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In-phase synchronization in complex oscillator networks by adaptive delayed feedback control
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In-phase synchronization is a special case of synchronous behavior when coupled oscillators have the same
phases for any time moments. Such behavior appears naturally for nearly identical coupled limit-cycle oscillators
when the coupling strength is greatly above the synchronization threshold. We investigate the general class
of nearly identical complex oscillators connected into network in a context of a phase reduction approach.
By treating each oscillator as a black-box possessing a single-input single-output, we provide a practical and
simply realizable control algorithm to attain the in-phase synchrony of the network. For a general diffusive-type
coupling law and any value of a coupling strength (even greatly below the synchronization threshold) the delayed
feedback control with specially adjusted time-delays can provide in-phase synchronization. Such adjustment of
the delay times performed in an automatic fashion by the use of an adaptive version of the delayed feedback
algorithm when time-delays become time-dependent slowly varying control parameters. Analytical results show
that there are many arrangements of the time-delays for the in-phase synchronization, therefore we supplement
the algorithm by an additional requirement to choose an appropriate set of the time-delays, which minimize
power of a control force. Performed numerical validations of the predictions highlights the usefulness of our
approach.
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I. INTRODUCTION

Synchronization phenomenon, in the narrow sense, can be
defined as a dynamical state of an oscillatory system, when
two or more oscillators having different natural frequencies,
due to the mutual coupling, start oscillating with the same fre-
quency [1–3]. Such behavior is referred as a frequency locking
regime [3]. The special case of the frequency locking state
is the in-phase synchronization appearing for nearly identical
oscillators, when not only frequencies become the same, but
also the phases. The in-phase synchrony occurs in many
different situations. For example, it spontaneously appears
in nature, like flagellar synchronization [4,5] and flashing of
fireflies [6], emerges in humans behavior (e.g., pedestrians
on a bridge [7] and hand clapping [8]), in electrochemical
oscillations [9,10], coupled reaction-diffusion systems [11],
and is a desirable state in human-made systems, like optome-
chanical oscillators [12] and coupled phase-locked loops [13].
Since the in-phase synchronization is simply visually per-
ceived, it can be established with “at home” setup using
metronomes [14]. Interestingly, that historically first mention
on synchrony in Huygens’ works was done on an anti-phase
synchronization, the opposite state to the in-phase synchro-
nization.

The huge impact for research on the network synchro-
nization had the phase reduction technique. It enables an
investigation of weakly coupled limit cycle oscillators con-
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nected into the network. Independently on complexity of
the individual oscillatory unit, the phase reduction approach
allows us to reduce the dynamics of oscillator into the single
scalar dynamics, called phase [1–3]. Recent generalization of
the phase reduction for systems with the time-delay [15,16]
empower us to deal with the oscillators described by delay-
differential equations.

The time-delay plays a crucial role in algorithms devoted
to control the synchronization of oscillatory networks. Mostly
those algorithms require multiple delays, for example a cou-
pling with inhomogeneous delays was used to stabilize pre-
scribed patterns of synchrony in regular networks of coupled
oscillators [17,18], or to recognize arbitrary patterns in net-
works of excitable units [19]. In our work the multiple delays
are employed in the delay feedback control scheme.

The delay feedback algorithms are widely used in chaos
control theory to stabilize unstable periodic orbit [20,21],
since it can be applied to situations where the information
about particular equations of the system is absent. The idea
to employ the delay feedback signals for a different purpose,
i.e., to control synchronization in an oscillator network, seems
to be a promising and practical tool due to minimal required
knowledge on equations describing the oscillator’s dynamics.
The papers [22,23] demonstrate an efficient suppression of
synchronization in the ensemble of globally coupled oscil-
lators, via time-delayed mean field fed back to the system.
In [24] it is shown that the periodically modulated version
of the time-delayed feedback control, called act-and-wait
algorithm, is able to desynchronize the oscillatory network.
The numerical studies [25–28] investigate the influence of
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the time-delayed control signals to the synchronization. Most
of these studies were focused on the desynchronization of
naturally synchronized oscillator network. In this work we
focus on the opposite task, i.e., we try to synchronize the
oscillator network, when it is naturally desynchronized. A
precursor to this study is a work [29] where the time-delayed
feedback force applied to the individual oscillator demonstrate
ability to do both—to synchronize and to desynchronize the
network of oscillators. As it is shown in [29], for the in-
phase synchronization regime the control parameters, i.e., the
time delays, should be selected appropriately. In this paper our
aim is to adapt an automatic adjustment of the delay times,
in a similar fashion as in [30]. Combining both—the phase
reduction for the system with time-delay and the gradient
descent method we provide a practical algorithm to stabilize
the in-phase synchronization in the oscillator network. The
algorithm is designed in the spirit of the delayed feedback
control algorithms and does not require any information on
the particular system’s equations.

The paper is organized as follows. Section II is devoted for
the mathematical background of the problem. In Sec. II A a
general model of weakly coupled oscillators and a reduced
phase model are introduced. In Sec. II B the in-phase syn-
chrony of the reduced phase model is analyzed. The main
result of the paper is derived in Sec. II C, where Eqs. (31)
represent the algorithm of slowly varying time-delays to attain
the in-phase synchronization. Since there are many configura-
tions of the time-delays for the in-phase synchrony, an addi-
tional requirement to minimize the power of the control force
is studied in Sec. II D. In Sec. III the validity of the proposed
algorithm is demonstrated for the Stuart-Landau (Sec. III A)
and FitzHugh-Nagumo Sec. (III B) oscillators. Conclusions
are presented in Sec. IV.

