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Delayed feedback control of synchronization in weakly coupled oscillator networks
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We study control of synchronization in weakly coupled oscillator networks by using a phase-reduction
approach. Starting from a general class of limit-cycle oscillators we derive a phase model, which shows that
delayed feedback control changes effective coupling strengths and effective frequencies. We derive the analytical
condition for critical control gain, where the phase dynamics of the oscillator becomes extremely sensitive to
any perturbations. As a result the network can attain phase synchronization even if the natural interoscillatory
couplings are small. In addition, we demonstrate that delayed feedback control can disrupt the coherent phase
dynamic in synchronized networks. The validity of our results is illustrated on networks of diffusively coupled
Stuart–Landau and FitzHugh–Nagumo models.
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I. INTRODUCTION

Starting from C. Huygens’ research on “an odd kind
sympathy” between coupled pendulum clocks, the synchro-
nization as a phenomenon occurs in various man-made and
natural systems [1–4]. The coherent behavior of oscillators
arises in numerous situations, e.g., flashing of fireflies [5],
cardiac pacemaker cells [6], neurons in the brain [7], coupled
Josephson junctions [8], chemical reactions [1,9], crowd
synchrony [10], and power grids [11,12]. The synchronous
behavior can be desirable or harmful. The ability to control
synchrony in oscillatory networks covers a wide range of
real-world applications, starting from neurological treatment
of Parkinson’s disease and essential tremor [13,14] to the
design of robust power grids [12,15].

Phase reduction is a fundamental theoretical technique
to investigate synchronization in weakly coupled oscillator
networks [1–4] since it allows the approximation of high-
dimensional dynamics of oscillators with a single-phase
variable. The concept of the phase model causes significant
progress in understanding the synchrony of the networks,
e.g., correlation between topology and dynamics towards
synchronization [16], synchronization criterion for almost any
network topology [12], optimal synchronization [17], chimera
states [18,19], etc. The main factors determining the synchrony
in the phase model are coupling strength and dissimilarity
of frequencies. The ability to change these parameters will
easily allow the synchronization or desynchronization of
networks. Typically, the phase variable is not attained for
direct measurements and actions. Instead of this, we have
an access to dynamical variables of the limit cycle. In
such situations, the control schemes are usually based on
feedback loops. Therefore, we ask: how do we enhance or
suppress synchronization in networks via feedback signals,
when minimal knowledge about the particular unit of the
network is available? This question has been investigated
in Refs. [20,21], where the synchronization is controlled by
delayed mean-field feedback into the network. Also, there
have been many numerical investigations [22–25] devoted to
this question. In this work, we present analytical results for

*novicenko@pfi.lt; novicenko.robotax.ru

control of synchronization in networks by time delayed local
signals fed back into particular units of the network. By using
phase reduction for systems with time delay [26,27], we arrive
at a phase model. It fully coincides with the phase model
of the uncontrolled network, the only difference being that
the coupling strengths and frequencies depend on the control
parameters. Surprisingly, the relations are almost universal,
i.e., do not depend on the particular model of the limit cycle
and on the coupling interoscillatory function. Moreover, the
coupling strengths have a multiplicative inverse dependence
on the feedback control gain and their values can be selected
from zero to infinity. As a consequence, the synchronization
can be achieved even if the oscillators are almost uncoupled.
Also, we show that the particular choice of the delay times in
the control scheme can lead to full phase synchronization (i.e.,
when the phases of all oscillators are equal at any time moment)
in the network. The analytical results are verified numerically
on networks of diffusively coupled Stuart–Landau (SL) and
FitzHugh–Nagumo (FHN) models.

II. PHASE REDUCTION OF OSCILLATOR NETWORK

We consider a general class of N weakly coupled limit-
cycle oscillators under delayed feedback control (DFC):

ẋi = fi(xi) + ε

N∑
j=1

Gij (xi ,xj ) + Ki[xi(t − τi) − xi(t)], (1)

where xi ∈ Rn is an n-dimensional state vector of the
ith oscillator, fi : Rn → Rn is a vector field represent-
ing the free dynamics of the ith oscillator, Gij : Rn ×
Rn → Rn is an interoscillatory coupling function, Ki =
diag[K (1)

i ,K
(2)
i , . . . ,K

(n)
i ] is an n-dimensional diagonal matrix

of the feedback control gain, and τi is the delay time of
the ith oscillator’s feedback loop. We assume that ε > 0
is a small parameter. Each uncoupled oscillator ẋi = fi(xi)
has the stable limit-cycle solution ξ i(t + Ti) = ξ i(t) with the
natural frequency �i = 2π/Ti . We are interested in the case
when dissimilarity of the periods is of the order of ε, i.e.,
(Ti − Tj ) ∼ ε for any i,j = 1, . . . ,N . Also, we assume that
the delay times are close to the periods, i.e., (Ti − τi) ∼ ε.

