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Quantum dynamics in potentials with fast spatial oscillations
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We consider quantum dynamics of systems with fast spatial modulation of the Hamiltonian. Employing
the formalism of supersymmetric quantum mechanics and decoupling fast and slow spatial oscillations we
demonstrate that the effective dynamics is governed by a Schrödinger-like equation of motion and obtain the
expression of the resulting effective Hamiltonian. In particular, we show that there exists an attractive effective
potential even in the case when the oscillating potential averages to zero.

DOI: 10.1103/PhysRevA.99.043608

I. INTRODUCTION

The idea to simplify the analysis of a physical problem
by taking into account the presence of substantially different
characteristic scales (spatial, temporal, or other) is a ubiq-
uitous and powerful one. Far-reaching examples include the
Born–Oppenheimer approach [1,2], based on decoupling of
fast and slow vibrational modes, and Floquet engineering [3],
which fruitfully exploits the idea to realize effective Hamil-
tonians with desired properties by applying a time-periodic
driving to a controllable physical system [4]. In the limit
when the periodic driving sets the dominant frequency scale
(in comparison with the internal dynamics of the system)
the resulting (stroboscopic) dynamics is described by the
time-averaged driven Hamiltonian. Already this rather simple
result has led to numerous insights and ground-breaking ex-
perimental schemes [5–10]. When the driving sets the largest
but not overwhelming frequency scale, the resulting dynamics
may be captured by a systematic inverse-frequency expansion
[11–13], which also offers opportunities for quantum engi-
neering of physically interesting model Hamiltonians [14,15].

In the present contribution, we look at the complementary
facet of spatial, rather than temporal, modulation of the
Hamiltonian. We show that in the limit of rapid oscillations
of the potential, the effective dynamics is governed by a
Schrödinger-like equation of motion. The main contribution to
the effective potential featured in this equation is proportional
to the square of the envelope function that modulates the rapid
oscillations of the true potential. Moreover, this contribution
comes with a negative sign, i.e., there exists an attractive ef-
fective potential even when the oscillating potential averages
to zero. The effective Schrödinger equation is solved by a
smoothed wave function which accurately approximates the
overall shape of the true wave function but excludes its rapid
small-scale oscillations. The obtained description is relevant
to describe quantum dynamics in potentials formed by inter-
fering laser beams. Here, the resulting intensity distributions,
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which define the potentials felt by ultracold atoms, typically
combine rapid variations on the scale of the wavelength with
slow modulation due to the shape of the beams [16].

Interestingly, in the derivation of the effective Schrödinger
equation we benefited from an approach based on supersym-
metric quantum mechanics (SUSY QM). SUSY QM is a
generalization of the factorization method commonly used for
the harmonic oscillator. It was first introduced as a model to
study nonperturbative symmetry breaking in supersymmetric
field theories [17]. Later it was realized that SUSY QM is an
interesting field in its own right, and the ideas of supersymme-
try have been profitably applied to many quantum-mechanical
problems; see Refs. [18–20] for books and reviews.

Our paper is organized as follows: In Sec. II we derive
the expression for the effective potential in a system with
fast spatial potential modulation. To verify the validity of the
effective Hamiltonian, in Sec. III we compare numerically
calculated eigenfunctions of the original Hamiltonian with the
eigenfunctions obtained by using the effective Hamiltonian.
In Sec. IV we discuss applications to potentials for ultracold
atoms formed by interfering laser beams. Finally, in Sec. V
we summarize our findings.

II. DYNAMICS IN A SPATIALLY
MODULATED POTENTIAL

We study the motion of a one-dimensional quantum parti-
cle of mass m in a static spatially modulated potential V (x)
whose shape can be represented as a combination of a slowly
varying envelope function �(x) with vanishing limiting
values,

lim
x→±∞ �(x) = 0, (1)

and a periodic function v(kx) = v(kx + 2π ). The period of
the rapid oscillations of the potential is given by 2π/k and
by assumption must be much smaller than the characteristic
length scale of the envelope function �(x). The dynamics of
the particle is described by the Schrödinger equation

ih̄
∂

∂t
ψ = Ĥψ, (2)
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NOVIČENKO, RUSECKAS, AND ANISIMOVAS PHYSICAL REVIEW A 99, 043608 (2019)

with the Hamiltonian

Ĥ = − h̄2

2m

∂2

∂x2
+ V (x). (3)