II. MODEL DESCRIPTION

A. Nearly identical weakly coupled limit cycle oscillators
under delayed feedback control

We start from the general class of N nearly identical
limit cycle oscillators coupled via diffusive-type coupling law
under single-input single-output control:

ẋi = fi (xi , ui ) + ε

N∑
j=1

aij Gij (xj , xi ), (1a)

si (t ) = g(xi (t )), (1b)

ui (t ) = Ki[si (t − τi ) − si (t )], (1c)

where xi ∈ Rd is a d-dimensional state vector of the ith os-
cillator, function fi : Rd × R → Rd defines dynamics of the
free ith oscillator together with an action of the control force,
ε > 0 is a small coupling parameter, an adjacency matrix
elements aij � 0 encodes topology of the network, functions
Gij : Rd × Rd → Rd stand for the coupling law, si ∈ R is a
value accessible for measurements, ui ∈ R—action variable,
Ki and τi are the gain and the time-delay of the ith control
force, respectively. Here, we consider only the undirected
topology, therefore aij = aji . To ensure the diffusive-type
coupling, all functions Gij (xj , xi ) for identical input must be
equal to zero, i.e., Gij (x, x) = 0 for i, j = 1, 2, . . . , N . We

assume that the coupling is attractive, such that each coupling
term attempts to reduce the difference between the coupled
oscillators’ states. To ensure the attractiveness of the coupling
terms and a unique factorization of the expression aij Gij (·, ·),
we will put more accurate mathematical restrictions for the
functions Gij bellow Eq. (5). The free oscillators described
by ordinary differential equations (ODEs) ẋi = fi (xi , 0) have
the stable limit cycle solutions ξ i (t + Ti ) = ξ i (t ), where Ti

is a natural period of the ith oscillator. Since the oscillators
are nearly identical, |fi (x, 0) − fj (x, 0)| ∼ ε. The difference
of the natural periods of two oscillators (Tj − Ti ) ∼ ε is a
small quantity. To ensure a smallness of the control force, the
delay-times are (τi − Ti ) ∼ ε.

In order to derive a phase model for Eq. (1) we introduce
a “central” oscillator determined by ẋ = f (x, 0), which has
a stable limit cycle solution ξ (t + T ) = ξ (t ) and a corre-
sponding phase response curve z(t + T ) = z(t ). The choice
of the function f can be done almost freely, the only restriction
is that |f (x, u) − fi (x, u)| should be of the order of ε. The
phases dynamics in the rotating frame related to the “central”
oscillator’s frequency � = 2π/T reads (for a derivation see
the Appendix)

ψ̇i = ωeff
i + εeff

i

N∑
j=1

aijhij (ψj − ψi ). (2)

The coupling strength and frequencies in the phase model are
changed by effective, due to influence of the delay feedback:

εeff
i = εα(KiC), (3a)

ωeff
i = ωi + �

τi − Ti

T
[α(KiC) − 1], (3b)

where the function α(x) = (1 + x)−1, the relative frequen-
cies ωi = �i − �, and the constant

C =
∫ T

0
{zT (s) · D2f (ξ (s), 0)}{[∇g(ξ (s))]T · ξ̇ (s)}ds. (4)

The coupling function in phase model Eq. (2) is

hij (χ ) = 1

T

∫ 2π

0

{
zT

(
s

�

)
· Gij

(
ξ

(
s + χ

�

)
, ξ

(
s

�

))}
ds.

(5)

Due to the diffusive-type coupling law represented by
Gij (xj , xi ), the coupling function hij (χ ) also preserves this
property hij (0) = 0. Moreover, Gij (xj , xi ) should be chosen
such that derivative of the coupling function at the zero point
will be positive, h′

ij (0) = ηij > 0. This condition guarantee
the attractive coupling between oscillators. Additionally, to
make the factorization of aij Gij unique up to a constant,
one should require that ηij = η will be the same for all
couplings Gij .

The phase model Eq. (2) is valid only for the stable periodic
orbit ξ (t ). Due to action of the control force Eq. (1c), the
periodic orbit can loss stability at some value of Ki . At the
time of publication, there are no handy criteria to guarantee
the stability of ξ (t ). On the other hand, from a chaos control
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FIG. 1. (a) Dependence of the effective coupling strength on
the gain of the control force. Solid line shows potentially sta-
ble branch of the limit cycle ξ (t ), while dashed line represents
unstable branch. (b) Dependence of the effective frequency on the
gain of the control force. The y-axis shows the difference between
the effective ωeff

i and the relative ωi frequencies, normalized to quan-
tity |�ωi |=�|τi −Ti |/T . Dark blue (dark grey) color corresponds to
positive mismatch (τi − Ti ), while light blue (light grey) color to
negative mismatch. Similar to (a), the solid and dashed lines cor-
respond to potentially stable and unstable branches, respectively.

theory, a criterion which guarantees the destabilization of the
periodic solution ξ (t ) is known. The odd number limitation
theorem [31] states that the orbit ξ (t ) become unstable if an
inequality

KiC < −1 (6)

holds. The last inequality impose a restriction on possible
values of Ki in order to have the valid phase model (2). The
sign of the constant C defines the possible stability interval for
the control gain Ki . For the positive C it is Ki ∈ (−1/C,∞),
while for negative it is Ki ∈ (−∞,−1/C). It is important to
emphasize that these intervals do not guarantee the stability, as
the exact stability interval depends on the functions fi (xi , ui )
and g(xi ) and may be smaller. In Sec. III A we demonstrate an
example where the stability interval restricted only by Eq. (6),
while Sec. III B analyzes the situation with the smaller stabil-
ity interval.

As one can see from the phase model (2), the delay
feedback control force changes the effective frequencies and
the effective coupling strengths, but does not change the
coupling function hij (χ ). The effective coupling strength
εeff
i depends on the gain of the control force Ki , while the

effective frequency ωeff
i depends on two parameters: Ki and

a delay mismatch (τi − Ti ). Therefore, we can control the
synchronization of the network by adjusting the parameters
of the control force. If inequality (6) is the only restriction
to the control gain, then the effective coupling strength εeff

i

can be selected from zero to infinity, as it is demonstrated in
Fig. 1(a). Interestingly, the sign of εeff

i cannot be changed. On
the other hand, the effective frequencies ωeff

i can be shifted
from ωi to positive or negative sides by changing the sign of
the mismatch (τi − Ti ) or the sign of KiC, as one can see from
Fig. 1(b).

B. In-phase synchonization regime

For the in-phase synchronization regime, all phases of
the model (2) will become equal ψ1 in = ψ2 in = · · · = ψN in.
There always exists such a set of the control parameters
(Ki, τi ) which gives a stable in-phase solution. One of the
obvious examples would be to fix the control parameters
in such a way that all effective frequencies would vanish
ωeff

i = 0. Other control parameters, that satisfy the in-phase
condition, can be found by a more detailed analysis of Eq. (2).
For that purpose we assume that the in-phase synchronization
period is Tin and appropriate synchronization frequency �in =
2π/Tin. In the rotating frame related to �in, the phases ψi in do
not depend on time and are equal to the same constant:

ψ1 in = ψ2 in = · · · = ψN in = �. (7)

The phases in the rotating frame related with the “central”
oscillators frequency � can be transformed into the rotating
frame �in by a transformation ψi (t ) = ψi in(t ) + ωint , where
ωin = �in − �. Thus the dynamics of ψi in(t ) is described by

ψ̇i in = ωeff
i − ωin + εeff

i

N∑
j=1

aijhij (ψj in − ψi in ). (8)

The last equations possess the in-phase solution (7), if condi-
tion

(τi − Ti )[α(KiC) − 1] = T
�in − �i

�
(9)

holds. Taking into account that T = Ti + O(ε) and � =
�in + O(ε), without loss of accuracy, Eq. (9) can be rewritten
as

(τi − Ti )[1 − α(KiC)] = (Tin − Ti ). (10)

The last expression shows how the control parameters should
be adjusted in order to attain the in-phase synchrony. Indeed,
once we select the desirable Tin, the right-hand side (r.h.s.) of
Eq. (10) depends on intrinsic parameters of the system, while
the left-hand side of Eq. (10) depends only on the parameters
of the control force.

