor-
mation D̂ [Eq. (B3)] can also be expanded in the powers of
1/ω as

Ŝ = Ŝ(1) + Ŝ(2) + . . . , (B7)

where the expansion does not contain the zero-order term
because the unitary operator D̂ = exp (−iŜ) should approach
the unity in a very high-frequency limit.

We are also looking for the 1/ω power expansion of the
unitary operator D̂:

D̂ = D̂(0) + D̂(1) + D̂(2) + . . . , (B8)

with

D̂(0) = 1L , D̂(1) = −iŜ(1), (B9a)

D̂(2) = −iŜ(2) − 1
2 [Ŝ(1)]

2. (B9b)

3. Determination of the high-frequency expansion of Heff and Ŝ

To find the high-frequency expansion of Heff and Ŝ, let us express eiŜK̂e−iŜ in the powers of Ŝ as

eiŜK̂e−iŜ = K̂ + i[Ŝ,K̂] − 1

2!
[Ŝ,[Ŝ,K̂]] − i

3!
[Ŝ,[Ŝ,[Ŝ,K̂]]] + . . . . (B10)

Also, let us calculate time derivative caused by the operator D̂ time dependence. We restrict ourselves up to third-order terms:

−ih̄D̂† ˙̂D = −h̄ ˙̂S(1) − h̄ ˙̂S(2) − ih̄

2
[Ŝ(1),

˙̂S(1)] + O(ω−3). (B11)

Using (B5) and (B1), sum of the above equations reads as

HeffP̂0 = K̂ ′ + i[Ŝ(1),h̄ωN̂ ]︸ ︷︷ ︸
zero-order terms

+ i[Ŝ(1),K̂
′] + i[Ŝ(2),h̄ωN̂ ] − 1

2!
[Ŝ(1),[Ŝ(1),h̄ωN̂ ]] − h̄ ˙̂S(1)︸ ︷︷ ︸

first-order terms

+i[Ŝ(2),K̂
′] − 1

2!
[Ŝ(1),[Ŝ(2),h̄ωN̂ ]] − 1

2!
[Ŝ(2),[Ŝ(1),h̄ωN̂ ]] − 1

2!
[Ŝ(1),[Ŝ(1),K̂

′]]︸ ︷︷ ︸
second-order terms

− i

3!
[Ŝ(1),[Ŝ(1),[Ŝ(1),h̄ωN̂ ]]] + i[Ŝ(3),h̄ωN̂ ] − h̄ ˙̂S(2) − ih̄

2
[Ŝ(1),

˙̂S(1)]︸ ︷︷ ︸
second-order terms

+O(ω−3). (B12)

Since D̂ has a block-diagonal form (23), the Hermitian operator Ŝ should have the same form:

Ŝ =
+∞∑

m=−∞
S(m)P̂m. (B13)

4. Zero order for Heff

In the lowest order in 1/ω one finds

Heff(0)P̂0 = K̂ ′ + ih̄ω[Ŝ(1),N̂ ]. (B14)
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Expanding K̂ ′ and Ŝ(1) in terms of the shift operators P̂m, the
above equation yields

Heff(0)P̂0 =
+∞∑

m=−∞

(
H (m) − imh̄ωS

(m)
(1)

)
P̂m. (B15)

Thus, the zero-order Hamiltonian reads as

Heff(0) = H (0). (B16)

On the other hand, Eq. (B14) provides the following result
for the first-order contribution to the Hermitian transformation
exponent Ŝ:

Ŝ(1) = 1

ih̄ω

∑
m�=0

1

m
H (m)P̂m

≡ 1

ih̄ω

+∞∑
m=1

1

m
(H (m)P̂m − H (−m)P̂−m). (B17)

This is consistent with the first-order terms presented in
Appendix C of Ref. [45]. Note that Eq. (B14) does not define
S

(0)
(1) , so we have taken S

(0)
(1) = 0. More generally, in what follows

we shall assume that S
(0)
(n) = 0 in all orders n. In the following,

we shall see that this assumption is consistent also in higher
orders of perturbation. Additionally, we get the first-order term
for the expansion of the unitary operator:

D̂(1) = −1

h̄ω

∑
m�=0

1

m
H (m)P̂m. (B18)

5. First order for Heff

In the next order in 1/ω one has

Heff(1)P̂0 = i[Ŝ(1),K̂
′] + i[Ŝ(2),h̄ωN̂ ]

− 1

2!
[Ŝ(1),[Ŝ(1),h̄ωN̂ ]] − h̄ ˙̂S(1). (B19)