Our goal is to derive an effective Hamiltonian that approxi-
mates the ensuing dynamics for large but finite k and becomes
exact in the limit k → ∞. The potential-energy term is taken
of the form

V (x) = kv(kx)�(x) + ρ(x). (4)

Here, v(s) is a periodic function that averages to zero over a
period

〈v〉 = 1

2π

∫ 2π

0
v(s)ds = 0, (5)

and in Eq. (4) is additionally scaled by a factor k; that is, the
increasing frequency of spatial oscillations is complemented
by increasing amplitude. As further explained below, if this
was not done, in the limit k → ∞, the oscillatory potential
v(kx)�(x) would average out. The presence of a finite poten-
tial background is taken into account by a separate term ρ(x),
which is also required to vanish for |x| → ∞; cf. Eq. (1). To
be able to work with dimensionless quantities, we identify a
characteristic length scale � and measure coordinates in units
of �, wave numbers in �−1, energies in units of h̄2/(2m�2),
and time in 2m�2/h̄. The dimensionless Schrödinger equation
reads

i
∂

∂t
ψ =

{
− ∂2

∂x2
+ kv(kx)�(x) + ρ(x)

}
ψ (x, t ). (6)

We note that a related problem, as a specific case, was studied
in Ref. [21], where ponderomotive dynamics was derived
as an expansion with respect to the inverse wave number
k−1. However, here we are interested in the regime of large
oscillation amplitude [in comparison to the particle-recoil
energy h̄2/(2m�2)]. This regime cannot be directly covered
by the formalism developed in Ref. [21].

A. Derivation of the effective Hamiltonian by using
SUSY QM formalism

We derive the effective Hamiltonian by using an approach
based on the formalism of SUSY QM (see, for example,
Ref. [18]) and the subsequent application of the “averaging”
theorem [22,23], which is a versatile tool that allows us to
eliminate rapidly oscillating terms in broad classes of first-
order differential-equation sets. (An alternative derivation is
included as an Appendix.) To proceed, we write the Hamilto-
nian in a factorized form,

Ĥ = Â†Â, (7)

where

Â = ∂

∂x
+ W (x), (8)

and we introduced the superpotential W (x) as a solution of the
differential equation

d

dx
W (x) = W 2(x) − kv(kx)�(x) − ρ(x), (9)

which is known as the Riccati equation. Then we can replace
the Schrödinger Eq. (6) by a pair of first-order differential
equations

∂

∂x
ψ (x, t ) = ϕ(x, t ) − W (x)ψ (x, t ), (10a)

∂

∂x
ϕ(x, t ) = −i

∂ψ (x, t )

∂t
+ W (x)ϕ(x, t ), (10b)

which govern the wave function ψ (x, t ) and an auxiliary
function ϕ(x, t ) = Âψ (x, t ).

To be fully compliant with the requirements of the averag-
ing theorem one should replace the partial derivatives ∂/∂x
with the full derivatives d/dx. Formally, this can be done
by discretizing the time interval into small steps of dura-
tion 	t and introducing the notation ψ(m)(x) ≡ ψ (x, m	t )
and ϕ(m)(x) ≡ ϕ(x, m	t ). Then the term ∂ψ (x, t )/∂t can
be approximated by a finite difference ∂ψ (x, m	t )/∂t ≈
[ψ(m+1) − ψ(m)]/	t . As a consequence, Eqs. (10) turns into
set of differential equations for the functions ψ(m)(x) and
ϕ(m)(x) formulated in terms of full derivatives with respect to
the single variable x. However, to keep the notation simple we
retain the partial derivatives having in mind that their presence
poses no practical problems.