By expanding delayed vector xi(t − τi) into a Taylor series
and omitting higher-than-ε-order terms, we arrive at the
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following expression for the control force:

Ki[xi(t − τi) − xi(t)]

≈ Ki[xi(t − Ti) − xi(t)] − Ki ẋi(t − Ti)�Ti, (2)

where �Ti = τi − Ti is the mismatch of the time delay. The
first term on the right-hand side (r.h.s.) of expression (2) is
familiar from the controlling chaos, where it is used to stabilize
unstable periodic orbits in chaotic systems [28,29]. Therefore,
we use well-known results such as the odd number limitation
theorem [30] and mismatched control scheme [31].

The oscillators under DFC,

ẋi = fi(xi) + Ki[xi(t − Ti) − xi(t)], (3)

also have the same periodic solutions ξ i(t) as the free
oscillators, but with different stability properties and, as a con-
sequence, with different perturbation-induced phase response.
If the free oscillator has an infinitesimal phase-response curve
(iPRC) zi(ϑi) [the iPRC is a Ti-periodic solution of the adjoint
equation żi(t) = −[Dfi(ξ i(t))]T zi(t) with the initial condition
zT
i (0) · ξ̇ i(0) = 1; see Refs. [1–4] ] then the oscillator under

DFC (3) has the iPRC z(DFC)
i (ϑi) of the same form but with

different amplitude [26]: z(DFC)
i (ϑi) = αizi(ϑi). The factor αi

can be expressed as

αi = αi(Ki) =
[

1 +
n∑

m=1

K
(m)
i C

(m)
i

]−1

. (4)

Here, the coefficients C
(m)
i are the integrals C

(m)
i =∫ Ti

0 z
(m)
i (s)ξ̇ (m)

i (s)ds, where the upper indices (m) denote the
particular components of the vectors zi and ξ̇ i .

Now we apply the phase-reduction technique [26,27] to the
oscillator network (1) assuming that the unperturbed oscilla-
tors are described by equations (3) and that the perturbation
contains two parts: the interoscillatory coupling terms Gij and
the second term on the r.h.s. of expression (2). Both parts are
of the same order: O(ε). The equations for the phase dynamics
are

ϑ̇i = 1 + εαi(Ki)zT
i (ϑi)

N∑
j=1

Gij (ξ i(ϑi),ξ j (ϑj ))

−�Tiαi(Ki)zT
i (ϑi)Ki ξ̇ i(ϑi). (5)

Here, in the last term of the r.h.s., we write ξ̇ i(ϑi(t)) instead of
ξ̇ i(ϑi(t − Ti)). It can be done because

ξ̇ i(ϑi(t − Ti)) = ξ̇ i(ϑi(t) + O(ε)) = ξ̇ i(ϑi(t)) + O(ε) (6)

and, after multiplication by �Ti , we get the second-order
correction O(ε2) which is omitted [31].

The equations for the phase dynamics (5) are valid only
when all periodic solutions ξ i(t) are stable solutions of
the system (3). According to the odd number limitation
theorem [30], the periodic solution ξ i(t) is the unstable solution
of the system (3) if the condition

n∑
m=1

K
(m)
i C

(m)
i < −1 (7)

holds. The condition (7) shows which values of the feedback
control gains cannot be correctly described by Eq. (5). If this

condition does not hold, then it is still not guaranteed that
the solution ξ i(t) is stable and that Eq. (5) is valid. However,
as we see below, for particular systems (namely, diffusively
coupled Stuart–Landau and FitzHugh–Nagumo models) the
condition (7) is necessary and sufficient.