To proof stability of the solution (7), one needs to perturb
it, ψi in(t ) = � + δ�i (t ), and by the use of Eq. (8) derive
equations for the small disturbances δ�i (t ):

δ�̇i = ηεeff
i

N∑
j=1

aij (δ�j − δ�i ), (11)

where η = h′
ij (0). In a vector form Eq. (11) reads

δ�̇ = −ηELδ�. (12)

Here, E = diag[εeff
1 , εeff

2 , . . . , εeff
N ] is a diagonal positive-

definite matrix and L = D − A is a network’s Laplacian
matrix combined of the adjacency (A)ij = aij and a degree
D = diag[

∑
j a1j ,

∑
j a2j , . . . ,

∑
j aNj ] matrices. The solu-

tion (7) is stable if the matrix M = −ηEL does not have
positive eigenvalues. The network topology is described by
a connected undirected graph, therefore LT = L is a sym-
metric positive semi-definite matrix with the eigenvalues
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0 = λ1 < λ2 � · · · � λN . By defining a square root of the
matrix E as E1/2 with the entries (εeff

i )
1/2

on the diagonal, one
can construct a symmetric matrix M′ = −ηE1/2LE1/2 which
has the same set of the eigenvalues as the matrix M. One
can see that M′ is a negative semi-definite matrix, thus the
in-phase solution (7) is stable. Note that Eq. (7) has a neutral
stability direction, since one eigenvalue of M is equal to 0 and
a corresponding eigenvector v = 1 has all entries equal to 1.
This direction represents a shift of all phases ψi in by the same
amount.

The relation (10) gives simple rules to adjust the control
parameters for the in-phase synchronous regime. However,
to do that one needs to know at least two things: the natural
periods Ti and the constant C included in the expression for
α(KiC). In the frame of our analysis, the oscillators are the
black boxes and the only measurable quantity is the scalar
signal si (t ). We assume that it is impossible to disconnect
a particular oscillator out of the network and measure the
natural period. Therefore, our goal is to derive the algorithm to
automatically adjust time-delays τi and the algorithm should
be based only on a knowledge of si (t ).

The synchronization of the phase models is determined
by two competing factors: a dissimilarity of the frequencies
and the coupling strength. If the frequencies of the oscillators
are not equal and the network is without control, then the
in-phase synchronization can be achieved only with coupling
of infinite strength, ε → ∞. However, in the control case the
effective coupling εeff

i does not necessarily go to infinity. Con-
troversially, εeff

i can be even smaller than the natural coupling
ε, since the feedback is able to reduce the dissimilarity of
effective frequencies ωeff

i to zero.

C. Gradient descent method for slowly varying time-delays

In this subsection our goal is to derive differential equa-
tions, which should automatically move time-delays τi (t ) to
positions, where Eq. (10) is satisfied. Based on the ideas
presented in [30], our main steps will be as follows: to
construct a potential, which has a minimum at the in-phase
synchronization regime and then allow the gradient descent
algorithm to minimize the potential. To do so, we assume
that initial values of the control parameters are such that the
oscillator network is synchronized (in the frequency locking
regime) and the phases of each oscillator are close to each
other. In other words, we assume that we are close to the
in-phase synchronization regime. Such assumption is needed
to derive analytical expressions for the potential and can be
relaxed in real situations. Indeed, as we will see in Sec. III, the
network starting point can be far away from the synchronous
regime, still the proposed algorithm stabilizes the desirable
in-phase solution. Hence we believe that the algorithm is a
quite universal.

Further, we will use the phase model (2) to find the syn-
chronization period as well as the phases of the synchronized
network. Let us denote the period of the frequency locking
regime as Tsync, and the appropriate phases as ψi sync. These
quantities will be used in the derivation of the potential. For
that purpose the phase model (2), similar to Eq. (8), can be in-
vestigated in the rotating frame related to the synchronization

frequency �sync = 2π/Tsync:

ψ̇i sync = ωeff
i − ωsync + εeff

i

N∑
j=1

aijhij (ψj sync − ψi sync).

(13)

Here, ωsync = �sync − � is a relative synchronization fre-
quency. The last equations should have a stable time-
independent fixed point ψ sync(t ) = ψ∗

sync. Any difference
(ψ∗

i sync − ψ∗
j sync) is small, as we assumed that system is

near in-phase synchronization. Hence we expand the coupling
functions hij (χ ) Eq. (5) into Taylor series and omit the
second-order terms, then Eq. (13) reads

0 = ωeff
i − ωsync + ηεeff

i

N∑
j=1

aij (ψ∗
j sync − ψ∗

i sync). (14)

Dividing the last equations by non-zero value εeff
i and sum-

ming over index i = 1, 2, . . . , N , gives

N∑
i=1

ωsync − ωeff
i

εeff
i

= η

N∑
i,j=1

aij (ψ∗
j sync − ψ∗

i sync). (15)

The r.h.s. of Eq. (15) is equal to zero due to unidirected
network topology. By substituting Eqs. (3a) and (3b) into
Eq. (15) and using the definitions of ωsync and ωi we get

T

N∑
i=1

�sync − �i

�
(1 + KiC) +

N∑
i=1

(τi − Ti )KiC = 0. (16)

Again, one can use the fact that ε2 order terms can be
neglected, thus without loss of accuracy, in the last expression
� can be replaced by �i and T by Tsync. Finally, we obtain the
synchronization period:

Tsync =
∑N

i=1 (Ti + KiCτi )∑N
i=1 (1 + KiC)

. (17)