The three functions W , ψ , and ϕ comprise the new dy-
namical variables and are governed by the set of first-order
nonlinear differential Eqs. (9) and (10). Before proceeding
to the averaging procedure, let us review the scaling of the
potential energy, which we choose to write as kv(kx)�(x). At
this stage we are in a position to see that—in the absence of the
additional scaling by the factor k—the term v(kx)�(x) would
be eliminated from Eq. (9) by the averaging procedure as a
rapidly oscillating term. In the presence of the scaling factor k,
the potential energy kv(kx)�(x) becomes formally divergent
in the k → ∞ limit and must be cast into a manageable form.
To achieve this aim, we replace W with a new variable

W ′ = W + g(kx)�(x), (11)

where the function g(s) is the zero-average antiderivative of
the function v(s), i.e.,

g(s) =
∫ s

0
v(s′)ds′ − 1

2π

∫ 2π

0

∫ s′′

0
v(s′)ds′ds′′. (12)

The purpose of the transformation from W to W ′ can be
elucidated by differentiating both sides of Eq. (11) with the
result

d

dx
W + kv(kx)�(x) = d

dx
W ′ − g(kx)

d

dx
�(x), (13)

demonstrating the absorbtion of the term proportional to k.
Thus, the new variables W ′, ψ , and ϕ obey the differential
equations

dW ′

dx
= [W ′ − g(kx)�(x)]2 − ρ(x) + g(kx)

d�

dx
, (14a)

∂ψ

∂x
= ϕ − [W ′ − g(kx)�(x)]ψ, (14b)

∂ϕ

∂x
= −i

∂ψ

∂t
+ [W ′ − g(kx)�(x)]ϕ. (14c)
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Here we consider continuous envelope functions �(x) so
that the spatial derivative of the envelope represented by the
term d�/dx in Eq. (14a) remains finite. The more general
case of piecewise continuous envelope functions is treated in
the following Sec. II B.

Now one can apply the averaging theorem [22,23]. In gen-
eral, the averaging theorem can be formulated as follows: Let
us consider the vector Z(x) obeying the differential equation
of the form

dZ
dx

= F(Z, kx, x, k), (15)

where the vector field F is 2π periodic with respect to the
second argument, slowly depends (in comparison to the char-
acteristic period 2π/k) on the third argument, and additionally
depends on the parameter k represented by the fourth argu-
ment. One can introduce the averaged vector field as

F(Z, x) = 1

2π

∫ 2π

0
[ lim
k→∞

F(Z, ϑ, x, k)]dϑ. (16)

According to the averaging theorem, the solution Z of the
differential equation

dZ
dx

= F(Z, x), (17)

with the identical initial conditions Z(x0) = Z(x0) approxi-
mates the original solution Z(x) = Z(x) + O(k−1). Thus from
Eqs. (14) one finds

dW ′

dx
= W ′2 + 〈g2〉�2(x) − ρ(x), (18a)

∂ψ

∂x
= ϕ − W ′ ψ, (18b)

∂ϕ

∂x
= −i

∂ψ

∂t
+ W ′ϕ, (18c)

where the averaged functions approximate the original func-
tions as

{W ′, ψ, ϕ} = {W ′, ψ, ϕ} + O(k−1). (19)

We note here that the use of two distinct notations for “av-
eraging” is justified by their distinct meanings: the brackets
〈v〉 refer to the mean value of a periodic function v taken
over its period, whereas the overline ψ refers to a smoothed
approximation of an oscillatory function; cf. Fig. 1.

Finally, transforming Eqs. (18) back to a single second-
order equation for the smoothed function ψ , we obtain

i
∂

∂t
ψ = − ∂2

∂x2
ψ + Veff (x)ψ, (20)

with

Veff (x) = −〈g2〉�2(x) + ρ(x). (21)

This result shows that the dynamics is governed by an effec-
tive equation of motion which retains the form of the usual
Schrödinger equation with the effective Hamiltonian

Ĥeff = − ∂2

∂x2
+ Veff (x), (22)
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FIG. 1. The five lowest-energy states calculated numerically by
using the original Hamiltonian (6) (thin oscillating curves) and found
analytically for the effective Hamiltonian (25) (thick curves). The
ground-state wave function is nodeless, and the excited states can be
identified by the number of nodes. The parameters are set to k = 250
and a = 2

√
210 such that λ = 20 is an integer number.

where the effective potential (21) includes an attractive con-
tribution proportional to the square of the envelope function.
In hindsight, this is intuitively clear: if there is no background,
i.e., ρ(x) = 0, the sign of the envelope function has no effect
and only even powers of �(x) can contribute. Finally, let us
stress that even though the wave function ψ approximates the
original wave function ψ with the same accuracy as Eq. (19),
i.e., ψ = ψ + O(k−1), an analogous statement does not hold
for either the kinetic energy or the potential energy calculated
by using ψ . Only the total energy is well approximated by
the quantum-mechanical expectation value of the effective
Hamiltonian with the smoothed wave function ψ .