The phases ϑi(t) in equation (5) vary from 0 to Ti .
However, when we investigate phase synchronization, it is
convenient to have phases growing from 0 to 2π . Furthermore,
on the r.h.s. of Eq. (5), the first term corresponds to trivial
growing of the phase. Therefore, we introduce new variables
ϕi(t) = �iϑi(t) − 2π

T
t , where T is the so-called “averaged”

period. The number T is not necessarily equal to the average
of all oscillator periods and can be chosen freely with one
requirement: (T − Ti) ∼ ε for all i = 1, . . . ,N . In the new
variables, Eq. (5) can be written as

ϕ̇i = ωi + ε�iαi(Ki)zT
i

(
ϕi

�i

+ �

�i

t

)

×
N∑

j=1

Gij

(
ξ i

(
ϕi

�i

+ �

�i

t

)
,ξ j

(
ϕj

�j

+ �

�j

t

))

−�Ti�iαi(Ki)zT
i

(
ϕi

�i

+ �

�i

t

)
Ki ξ̇ i

(
ϕi

�i

+ �

�i

t

)
,

where � = 2π/T is the averaged frequency and ωi = �i − �.
The r.h.s. of the last equation depends periodically on time
with period T ; also, ωi and �Ti are small parameters. Thus
we can apply the averaging method [32,33]. Let us denote
the averaged phases ψi(t). The phase model for the averaged
phases is

ψ̇i = ωeff
i + εeff

i

N∑
j=1

Hij (ψj − ψi), (8)

where we introduce effective coupling strengths

εeff
i = εαi(Ki), (9)

effective frequencies

ωeff
i = ωi + �

�Ti

T
[αi(Ki) − 1], (10)

[in equation (10) the index i near the � and T is skipped
without loss of accuracy] and coupling functions

Hij (χ ) = 1

Ti

∫ 2π

0
zT
i

(
s

�i

)
Gij

(
ξ i

(
s

�i

)
,ξ j

(
χ + s

�j

))
ds.

(11)

Hereafter we assume that all network units are near
identical and described by similar equations, i.e., [fi(ξ i(t)) −
fj (ξ j (t))] ∼ ε for all i,j = 1, . . . ,N . We denote the averaged
oscillator as ẋ = f(x), which has the stable periodic solution
ξ (t + T ) = ξ (t) and the corresponding iPRC z(t + T ) = z(t).
The choice of the averaged oscillator must satisfy one
requirement: [f(ξ (t)) − fi(ξ i(t))] ∼ ε for all i = 1, . . . ,N .
Also, we assume that interoscillatory functions have the
form Gij (xi ,xj ) = aij g(xi ,xj ) where the coefficients aij � 0
play the role of the network’s adjacency matrix elements.
We consider the undirected network, therefore the adjacency
matrix AT = A. Now we can simplify the network’s phase
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model (8). Since ξ i(s/�i) = ξ (s/�) + O(ε) and zi(s/�i) =
z(s/�) + O(ε), without loss of accuracy, the indices i near α

can be dropped and Eq. (8) can be rewritten as

ψ̇i = ωeff
i + εeff

i

N∑
j=1

aijh(ψj − ψi), (12)

with effective coupling strengths εeff
i = εα(Ki), effective fre-

quencies ωeff
i = ωi + �(�Ti/T )[α(Ki) − 1], coupling func-

tions

h(χ ) = 1

T

∫ 2π

0
zT

(
s

�

)
g
(

ξ

(
s

�

)
,ξ

(
χ + s

�

))
ds, (13)

and the factor α(Ki) = [1 + ∑n
m=1 K

(m)
i C(m)]−1, where the

integrals C(m) = ∫ T

0 z(m)(s)ξ̇ (m)(s)ds.
Our main result is the phase model (12). Using equa-

tion (12), we can analyze three important control regimes.
Before that let us make two additional assumptions: (1) We
assume that condition (7) is necessary and sufficient, i.e., the
periodic solutions ξ i(t) are stable until equation (7) does not
hold, and (2) we assume that, for the uncontrolled network
(Ki = 0) there exists a positive threshold coupling strength
εth > 0 such that, when ε > εth, the network possesses a stable
phase-synchronization regime

ψ̇1 = ψ̇2 = · · · = ψ̇N , (14)

while for ε < εth the phase synchronization cannot be
achieved. Hence the important control cases are

(i) If all delay times and feedback control gains are equal
(τi = τ and Ki = K for all i = 1, . . . ,N), then synchroniza-
tion of the network cannot be controlled. In this case the phase
model (12) is equivalent to the phase model of an uncontrolled
network. This can be seen if we choose the averaged period
T = τ (without loss of generality we can always do that) and
rewrite effective frequencies as