From this expression several insights can be done. First, if the
control-free network (Ki = 0) is in synchronous regime, then
the synchronization period is the average of all natural pe-
riods, Tsync = T̄ = N−1 ∑

i Ti . Second, if the network under
control is in the synchronous regime and all control gains are
the same (Ki = K) and time-delays coincide with the natural
periods (τi = Ti), then again Tsync = T̄ . Finally, one can show
that Eq. (17) is consistent with Eq. (10). Indeed, Eq. (10) gives

KiCτi = Tin(1 + KiC) − Ti, (18)

and by inserting it into Eq. (17) we obtain Tsync = Tin.
The next step is to obtain the phases ψ∗

i sync. Starting from
Eq. (14) and using a similar mathematical routine as to the
derive Tsync, one can obtain the expression for the fixed point
ψ∗

sync in a vector form:

Lψ∗
sync = 2π

ηεT 2
[Tsync(I + CK)1 − T − CKτ ]. (19)

Here, I is the N × N identity matrix, K = diag
[K1,K2, . . . , KN ] is the diagonal matrix of the control
gains, 1 is a vector with all entries equal to 1, T is the vector
of the natural periods, τ is the vector of the time-delays.
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The matrix L is singular, thus Eq. (19) can have either many
solutions or no solutions. Denoting L† as a Moore-Penrose
pseudo-inverse of the Laplacian matrix, one can obtain
that (LL†)ij = −N−1 + δij , where δij is a Kronecker delta.
Equation (19) has many solutions if and only if LL†b = b,
where b denotes the vector of the r.h.s. of Eq. (19). The kernel
of LL† is a one-dimensional space characterized by the basis
vector 1. Since b is perpendicular to the kernel (1T · b = 0),
Eq. (19) has many solutions

ψ∗
sync = 2π

ηεT 2
L†[TsyncCK1 − T − CKτ ] + [I − L†L]w,

(20)

where w is arbitrary vector. Since L†L = LL†, the matrix
[I − L†L] is a matrix where all elements are the same. As a
consequence Eq. (20) simplifies to

ψ∗
sync = 2π

ηεT 2
L†[TsyncCK1 − T − CKτ ] + 1w, (21)

where w is any scalar value. For further analysis we will
need a partial derivative of ψ∗

i sync with respect to τj . By using
Eqs. (17) and (21) the derivative reads

∂ψ∗
i sync

∂τj

= 2πKjC

ηεT 2

[ ∑N
l=1(L†)ilKlC∑N
l=1 (1 + KlC)

− (L†)ij

]
. (22)

If all control gains are the same (Ki = K), then Eq. (22) reads

∂ψ∗
i sync

∂τj

= −2πKC

ηεT 2
(L†)ij . (23)

The synchronized phase derivative is proportional to the ap-
propriate element of pseudo-inverse of the network’s Lapla-
cian matrix. The last expression will be used in the gradient
descent method.

Now let us consider a potential:

V (t ) = 1

2

N∑
i,j=1

aij [sj (t ) − si (t )]2. (24)

For the identical oscillators this potential is always positive
except at the in-phase synchronization case. For nearly identi-
cal oscillators in the general case it is not true, however further
we will expand it in the terms of ε, and we focus on the zero
term only, which for the in-phase synchronization is equal to
zero. The zero-order term V0(t ) of the potential can be derived
by substituting sj (t ) → g(ξ (t + ψ∗

j sync/�sync)) into Eq. (24).
Additionally, one can simplify V0(t ) by using an arbitrary �

instead of �sync:

V0(t ) = 1

2

N∑
i,j=1

aij

[
g

(
ξ

(
t + ψ∗

j sync

�

))

− g

(
ξ

(
t + ψ∗

i sync

�

))]2

. (25)

The gradient of the potential with respect to τi

∂V0

∂τi

(t ) = T

2π

N∑
i,j=1

aij [sj (t ) − si (t )]

×
[
ṡj (t )

∂ψ∗
j sync

∂τi

− ṡi (t )
∂ψ∗

i sync

∂τi

]
. (26)

By using previously derived formula (23), the gradients can
be expressed explicitly as

∂V0

∂τi

(t ) = − KC

ηεT

N∑
i,j=1

aij [sj (t ) − si (t )]

×[ṡj (t )(L†)ji − ṡi (t )(L†)ii]. (27)

The gradient descent relaxation algorithm for the time-
delays can be written as τ̇i = −β ′∂V0/∂τi with positive re-
laxation constant β ′. However, one can slightly improve the
automatic adjustment of the delay-times.

First, the potential (25) might be equal to zero at a partic-
ular time moment even if the network is not in the in-phase
synchronous state. To overcome such inconvenience and to
guarantee a slow variation of τi , similar to [32], we introduce
an exponentially weighted average of the gradient (27):

qi (t ) =
∫ t

t0

e−ν(t−s) ∂V0

∂τi

(s)ds, (28)

where t0 is an initial time moment of the control and ν−1 >

T is a characteristic width of the integration window. The
integral form of qi is inconvenient for simulations, thus we
differentiate Eq. (28) in time and obtain the differential equa-
tion

q̇i = −νqi + ∂V0

∂τi

(t ). (29)

The last equation should be solved with an initial condition
qi (t0) = 0.

Second, we see from Eq. (26) that the gradient requires
knowledge of derivative ṡi (t ). To avoid direct calculation of
this derivative, we introduce a new variable pi (t ) governed by
the differential equation ṗi = γ (si − pi ). The variable pi (t )
represents high-pass filter, which can be used to approximate
the derivatives ṡi (t ) ≈ γ (si − pi ), if we choose γ −1 < T .

Third, to reduce the number of independent constants, one
can renormalize the variable qi (t ) → qi (t )γ |KC|/(ηεT ) and
merge together factors into one positive constant

β ′ |KC|γ
ηεT

= β > 0. (30)

To sum it up, the network under the delayed feedback
control with adaptive time-delays is governed by

ẋi = fi (xi , ui ) + ε

N∑
j=1

aij Gij (xj , xi ), (31a)

τ̇i = −βqi, (31b)

q̇i = −νqi − sgn(KC)
N∑

i,j=1

aij [sj − si]

×[(sj − pj )(L†)ji − (si − pi )(L†)ii], (31c)
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ṗi = γ (si − pi ), (31d)

si (t ) = g(xi (t )), (31e)

ui (t ) = K[si (t − τi (t )) − si (t )]. (31f)

Here, sgn(·) is a signum function. As one can see from
Eq. (31c), the sign of KC should be guessed. In Sec. II B we
proved the stability of the in-phase regime for β = 0. Due to
continuity, the stability of the in-phase regime should persist
for small enough β. On the other hand, too small values of β

lead to a very slow approach to the in-phase synchronization
solution (7). Therefore, the correct choice of β and sgn(KC)
is out of the scope of the proposed algorithm and should be
done by a trial and error method.