B. Effective potential for piecewise continuous envelope

Discontinuous envelope functions do not satisfy the re-
quirement that the characteristic length scale of the envelope
function should be much larger than the period of the rapid
oscillations. Thus the effective potential (21) is valid only
for continuous envelope functions �(x). In this section we
generalize our approach to include the case when the envelope
is a piecewise continuous function. In this situation, the aver-
aging is still applicable; however, at the points of discontinuity
the smoothed functions ψ must obey appropriate boundary
conditions.

For each coordinate x which is not a point of discontinuity,
all of the steps (9)–(18) can be repeated in exactly the same
way as before. However, the points of discontinuity should
be considered separately. At every point of discontinuity
x0 the superpotential W (x) must remain continuous for any
value of k [cf. Eq. (9)]. Using Eq. (11) for the transformed
superpotential W ′ we obtain

lim
ε→+0

[W ′(x0 + ε) − W ′(x0 − ε)] = g(ϕ0)	�(x0), (23)

where ϕ0 = kx0 is the phase of the oscillating function g(kx) at
the point of discontinuity, x0, and 	�(x0) = limε→+0[�(x0 +
ε) − �(x0 − ε)]. This result indicates that, at each point of
discontinuity, the transformed superpotential exhibits a step
given by the product of the step of the envelope function
and the local value of the periodic antiderivative g(kx). As
a special case, the transformed superpotential may remain
continuous if g(kx0) = 0.

We must now require that k grows to infinity in discrete
steps, i.e., by assuming a sequence of monotonically growing
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values for which the phase ϕ0 remains the same (modulo
2π ). Then the condition (23) will also hold for the averaged
superpotential W ′(x) and can be satisfied by including terms
proportional to the Dirac δ function 	�(x0)g(ϕ0)δ(x − x0) to
Eq. (18a). If there are several points of discontinuity {xn} and it
is possible to find values of k that keep the phases ϕn constant,
the effective potential (21) becomes

Veff (x) = − 〈g2〉�2(x) + ρ(x)

−
∑

n

	�(xn)g(ϕn)δ(x − xn). (24)

We see that step discontinuities in the envelope function trans-
late into δ-function singularities in the effective potential. As
a special case, these singularities may be absent if g(ϕn) = 0.

III. NUMERICAL EXAMPLES

To verify the validity of the effective description we
perform a numerical calculation of the eigenfunctions for
the original Hamiltonian (6) and compare them with the
eigenfunctions obtained using the effective Hamiltonian (20).
We treat both cases of continuous and piecewise continuous
envelope functions and use the effective potentials given,
respectively, by Eqs. (21) and (24).

Starting with the simpler case of a smooth envelope, the
rapid potential oscillations are taken to have a harmonic
shape; thus, v(s) = cos(s) and its antiderivative g(s) = sin(s)
with 〈g2〉 = 1/2. For the sake of convenience, the envelope
function is described by �(x) = a sech(x). Then the potential
well has a characteristic width of order unity, and the effective
Schrödinger equation for the averaged wave function

Ēψ̄ (x) =
[
− d2

dx2
− a2

2
sech2 (x)

]
ψ̄ (x) (25)

is solvable analytically. The eigenvalue problem (25) is known
as the Pöschl-Teller problem [24], and the spectrum of the
bound states is given by

Ēn = −(λ − n)2. (26)

Here, the parameter λ = (
√

1 + 2a2 − 1)/2 is a function of
the depth a and its integer part 
λ� (i.e., the largest integer
smaller than or equal to λ) is equal to the number of bound
states plus one. The index n = 0, 1, . . . , 
λ� − 1, 
λ� labels
the bound states.