Combining Eqs. (B16) and (B17) for Heff(0) and Ŝ(1) with
auxiliary relationships (B2), the above equation simplifies to

Heff(1)P̂0 = 1

2h̄ω

∑
m�=0

∑
n�=0

[H (m),H (n)]

m
P̂m+n

+ 1

h̄ω

∑
m�=0

[H (m),H (0)]

m
P̂m − ih̄ω

∑
m�=0

mS
(m)
(2) P̂m

− 1

iω

∑
m�=0

1

m
Ḣ (m)P̂m. (B20)

Thus, first-order effective Hamiltonian is given by

Heff(1) = 1

h̄ω

+∞∑
m=1

1

m
[H (m),H (−m)]. (B21)

On the other hand, the second order of the transformation
exponent operator reads as

Ŝ(2) =
∑
m�=0

S
(m)
(2) P̂m, (B22)

where

S
(m)
(2) = 1

2im(h̄ω)2

⎧⎨
⎩ 1

m
[H (m),H (0)] +

∑
n�=0

1

n
[H (n),H (m−n)]

⎫⎬
⎭

+ h̄

(h̄ω)2m2
Ḣ (m). (B23)

The second-order term of the unitary operator takes the form

D̂(2) = 1

2(h̄ω)2

⎡
⎣∑

m�=0

∑
n�=0

P̂m+n

H (m)H (n)

nm
−
∑
m�=0

P̂m

⎧⎨
⎩ [H (m),H (0)] + 2ih̄Ḣ (m)

m2
+
∑
n�=0

[H (n),H (m−n)]

mn

⎫⎬
⎭
⎤
⎦. (B24)

6. Second order for Heff

In the next order in 1/ω one has

Heff(2)P̂0 = i[Ŝ(2),K̂
′] + i[Ŝ(3),h̄ωN̂ ] − 1

2
[Ŝ(1),[Ŝ(1),K̂

′]] − 1

2
[Ŝ(1),[Ŝ(2),h̄ωN̂ ]]

− 1

2
[Ŝ(2),[Ŝ(1),h̄ωN̂ ]] − i

6
[Ŝ(1),[Ŝ(1),[Ŝ(1),h̄ωN̂ ]]] − h̄ ˙̂S(2) − ih̄

2
[Ŝ(1),

˙̂S(1)]. (B25)

Each term in the right-hand side of the Eq. (B25) can be considered as a sum
∑

m X(m)P̂m. To find Heff(2) we need to determine
only the operator X(0). Hence, the third term in the right-hand side of the Eq. (B25) gives

− 1

2
[Ŝ(1),[Ŝ(1),K̂

′]]P̂0
= 1

2(h̄ω)2

∑
m�=0

∑
n�=0

1

mn
[[H (n),H (m−n)],H (−m)]. (B26)
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The second and seventh terms on the right-hand side of the Eq. (B25) give a zero contribution. The first, fourth, and fifth terms
together also do not contribute. The sixth and eighth terms give

− i

6
[Ŝ(1),[Ŝ(1),[Ŝ(1),h̄ωN̂ ]]]P̂0

= −1

2(h̄ω)2

∑
m�=0

∑
n�={0,m}

[[H (n),H (m−n)],H (−m)]
3mn

, (B27)

− ih̄

2
[Ŝ(1),

˙̂S(1)]P̂0
= − ih̄

2(h̄ω)2

∑
m�=0

1

m2
[H (−m),Ḣ (m)]. (B28)

In this way, the second order of the effective Hamiltonian reads as

Heff(2) =
∑
m�=0

⎧⎨
⎩ [H (−m),[H (0),H (m)]] − ih̄[H (−m),Ḣ (m)]

2(mh̄ω)2 +
∑

n�={0,m}

[H (−m),[H (m−n),H (n)]]
3mn(h̄ω)2

⎫⎬
⎭. (B29)

7. Power expansion of the operator UMicro(θ ′,t)

The time dependence of the operator UMicro(θ ′,t) can be recovered from the expansion of the unitary operator D̂:

UMicro(θ ′,t) ≈ 1 − 1

h̄ω

∑
m�=0

1

m
H (m)eimθ ′ + 1

2(h̄ω)2

∑
m�=0

∑
n�=0

ei(m+n)θ ′ H (m)H (n)

nm

+ 1

2(h̄ω)2

∑
m�=0

eimθ ′

⎧⎨
⎩ [H (0),H (m)] − 2ih̄Ḣ (m)

m2
−
∑
n�=0

[H (n),H (m−n)]

nm

⎫⎬
⎭. (B30)