D. Power minimization of the control force

For the fixed parameters, Eqs. (31) possess many in-phase
solutions with different Tin and different sets of τi . Indeed,
one can put the desirable period Tin into Eq. (10) and obtain
the set of the time-delays. Thus, the logical extension to the
proposed algorithm will be a minimization of a power of the
control force by appropriate choice of τi and Tin.

For the in-phase synchronization regime the control force
applied to the ith oscillator reads

ui (t ) = K[g(ξ i in(t − τi )) − g(ξ i in(t ))], (32)

where ξ i in(t + Tin ) = ξ i in(t ) is the periodic solution of the ith
oscillator, when the network of oscillators is in the in-phase
synchronization state. An expansion of ui (t ) in the terms of
(Tin − τi ) gives

ui (t ) = K

{
∇g

(
ξ

(
t
�in

�

))
· ξ̇

(
t
�in

�

)}
(Tin − τi )

+O(ε2). (33)

Here, we use the fact that ξ i in(t/�in ) = ξ (t/�) + O(ε). The
power of the control force can be defined as the exponentially
weighted average

P =
N∑

i=1

∫ t

t0

e−ν(t−s)u2
i (s)ds

= IK2
N∑

i=1

(Tin − τi )
2 + O(ε3), (34)

where I is the following integral:

I =
∫ t

t0

e−ν(t−s){∇g(ξ (s)) · ξ̇ (s)}2ds. (35)

Note, in numerical simulations I can be calculated similarly
to Eqs. (28) and (29). The integral I does not depend on the
control parameters, thus we will focus on a normalized power

W = C2P

I
= (KC)2

N∑
i=1

(Tin − τi )
2. (36)

Intuitively the lower values of the control gain K give the
smaller power. However, this is not true. As we will see below,
the power does not depend on the control gain.

6

4

3

5

2

1

FIG. 2. Topology of the oscillator network. Different colors of
the nodes are used to distinguish between different oscillators in
subsequent figures.

Let us split up the periods and time-delays into “central”
period and the ε order term:

Ti = T + δTi, (37a)

Tin = T + δTin, (37b)

τi = T + δτi . (37c)

For the simplicity, we assume that the “central” period is
equal to the average of the natural periods of the oscillators
T = T̄ , therefore

∑N
i=1 δTi = 0. From Eq. (18) we have

δτi = 1 + KC

KC
δTin − δTi

KC
. (38)

The in-phase synchronization state exists for any small value
of δTin. By substituting Eq. (38) into Eq. (36) one gets

W =
N∑

i=1

(δTi − δTin )2 = NδT 2
in +

N∑
i=1

δT 2
i . (39)

The last expression shows that the power does not depend
on the control gain and it achieves minimum for Tin = T̄ .
From Eq. (38) one can see that for the stabilized in-phase
regime any difference (τi − τj ) is exactly determined, while
the absolute values τi are not. Thus, if we shift all time-delays
by the same amount the in-phase state remains stable, but it
gives different power due to δTin term in Eq. (39). W has
parabolic dependence on δTin, therefore by measuring W at
three different points of δTin one can identify the minimum of
the parabola. In Sec. III A we demonstrate the minimization
of the power of the control force.

III. NUMERICAL SIMULATIONS

We perform numerical validation of our theory on the
network of six oscillators coupled through the same function
Gij = G. The topology of the network is illustrated in Fig. 2,
where the connection between nodes gives aij = 1, while
aij = 0 for unconnected nodes. We perform two different sim-
ulations: in Sec. III A we demonstrate results, when the units
of network is the Sturt-Landau oscillators and in Sec. III B
results of the network composed of the FitzHugh-Nagumo
neuron model is presented. The numerical integration of the
state dependent DDE was implemented by standard MatLab
function ‘ddesd’.

A. Network of Stuart-Landau oscillators

As a first example, we analyze the network of the Stuart-
Landau oscillators. The ith oscillator’s dynamics is governed
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FIG. 3. Numerical simulation of the network of Stuart-Landau
oscillators. (a) The phases dynamics in the rotating frame related to
the period Tin. (b) Dynamics of the time delays. (c) Kuramoto order
parameter.

by the differential equations (31a) where the function fi reads

fi (x, u) =
[
x(1)

(
1 − x2

(1) − x2
(2)

) − �ix(2) + u

x(2)
(
1 − x2

(1) − x2
(2)

) + �ix(1)

]
. (40)

Here, x(m) denotes mth component of the vector x. The
coupling was chosen as follows:

G(y, x) =
[

2(y(1) − x(1) )
0

]
. (41)

We assume that the first dynamical variable is accessible
for the measurements, therefore in Eq. (31e) the function
g(x) = x(1).

The natural frequencies are �i = 2π/Ti , where the periods
are distributed as Ti = 2π + 10−2 × [−1.2, 0.4, 0.1, −0.6,
0.3, 0.8]. We chose the vector field for the “central” oscillator
defined by Eqs. (40) with � = 1. Due to simplicity of the
Stuart-Landau oscillator one can analytically find the periodic
solution ξ (t ) = [cos t, sin t]T and the phase response curve
z(t ) = [− sin t, cos t]T . By using Eq. (4) the constant C can
be obtained explicitly, C = π . We check numerically that the
“central” oscillator becomes unstable only if the inequality (6)
holds, thus the control gain can be selected from the interval
K ∈ [−π−1,∞). The coupling function (5) for the phase
model reads h(χ ) = sin(χ ), therefore it corresponds to the
Kuramoto model [2].

The stabilization of the in-phase synchronization regime
is demonstrated in Fig. 3. We choose the coupling strength
ε = 8.3 × 10−4, such that the control-free network is in
the desynchronized state. The network evolves uncontrolled
till t = 1.26 × 104, when the gradient descent method is
turned on. The parameters of the control algorithm are as
follows: K = −0.12, ν = 1/(10π ), γ = 50/π , and β = 2 ×
10−4. Figure 3(a) shows phases in the rotating frame related
to the settled period Tin. We define the complex number
w = x(1) + ix(2) composed out of the dynamical variables
of particular oscillator. The phases are estimated as follows:

0

2

6.23

6.27

6.31

0 2 4 6

10 4

0

0.05

(c)

(a)

(b)

FIG. 4. The power minimization for the network of Stuart-
Landau oscillators. (a) The phases dynamics in the rotating frame
related to the period T̄ . (b) Dynamics of the time delays represented
by solid lines and the values which minimize power depicted by the
dashed lines. (c) Power of the control force.