The comparison of the first five eigenfunctions of the
original and the effective Hamiltonians is represented in
Fig. 1. For convenience we choose the value of a such that
λ becomes an integer number. In that case the eigenfunctions
ψ̄ (x) ∼ Pλ−n

λ (tanh(x)), where Pβ

λ (y) are the associated Leg-
endre polynomials which are related to the ordinary Legendre
polynomials Pλ(y) as

Pβ

λ
(y) = (−1)β (1 − y2)β/2 dβ

dyβ
Pλ(y). (27)

In Fig. 2, we plot dependence of the eigenenergies on the
potential amplitude parameter a. As one can see in Figs. 1
and 2, the approximate expression obtained by using the ef-
fective Hamiltonian shows good coincidence with the results
of numerical calculations.

20 25 30 35 40
-800

-600

-400

-200

FIG. 2. The dependence of the lowest eigenenergies of the bound
states on the depth of the potential well a for fixed k = 250. Solid
curves are drawn from Eq. (26), while the circles are calculated
numerically by using the original Hamiltonian (6).

To give an example of a piecewise continuous envelope, we
consider the envelope function of the form of a square barrier:

�(x) =
{

a for |x| < 1

0 for |x| > 1.
(28)

According to Eq. (24), the effective potential (21) reads

Veff (x) = −〈g2〉�2(x)

+ a[g(ϕ1)δ(x − 1) − g(ϕ−1)δ(x + 1)], (29)

with ϕ±1 = ±1 · k, and features two δ-function terms at the
points of discontinuity.

We perform numerical simulations with the high-frequency
profile function v(s) = cos(s), which gives g(s) = sin(s). We
choose an appropriate value of k to ensure ϕ±1 = 0, and the
effective potential (29) has the shape of an ordinary symmetric
quantum well of finite depth a2/2. The comparison of the first
five eigenfunctions of the original and the effective Hamilto-
nian is presented in Fig. 3. We note an excellent agreement of
the two sets of results, which demonstrates the applicability of
the approach.

To demonstrate the asymmetric and singular case, we use
v(s) = sin(s) whose antiderivative is g(s) = − cos(s). Again,
we set ϕ±1 = 0, but now the effective potential (29) has the
shape of a square quantum well with two extra δ-function
peaks situated at the edges: A repulsive (attractive) δ-function
peak of strength a is centered at x = −1 (x = 1). Figure 4
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FIG. 3. The case of a piecewise continuous envelope (28). The
five lowest-energy states are calculated numerically by using the
original Hamiltonian (6) (thin oscillating curves) and found semi-
analytically for the effective potential (29) (thick curves). The
ground-state wave function is nodeless, and the excited states can be
identified by the number of nodes. The parameters are set to a = 20
and k ≈ 250 is chosen in such a way that g(ϕ−1,1) vanishes.
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FIG. 4. The case of piecewise continuous envelope (28). The five
lowest-energy states calculated numerically by using the original
Hamiltonian (6) (thin oscillating curves) and found semi-analytically
for the effective potential (29) (thick curves). The ground-state wave
function is nodeless and decays exponentially on either side of the
attractive δ-function potential situated at x = 1. The excited states
can be identified by the number of nodes. The parameters are set to
a = 20, and k ≈ 250 is chosen in such a way that g(ϕ−1,1) = −1.

again shows an excellent agreement between the exact numer-
ical calculation and the results obtained by using the effective
potential. As expected from Eq. (29), the probability density
is increased close to the right side of the potential well, i.e., at
the position of the attractive δ-function singularity.

IV. OVERLAPPING LASER BEAMS

The preceding analysis shows that the case of oscillating
potentials with a zero mean is much more intriguing than that
with a finite mean. In this section, we describe a practical
setup that can be straightforwardly realized for ultracold
atoms moving in optical lattices.