8. Power expansion of the operator SMicro(t)

The expansion of the Hermitian operator SMicro = SMicro(1) + SMicro(2) + O(ω−3) defined as the exponential form UMicro =
exp [−iSMicro] can be recovered from the expansion of the operator Ŝ by taking P̂m → exp (imθ ′):

SMicro(1)(θ
′,t) = 1

ih̄ω

∑
m�=0

1

m
H (m)eimθ ′

,

SMicro(2)(θ
′,t) = 1

2i(h̄ω)2

∑
m�=0

⎧⎨
⎩ 1

m2
[H (m),H (0)] +

∑
n�=0

1

mn
[H (n),H (m−n)] + 2ih̄

m2
Ḣ (m)

⎫⎬
⎭eimθ ′

. (B31)

APPENDIX C: FLOQUET EFFECTIVE HAMILTONIAN
OF A ONE-DIMENSIONAL OPTICAL LATTICE WITH

A TIME-DEPENDENT DRIVING AMPLITUDE

Let us consider the atomic dynamics in a one-dimensional
shaken optical lattice with a changing driving. In the laboratory
frame, the periodic potential

Vlab(t) = V0

2
cos {2kL[x − X0(t)]} (C1)

is characterized by a lattice constant b = π/kL. A temporal
dependence of the lattice displacement X0(t) depends on the
shaking protocol. Here, we consider a situation where a pair
of counterpropagating laser beams creating the optical lattice
are obtained by splitting a laser beam into two. A small time-
dependent frequency difference �ν(t) between the two split
beams is produced using an acousto-optic modulator. This
results in the lattice moving with a velocity v(t) = b�ν(t)
[43,100,102–106], so that

X0(t) = b

∫ t

t0

dτ �ν(τ ). (C2)

To produce the shaken optical lattice, we take a quasiperiodic
modulation of �ν(t) characterized by the frequency ω, phase
θ , and slowly changing amplitude f (t):

�ν(t) = f (t) sin(ωt + θ ). (C3)

For a sufficiently deep lattice potential V0 � Erec, the
optical lattice can be described by the tight-binding model,
where Erec = h̄2k2

L/2M is the recoil momentum and M is
the atomic mass. The tight-binding Hamiltonian of the driven
optical lattice reads as in a comoving frame [43]

Hdr(t) = −J

∞∑
l=−∞

(a†
l al−1 + a

†
l al+1) +

∞∑
l=−∞

Vl(t)a
†
l al,

(C4)
where J is a tunneling matrix element, a

†
l (al) is a creation

(annihilation) operator for an atom at a lattice site l. Here also

Vl(t) = lbMẌ0(t) (C5)

is a modulated onsite potential.
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To eliminate the onsite potential Vl(t) proportional to the
driving frequency ω, one can apply a unitary transformation

Udr(t) = exp

[
−ih̄−1

∑
l

lbMẊ0(t)a†
l al

]
(C6)

to the original Hamiltonian (C4), giving

H (t) = U
†
drHdrUdr − ih̄U

†
drU̇dr

= −J

∞∑
l=−∞

(eiϕ(t)a
†
l al−1 + e−iϕ(t)a

†
l al+1), (C7)

with

ϕ(t) = −h̄−1bMẊ0 = −h̄−1b2Mf (t) sin(ωt + θ ). (C8)

The transformed Hamiltonian (C7) no longer contains the
large driving amplitude proportional to Ẍ0(t) ∝ ω, making
its Fourier components H (m)(t) independent on the expansion
parameter ω−1. The driving force is now captured by the
time-dependent Peierls phase ϕ(t).

Employing the relation

exp[ir sin(s)] =
∞∑

m=−∞
Jm(r) exp(ims), (C9)

one obtains the Fourier components of the transformed
Hamiltonian (C7):

H (m)(t) = −JJm

[
b2Mf (t)

h̄

] ∞∑
l=−∞

[(−1)ma
†
l al−1 + a

†
l al+1],

(C10)
where Jm denotes a Bessel function of an integer order m.

According to Eqs. (33a) and (C10), the zero-order effective
Hamiltonian has a form of the original Hamiltonian for the
undriven system:

Heff(0) = −J ′(t)
∞∑

l=−∞
(a†

l al−1 + a
†
l al+1), (C11)

where the tunneling matrix element

J ′(t) = JJ0

[
b2Mf (t)

h̄

]
(C12)

is rescaled by the Bessel function. Unlike in the previ-
ous studies [28,42,43,47,100], the emerging Bessel function
J0[ b2Mf (t)

h̄
] changes in time due to the slow time dependence of

the driving. Note that the first- and second-order corrections for
the effective Hamiltonian (33b) and (33c) are zero: Heff(1) =
Heff(2) = 0.