ψi = arg(wi ) − �int . As we can see in the control free region
the phases are out of consensus, while under the control all
phases converge to a single constant. Figure 3(b) illustrates
dynamics of the time-delays governed by Eqs. (31b). At
the beginning of the control all delays are set to the same
value, which after transient process settles to a fixed values.
Figure 3(c) demonstrates dynamics of the Kuramoto order
parameter r = N−1| ∑i exp(iψi )|, which is equal to 1 only
at the in-phase synchronization regime.

It is important to emphasize that the algorithm of the slowly
varying delays is a crucial component of the control in order
to achieve the synchronization. Nevertheless the control gain
K is such that the effective coupling strength εeff becomes
1.6 times higher than the natural coupling strength ε, the syn-
chronous behavior cannot be achieved if all time-delays equal
to the same value τi = τ , as it is at the beginning of control.
To prove this statement, without loss of generality, one can as-
sume that the “central” oscillator has the period T = τ . Then,
according to Eq. (3b), the effective frequency can be written as
ωeff

i = ωi + Ti

T
ωi[α(K ) − 1] ≈ ωiα(K ). Since εeff = εα(K ),

the factor α(K ) can be eliminated from the phase model (2) by
a simple time-scaling transformation. Therefore, without the
gradient descent method for the time-delays (31b) not only
the in-phase synchronization, but even the frequency locking
regime cannot be achieved.

In order to validate the ability of the power minimization
of the control force, we perform additional simulations of
the network of the Stuart-Landau oscillators. The results are
presented in Fig. 4. The simulation is divided into five parts
separated by the red vertical dotted lines. The first two parts
coincide with Fig. 3, the only difference is that in Fig. 4(a) the
phases are estimated in the different rotating frame. This time
we select the rotating frame related with the period T̄ calcu-
lated as an average of the natural periods of the oscillators.
According to Eq. (39), the minimal power is reached when
Tin = T̄ . To identify the power parabolic dependence (39) on
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δTin, we shift all delays two times by the same amount [see
third and fourth parts in Fig. 4(b)] and measure the settled
powers [Fig. 4(c)] of the control force. The coincidence of
all six phases in Fig. 4(a) third and fourth parts shows that
such shift of the time-delays does not disrupt the in-phase
synchrony as is predicted by Eq. (38). In the last part of the
simulation we set delays to the minimum of the identified
parabola. The dashed lines in Fig. 4(b) shows analytically cal-
culated time-delays for δTin = 0. As one can see the analytical
predictions match with the numerical simulations.

B. Network of FitzHugh-Nagumo oscillators with
slowly varying internal parameters

In the second example, we analyze the network of the
FitzHugh-Nagumo oscillators. The dynamics of the ith oscil-
lator is described by the following equations:

fi (x, u) =
[

x(1) − x3
(1)/3 − x(2) + 0.5

εi

(
x(1)(1 + u) + 0.7 − 0.8x(2)

)]. (42)

Here, x(m) denotes mth component of the vector x. The
oscillators differ by the parameter εi , which defines the natu-
ral frequency. In the experimental setup intrinsic parameters
of the oscillators can vary in time due to changing exter-
nal conditions or any other possible factors. The proposed
control method covers such situations when the parame-
ters vary slowly in time. To illustrate the efficiency of the
method, we modulated εi by harmonic functions εi = ε +
ε0
i sin (wit + φi ), with different frequencies wi , amplitudes

ε0
i , and phases φi . For this simulation, we choose the non-

trivial coupling law

G(y, x) =
[
y(1)/

(
2 + y(2)

) − x(1)/
(
2 + x(2)

)
0

]
, (43)

and assume that the measured scalar signal s = g(x) = x2
(1) +

x(2) is composed out of the first and the second variables of
the oscillator.

We chose the “central” oscillator having parameter ε =
0.08. The constant C calculated numerically gives C ≈ −6.1.
To check the stability interval for the control gain, we calcu-
late Floquet multipliers of the periodic solution ξ (t ). Accord-
ing to Eq. (6), the orbit becomes unstable if K > −C−1, and
from Fig. 5(a) one can see that it predicts well an instability
moment. However, the instability also appears for K � −0.7,
which is not covered by Eq. (6). Figure 5(b) represents the
numerically calculated coupling function, which certainly dif-
fers from the harmonic function. The derivative η = h′(0) > 0
guarantees attractive coupling between the phase oscillators.

The simulation results of the differential Eqs. (31) are
demonstrated in Fig. 6. In contrast to the Stuart-Landau
case, the dynamics of the phases ψi (t ) is difficult to extract
from the dynamical variables. Therefore we calculate time
distances between two neighboring maximums of the first
dynamical variable and call this quantity a “local” period Ti loc

[see Fig. 6(a)]. For the frequency locking synchronization
all “local” periods should coincide. To confirm the in-phase
synchronization, additionally we plot the potential (25)
in Fig. 6(d). The parameters of the modulation of εi are
chosen as follows: ε0

i = [0.3, 1.7, 0.9, 2.1, 1.5, 2.6] × 10−4,

wi = [1.22, 1.01, 0.80, 0.80, 1.36, 0.80]×10−3, φi = [4.26,

K

0

1

2

|
|

-0.8 -0.6 -0.4 -0.2 0 0.2

0 2 4 6
-0.2

0

0.2

0.4

h(
)

(a)

(b)

FIG. 5. (a) Absolute values of the first ten Floquet multipliers
versus the control gain K . The vertical red (grey) line shows value
−C−1. (b) The coupling function h(χ ) defined by Eq. (5) calculated
for the coupling law (43).

4.76, 4.67, 2.46, 4.12, 1.08]. The variations of εi are
showed in Fig. 6(c). The coupling strength is set to
ε = 8 × 10−4, control gain K = 0.112. Other parameters:
β = 3 × 10−6, ν = 1/(10T̄ ) ≈ 2.5 × 10−3, γ = 2000/T̄ ≈
50.74. The network evolves control-free till time
ton = 7.5 × 104 (marked as red dotted line in Fig. 6),
when control is turned on. From Fig. 6(a) one can see that
before the control is turned on, the network is desynchronized
as the “local” periods Ti loc are different and non-stationary.
When the control is turned on, the “local” periods converge
to a single value after the transient process. We expect that
an exceptional behavior of the sixth and the fourth oscillators

39

39.2

39.4

39.6

39.4

39.5

39.6

0.0798

0.08

0.0802

0 1 2 3 4 5 6

105

0

5000

10000

(a)

(b)

(c)

(d)

FIG. 6. The dynamics of (a) the “local” periods Ti loc. (b) The
delays of the control force. (c) Parameter εi that defines natural
periods of FitzHugh-Nagumo oscillator. (d) The averaged potential
(24) for the gradient descent method. The vertical red dotted line
marks the moment, when control is turned on.