We start with two coherent laser beams, red-detuned from
the atomic resonance, polarized in the same (e.g., vertical)
direction, and intersecting at an acute angle 2α, as shown
in Fig. 5. We assume that the beams are characterized by
the angular frequency ω, the wave number κ , and that the
cross-sectional intensity profile is described by a Gaussian
function of width b, i.e.,

I = I0 exp

(
− r2

⊥
2b2

)
, (30)

where r⊥ is distance of a given point from the central axis of
the beam. Let us consider the setup where an external trapping

FIG. 5. Laser-beam configuration for the creation of an oscillat-
ing potential with zero mean. Two red-detuned beams, polarized in
the direction perpendicular to their common plane of propagation,
intersect at an angle 2α and create an interference pattern. An
additional repulsive profile is created by a blue-detuned beam with
in-plane polarization, propagating at the right angle to the x axis.

potential restricts the motion of ultracold atoms in the vicinity
of the x axis. Near the x axis the respective electric fields
created by the two beams are given by

E1 = E0 cos (ωt − κx cos α) exp

[
−x2 sin2 α

2b2

]
, (31a)

E2 = E0 cos (ωt + κx cos α) exp

[
−x2 sin2 α

2b2

]
. (31b)

The resulting intensity distribution is given by the time-
averaged square of the total electric field E1 + E2. Thus

I ∼ 2E2
0 cos2 (κx cos α) exp

[
−x2 sin2 α

b2

]

= E2
0 {1 + cos (2κx cos α)} exp

[
−x2 sin2 α

b2

]
, (32)

and the resulting intensity distribution creates a rapidly os-
cillating potential profile with a slowly varying Gaussian
envelope of a characteristic width b/ sin α which may be much
larger than the wavelength. Although this potential does not
have a zero mean, the background contribution

Vbg ∼ E2
0 exp

[
−x2 sin2 α

b2

]
(33)

can be canceled by applying an additional blue-detuned laser
beam (see Fig. 5) polarized in the orthogonal direction and
creating a broad Gaussian repulsive potential.

V. CONCLUSIONS AND OUTLOOK

We showed that quantum dynamics in potentials with
fast spatial oscillations can be approximately described by
a smoothed wave function that reproduces the overall struc-
ture of the true wave function but neglects its rapid small-
scale oscillations. The equation of motion for the effective
dynamics retains the form of the Schrödinger Eq. (20) and
can be analyzed based on the usual framework and intuition
available in single-particle quantum mechanics. In particu-
lar, generalizations to few- or many-particle problems can
be readily made. In this context, it is intuitively clear that
interparticle interactions will not be modified at large length
scales; however, at short scales—comparable to the range of
the performed averaging—interesting modifications may take
place that are worth investigating in future work.
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APPENDIX: ALTERNATIVE DERIVATION
OF EFFECTIVE HAMILTONIAN

Here we derive the effective Schrödinger Eq. (20) for
quantum dynamics in rapidly oscillating spatial potentials
by using an alternative approach, inspired by an analogous
treatment of classical motion in the presence of a rapidly
oscillating force [25].
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Our task is to approximately solve the Schrödinger
equation

Eψ (x) = − d2

dx2
ψ (x) + [kv(kx)�(x) + ρ(x)]ψ (x), (A1)

with a slowly varying envelope function �(x) and a rapidly
oscillating function v(s) for a large but finite k. Anticipating
the result obtained in the main text, we represent the wave
function as a sum

ψ (x) = ψ (x) + ξ (x) (A2)

of the smoothed wave function ψ (x) and a correction ξ (x)
that scales as k−1. Substituting the wave function (A2) into
the Schrödinger Eq. (A1) we obtain

Eψ + Eξ = − d2

dx2
ψ − d2

dx2
ξ + k�vψ

+ k�vξ + ρψ + ρξ, (A3)

which separates into two equations for oscillatory and smooth
terms, respectively. Focusing first on the oscillating part

Eξ = − d2

dx2
ξ + k�vψ + k�vξ + ρξ, (A4)

we collect the terms that are of the order of k and arrive at a
differential equation for the correction ξ (x):

0 = − d2

dx2
ξ + k�vψ. (A5)

Assuming that � and ψ change slowly, the solution can be
written as

ξ (x) = k−1�(x)ψ (x)w(kx), (A6)

with w′′(s) = v(s); here, w(s) is also a periodic function with
zero mean. Averaging Eq. (A3) over one spatial period we
obtain

Eψ = − d2

dx2
ψ + k�vξ + ρψ. (A7)

Let us evaluate the average vξ in the second term on the right-
hand side. Using Eq. (A6) we get

vξ = k−1�ψ〈vw〉 = −k−1�ψ〈(w′)2〉. (A8)

This leads to the result, equivalent to Eq. (20) since w′(s) is
the antiderivative of v(s), which is denoted g(s) in the main
text.
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[13] V. Novičenko, E. Anisimovas, and G. Juzeliūnas, Phys. Rev. A
95, 023615 (2017).