APPENDIX D: SPIN IN AN OSCILLATING
MAGNETIC FIELD: RELATION TO THE ROTATION

FREQUENCY SHIFT

In Sec. IV we have considered the spin in the fast
oscillating magnetic field B(t) cos (ωt + θ ) with the slowly
varying amplitude B(t). Here, we will show that the acquired
geometric phases stem from the rotational frequency shift
[101] representing a correction to it. For this let us consider
a case where the oscillating magnetic field rotates at a

constant angular frequency � around the z axis: B(t) =
B[cos (�t)ex + sin (�t)ey]. According to Eq. (38), a nonzero
contribution to the effective Hamiltonian emerges due to the
rotation of B(t), giving

Heff = H
(2)
eff(2) = g2

F B2�

4ω2
F3. (D1)

Alternatively, one can apply to the original Hamiltonian
H (ωt + θ,t) a unitary transformation U�t = e− i

h̄
F3�t rotating

the spin along the z axes by the angle �t . The transformed
Hamiltonian then reads as

H̃ (ωt + θ,t) = U
†
�tHU�t − ih̄U

†
�t U̇�t

= gF F1B cos (ωt + θ ) − F3�. (D2)

Therefore, in the new frame the oscillating magnetic field
vector is oriented in the x direction and thus no longer
rotates. Additionally, a Zeeman term −F3� appears due to
the rotational frequency shift [101]. This is illustrated in
Fig. 4 for a spin- 1

2 case. Nonzero Fourier components of
the transformed Hamiltonian are H̃ (0) = −F3� and H̃ (−1) =
H̃ (1) = gF F1B/2. Therefore, a high-frequency expansion of
the effective Hamiltonian H̃eff reads as in the rotating frame
using Eqs. (33)

H̃eff(0) = −F3�, (D3a)

H̃eff(1) = 0H , (D3b)

H̃eff(2) = 1

(h̄ω)2
[H̃ (1),[H̃ (0),H̃ (1)]] = g2

F B2�

4ω2
F3. (D3c)

1

n = 0

n = 1

n = −

ω

ω

Ω

H̃(±1)

H̃(±1)

H(±1)(t)

H(±1)(t)

(a) (b)

FIG. 4. A Floquet picture for a spin- 1
2 system in an oscil-

lating magnetic field with a slowly rotating direction B(t) =
B[cos (�t)ex + sin (�t)ey] in the laboratory (a) and rotating (b)
frames. Dotted (red) arrows represent quantum jumps between dif-
ferent Floquet bands in the rotating frame described by the operators
H̃ (±1) = gF BF1/2. Dashed (blue) arrows represent the corresponding
quantum jumps in the laboratory frame described by the time-
dependent operator H (±1) = gF B[F1 cos (�t) + F2 sin (�t)]. The
transition from the laboratory to the rotating frames introduces a
splitting of the spin-up and -down states by the amount h̄�, as
illustrated in (b). This leads to the second-order correction to the
Zeeman term given by Eq. (D3c).
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The second-order term H̃eff(2) in Eq. (D3c) represents a
correction to the rotational energy shift. The term H̃eff(2)

coincides with Eq. (D1) for the shift in the laboratory frame
due to the changes in the direction of the oscillating magnetic
field. Yet, in the rotating frame the effective Hamiltonian
H̃eff also acquires the zero-order term H̃eff(0) given by
Eq. (D3a), which is absent in the laboratory frame. To eliminate

H̃eff(0), one needs to return back to the laboratory frame,
giving

U�tH̃effU
†
�t − ih̄U�t U̇

†
�t = H̃eff(2), (D4)

which is in agreement with Eq. (D1) for Heff. Thus, one arrives
at completely equivalent effective Hamiltonians using both
approaches.
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[70] J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A.
Eckardt, M. Lewenstein, K. Sengstock, and P. Windpassinger,
Phys. Rev. Lett. 108, 225304 (2012).

[71] C. J. Kennedy, W. C. Burton, W. C. Chung, and W. Ketterle,
Nat. Phys. 11, 859 (2015).

[72] J. C. Budich, Y. Hu, and P. Zoller, arXiv:1608.05096.
[73] V. Galitski and I. B. Spielman, Nature (London) 494, 49 (2013).
[74] H. Zhai, Int. J. Mod. Phys. B 26, 1230001 (2012).
[75] H. Zhai, Rep. Prog. Phys. 78, 026001 (2015).
[76] B. M. Anderson, I. B. Spielman, and G. Juzeliūnas, Phys. Rev.
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