042302-8



In-PHASE SYNCHRONIZATION IN COMPLEX … PHYSICAL REVIEW E 98, 042302 (2018)

-2

0

2

0 2 0 50 1 0 30 4 0
-2

0

2
(a)

(b)

FIG. 7. The first dynamical variable of the FitzHugh-Nagumo
oscillators. The snapshots of simulations presented in Fig. 6: (a) the
control-free and (b) the controlled cases.

over transient process is related to their connectivity in the
network (see Fig. 2). At the initial stage of the control all
delays are set to the same value τi (ton) = 39.5. After the
transient time, when the in-phase synchronization is reached,
the time-delays still vary due to variation of εi . The gradient
descent method effectively decreases the exponentially
weighted average of the potential, as it is shown in Fig. 6(d),
where it decreases 400–800 times compared with control-free
case. Additionally, to ensure that in-phase synchronization is
reached we present the dynamics of the first variable of the
oscillators in control-free Fig. 7(a) and in controlled Fig. 7(b)
network.

IV. CONCLUSIONS

In this paper we suggested the algorithm to achieve the in-
phase synchronization state for the network of the diffusively
coupled nearly identical limit cycle oscillators. The algorithm
is based on time-delayed feedback control with adaptive delay
times. The method is quite universal as it does not require a
knowledge of the intrinsic oscillator behavior. In particular,
we assume that the network units are the black-boxes having
scalar output and input for measurement and for the applied
control force, respectively. The control signals for each oscil-
lator are constructed as a difference between the delayed and
currently measured states multiplied by the gain factor. Such
control proved to be easily realizable in experimental set-up
due to its simple nature. We refer to the review paper [21],
where many experimental applications are overviewed.

As we showed by Eq. (10), the delay-feedback control is
able to stabilize in-phase synchrony of the network, by proper
selection of the control parameters. However, such selection
requires knowledge of the intrinsic oscillator dynamics. In
our framework it is impossible to disconnect a particular
oscillator unit out of the network. Therefore, we provide the
algorithm that automatically adjusts the control parameters
and stabilizes the in-phase regime. Equation (10) also shows
that there exist various sets of values of control parameters
that lead to in-phase synchrony. We supplement our algorithm
with the minimization of total power of the control force.

Numerical demonstrations for the network of Stuart-
Landau and FitzHugh-Nagumo oscillators confirm the va-
lidity of the analytically derived results. Additionally, for
the case of FitzHugh-Nagumo oscillators, we show that the
intrinsic parameters of the network units can slowly vary in

time and the proposed algorithm still successfully manage to
reach in-phase synchronization. The variation of the oscillator
parameters corresponds to realistic situations in experimental
set-up, where the oscillators are affected by external factors,
noisy environment, or have additional intrinsic slow evolution.

We expect that all listed advantages of the proposed al-
gorithm can make it a great candidate in the experimental
implementations, where the in-phase synchronization is a
main objective. In particular, we expect that the algorithm
can be potentially useful in a situation, where electronic
components rely on a common time frame, which is attained
without a master clock, but due to mutual coupling between
the components. For example, a global coordination between
the processing cores in large multi-core systems [13].

APPENDIX: DERIVATION OF REDUCED PHASE MODEL

Following the derivation in [29], we expand the control
force in the terms of ε and retain only the zeroth and the first
order terms (unless otherwise stated, here and below we will
always neglect higher order terms)

ui (t ) = Ki[si (t − Ti ) − si (t )]

+Kiṡi (t − Ti )(Ti − τi ) + O(ε2). (A1)

By substituting Eq. (A1) into Eq. (1a) and expanding function
fi (xi , ui ) with respect to the control force, we will have

ẋi = fi (xi , 0) + D2fi (xi , 0)Ki[si (t − Ti ) − si (t )]

+�i (x1, x2, . . . , xN, ṡi (t − Ti )) + O(ε2). (A2)

Here, D2 denotes the derivation with respect to the second
argument and the function

�i (x1, x2, . . . , xN, ṡi (t − Ti ))

= D2fi (xi , 0)Kiṡi (t − Ti )(Ti − τi )

+ε

N∑
j=1

aij Gij (xj , xi ) (A3)

contains the first order terms with respect to ε. The first two
terms of the r.h.s. of Eq. (A2) possess the same periodic
solution ξ i (t ) as the control-free oscillator. Thus one can
interpret them as an oscillator without control described by
delay differential equations (DDEs), while the rest of the
terms are a small perturbation applied to it. By employing
the phase reduction for the systems with time-delay [15] one
can show that both oscillators, the ODE-oscillator and the
DDE-oscillator, have the same profile of a phase response
curve (PRC), the only difference is an amplitude of the PRC.
The key moment here is that the second term of the r.h.s. of
Eq. (A2) does not change the shape of the limit cycle, however
it changes stability of the limit cycle and as a consequence the
perturbation-induced phase response.

After denoting the PRC of the ODE-oscillator as zi (t ), the
PRC of the DDE oscillator can be expressed as zDDE

i (t ) =
α(KiCi )zi (t ), where the function α has the following form:
α(x) = (1 + x)−1, for more details see Refs. [15,33]. The
constant Ci = ∫ Ti

0 ci (s)ds is calculated as an integral of a
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Ti-periodic auxiliary function

ci (s) = {
zT
i (s) · D2fi

(
ξ i (s), 0

)}{[∇g(ξ i (s))]T · ξ̇ i (s)}.
(A4)

Here, the superscript ( )T denotes the transposition operation.
In the following we will use provided results to derive the
phase model of the oscillator network (A2).

According to the phase reduction theory, the oscillators
phase dynamics is described by the equation

ϑ̇i = 1 + [
zDDE
i (ϑi )

]T · �i

(
ξ 1, ξ 2, . . . , ξN, ṡi (ϑi (t − Ti ))).