[14] G. Jotzu, M. Messer, R. Desbuquois, M. Lebrat, T. Uehlinger,
D. Greif, and T. Esslinger, Nature (London) 515, 237
(2014).

[15] A. G. Grushin, A. Gómez-León, and T. Neupert, Phys. Rev.
Lett. 112, 156801 (2014).

[16] P. Windpassinger and K. Sengstock, Rep. Prog. Phys. 76,
086401 (2013).

[17] E. Witten, Nucl. Phys. B 188, 513 (1981).
[18] F. Cooper, A. Khare, and U. Sukhatme, Phys. Rep. 251, 267

(1995).
[19] F. Cooper, A. Khare, and U. Sukhatme, Supersymme-

try in Quantum Mechanics (World Scientific, Singapore,
2001).

[20] A. Gangopadhyaya, J. V. Mallow, and C. Rasinariu, Supersym-
metric quantum mechanics: An introduction (World Scientific,
Singapore, 2018).

[21] D. E. Ruiz and I. Y. Dodin, Phys. Rev. A 95, 032114 (2017).
[22] V. Burd, Method of Averaging for Differential Equations on an

Infinite Interval (Chapman and Hall/CRC, New York, 2007).
[23] J. A. Sanders, F. Verhulst, and J. Murdock, Averaging Methods

in Nonlinear Dynamical Systems (Springer, New York, 2007).
[24] G. Pöschl and E. Teller, Eur. Phys. J. A 83, 143 (1933).
[25] L. D. Landau and E. M. Lifshitz, Mechanics, Course of Theoret-

ical Physics, 3rd ed. (Butterworth-Heinemann, Oxford, 1976),
Vol. 1.

043608-6

https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1002/andp.19273892002
https://doi.org/10.1016/S0065-3276(08)60337-8
https://doi.org/10.1016/S0065-3276(08)60337-8
https://doi.org/10.1016/S0065-3276(08)60337-8
https://doi.org/10.1016/S0065-3276(08)60337-8
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1103/RevModPhys.89.011004
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1126/science.aal3837
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185301
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1103/PhysRevLett.111.185302
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys2998
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3171
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nphys3421
https://doi.org/10.1038/nature22811
https://doi.org/10.1038/nature22811
https://doi.org/10.1038/nature22811
https://doi.org/10.1038/nature22811
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1103/PhysRevX.4.031027
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1088/1367-2630/17/9/093039
https://doi.org/10.1103/PhysRevA.95.023615
https://doi.org/10.1103/PhysRevA.95.023615
https://doi.org/10.1103/PhysRevA.95.023615
https://doi.org/10.1103/PhysRevA.95.023615
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1038/nature13915
https://doi.org/10.1103/PhysRevLett.112.156801
https://doi.org/10.1103/PhysRevLett.112.156801
https://doi.org/10.1103/PhysRevLett.112.156801
https://doi.org/10.1103/PhysRevLett.112.156801
https://doi.org/10.1088/0034-4885/76/8/086401
https://doi.org/10.1088/0034-4885/76/8/086401
https://doi.org/10.1088/0034-4885/76/8/086401
https://doi.org/10.1088/0034-4885/76/8/086401
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0550-3213(81)90006-7
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1016/0370-1573(94)00080-M
https://doi.org/10.1103/PhysRevA.95.032114
https://doi.org/10.1103/PhysRevA.95.032114
https://doi.org/10.1103/PhysRevA.95.032114
https://doi.org/10.1103/PhysRevA.95.032114
https://doi.org/10.1007/BF01331132
https://doi.org/10.1007/BF01331132
https://doi.org/10.1007/BF01331132
https://doi.org/10.1007/BF01331132