(A5)

Here, ϑi (t ) ∈ [0, Ti ) is the phase of the ith oscillator.
The first term in Eq. (A5) represents the trivial phase
growth of the DDE oscillator, the second term exposes the
phase change due to perturbation caused by the function
�i (ξ 1, ξ 2, . . . , ξN, ṡi (ϑi (t − Ti ))). The states of the oscilla-
tors remain near the limit cycle, thus the periodic solutions
ξ i (ϑi (t )) instead of variables xi (t ) are substituted.

Note that, the function �i (ξ 1, ξ 2, . . . , ξN, ṡi (ϑi (t − Ti )))
contains the delayed phases, due to term ṡi (t − Ti ) in
Eq. (A3). However, it can be avoided by neglecting the higher
than ε-order terms, since

ṡi (t − Ti )|ξ i (ϑi )

= d

dt

{
gi (ξ i (ϑ ))|ϑ=ϑi (t−Ti )

}
= {[∇gi (ξ i (ϑ ))]T · ξ̇ i (ϑ )}|ϑ=ϑi (t−Ti )

= {[∇gi (ξ i (ϑ ))]T · ξ̇ i (ϑ )}|ϑ=ϑi (t )+O(ε)

= {[∇gi (ξ i (ϑi (t )))]T · ξ̇ i (ϑi (t ))} + O(ε), (A6)

and after the multiplication by (Ti − τi ) all perturbations in
�i (ϑi, ξ 1..N ) will be of order of ε. Finally, the phase dynamics
reads

ϑ̇i = 1 + α(KiCi )
{
zT
i (ϑi ) · D2fi (ξ i (ϑi ), 0)

}
×{[∇g(ξ i (ϑi ))]

T · ξ̇ i (ϑi )}Ki (Ti − τi )

+ εα(KiCi )
N∑

j=1

aij

{
zT
i (ϑi ) · Gij (ξ j (ϑj ), ξ i (ϑi ))

}
.

(A7)

The equation for the phase dynamics (A7) is valid only
if ξ i (t ) is a stable solution of the DDE oscillator. By the
definition, ξ i (t ) is the stable solution of the ODE oscillator.
However, the second term of the r.h.s. of Eq. (A2) can destabi-
lize it. Therefore, the stability of ξ i (t ) puts restrictions for the
control gain Ki . At the time of publication, there are no handy
criteria to guarantee the stability of ξ i (t ). On the other hand,
from a chaos control theory, a criterion which guarantees the
destabilization of the periodic solution ξ i (t ) is known. The
odd number limitation theorem [31] states that, ξ i (t ) is an
unstable solution of the DDE oscillator, if the inequality

KiCi < −1, (A8)

holds. The last inequality impose a restriction on possible val-
ues of Ki in order to have the valid phase model (A7). The sign
of the constant Ci defines the possible stability interval for the

control gain Ki . For the positive Ci it is Ki ∈ (−1/Ci,∞),
while for negative it is Ki ∈ (−∞,−1/Ci ). It is important
to emphasize that these intervals do not guarantee the stabil-
ity, as the exact stability interval depends on the functions
fi (xi , ui ) and g(xi ) and may be smaller. In Sec. III A we
demonstrate an example where the stability interval restricted
only by Eq. (A8), while Sec. III B analyze situation with the
smaller stability interval.

The phase model (A7) can be significantly simplified.
First, one can see that the second term of the r.h.s. of Eq. (A7)
can be written in terms of the auxiliary function ci defined
by Eq. (A4). Second, the fact that the oscillators are nearly
identical can be exploited. To do so, we introduce a “central”
oscillator determined by ẋ = f (x, 0), which has a stable limit
cycle solution ξ (t + T ) = ξ (t ). The choice of the function
f can be done almost freely, the only restriction is that
|f (x, u) − fi (x, u)| should be of the order of ε. Thus one can
write

ξ i (s/�i ) = ξ (s/�) + O(ε), (A9a)

fi (ξ i (s/�i ), 0) = f (ξ (s/�), 0) + O(ε), (A9b)

zi (s/�i ) = z(s/�) + O(ε), (A9c)

ci (s/�i ) = c(s/�) + O(ε), (A9d)

Ci = C + O(ε), (A9e)

where �i = 2π/Ti is a natural frequency of the ith oscillator.
Using Eqs. (A9) some of the indexes in Eq. (A7) can be
omitted:

ϑ̇i = 1 + α(KiC)c

(
ϑi

�i

�

)
Ki (Ti − τi ) + εα(KiC)

×
N∑

j=1

aij

{
zT

(
ϑi

�i

�

)

·Gij

(
ξ

(
ϑj

�j

�

)
, ξ

(
ϑi

�i

�

))}
. (A10)

Accordingly, the inequality (A8) becomes

KiC < −1. (A11)

The phases ϑi grow from 0 to Ti , however it is more
convenient to have them growing from 0 to 2π , when the
synchronization of oscillators is investigated. Additionally,
the first term on the r.h.s. of Eq. (A10) corresponds to trivial
phase growth. Therefore, we introduce new phases ϕi (t ) =
�iϑi (t ) − �t , which vary in interval ϕi ∈ [0, 2π ). In terms of
new variables, the phase model reads

ϕ̇i = ωi + �iα(KiC)c
(ϕi

�
+ t

)
Ki (Ti − τi ) + ε�iα(KiC)

×
N∑

j=1

aij

{
zT

(ϕi

�
+ t

)
· Gij

(
ξ
(ϕj

�
+ t

)
, ξ

(ϕi

�
+ t

))}
.

(A12)

Here, ωi = �i − � represents a relative frequency in the
rotating frame related to �. The last equations are non-
autonomous, however the r.h.s. of Eq. (A12) depends on time
periodically with the period T . Moreover all three terms of
the r.h.s. of Eq. (A12) are proportional to small parameter ε.
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Thus one can apply the averaging procedure [34,35]. Denoting
averaged phases as ψi (t ), the final phase model reads

ψ̇i = ωeff
i + εeff

i

N∑
j=1

aijhij (ψj − ψi ). (A13)

Here, the effective coupling strength, effective frequency, and
coupling function read

εeff
i = εα(KiC), (A14a)

ωeff
i = ωi + �

τi − Ti

T
[α(KiC) − 1], (A14b)

hij (χ ) = 1

T

∫ 2π

0

{
zT

( s

�

)
· Gij

(
ξ

(
s + χ

�

)
, ξ

( s

�

))}
ds.

(A14c)

Note that the expressions (A14b) and (A14c) are written
by taking into account that the frequencies �i in Eq. (A12)
without loss of accuracy can be replaced by the “central”
frequency �.
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