ωeff
i = ωi + �

�Ti

T
[α(K) − 1]

= ωi + ωi[α(K) − 1] + O(ε2) ≈ ωiα(K). (15)

Since εeff
i = εα(K), the factor α(K) can be eliminated from

Eqs. (12) by a time-scaling transformation.
(ii) If all delay times are equal to the periods (τi = Ti

for all i = 1, . . . ,N), then ωeff
i = ωi , and it is possible to

synchronize or desynchronize the network independently of
how big or small the natural interoscillatory coupling is. Let
us say that all diagonal matrices Ki have only one nonzero
element K

(1)
i = K (1) and assume that C(1) is positive. Then,

from condition (7) the phase model (12) is valid if K (1) is in
the interval (−1/C(1), + ∞). The effective coupling strengths
εeff
i = ε/[1 + K (1)C(1)] go to infinity if K (1) → −1/C(1) + 0.

Therefore, the oscillators’ phases become extremely sensitive
to any perturbations. At the boundary K (1) = −1/C(1) all
oscillators become neutrally stable. For the other boundary, if
K (1) → +∞ then εeff

i → 0, and the oscillators’ phases cannot
synchronize to each other. Note that, even if a magnitude of
the effective coupling strength can be chosen freely, the sign
cannot be changed.

(iii) If the mismatch times are equal to

�Ti

T
= ωi

�[1 − α(Ki)]
, (16)

then ωeff
i = 0. In this case the network is in the stable full-

phase-synchronization regime

ψ1(t) = ψ2(t) = · · · = ψN (t) = const. (17)

under the additional conditions h(0) = 0 and h′(0) = γ > 0.
The condition h(0) = 0 is always fulfilled if the units are
diffusively coupled, and the condition γ > 0 represents attrac-
tive coupling. The stability of the full-phase-synchronization
regime (17) is determined by eigenvalues of the matrix
M = −γ EL, where E = diag[εeff

1 ,εeff
2 , . . . ,εeff

N ] is a diagonal
positive-definite matrix and L = D − A is a network Laplacian
matrix (here D = diag[d1,d2, . . . ,dN ] is the degree matrix with
the elements di = ∑N

j=1 aij ). We assume that the network is
connected and unidirected, so the matrix L has eigenvalues
0 = λ1 < λ2 � · · · � λN . By defining a square root of the
matrix E as E1/2 with the entries (εeff

i )1/2 on the diagonal, we
can see that M has the same eigenvalues as a symmetric matrix
M′ = −γ E1/2LE1/2. M′ is a negative semidefinite matrix
with only one eigenvalue equal to zero, which corresponds
to a shift of all phases by the same amount. Hence the
full-phase-synchronization regime is stable.

III. NUMERICAL DEMONSTRATIONS

As a first example, we study a network of N = 8 all-to-all
diffusively coupled Stuart–Landau (SL) models described by

0 5000 10000

6.2

6.3

6.4

T
lo

ca
l

(a)

0 5000 10000
0

0.5

1

r

(c)

0 5000 10000

−0.05

0

0.05

F
1

time
(e)

0 5000 10000

6.2

6.3

6.4

T
lo

ca
l

(b)

0 5000 10000
0

0.5

1

r

(d)

0 5000 10000

−0.05

0

0.05

F
1

time
(f)

FIG. 1. (Color online) Control of synchronization in the SL
network (18) for the mismatches �Ti = 0. (a), (b) Local periods;
(c), (d) Kuramoto order parameter; (e), (f) DFC force applied to
the first unit F1(t) = K[x1(t − T1) − x1(t)]. The vertical dashed
red line shows the time when the control is turned on. (a), (c),
(e) DFC causes synchronization in the network with parameters
ε = 9 × 10−4 and K = −0.3, since εeff > εth. (b), (d), (f) DFC causes
desynchronization in network with parameters ε = 5 × 10−2 and
K = 4, since εeff < εth.
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FIG. 2. (Color online) The synchrony-asynchrony transition in
the SL network for the control regime �Ti = 0. A snapshot of
the local periods versus the control gain calculated numerically for
different coupling strengths: (a) ε = 9 × 10−4 and (b) ε = 5 × 10−2.
The vertical red line shows the analytically derived critical value of
the control gain.

the following equations:

ẋi = xi

(
1 − x2

i − y2
i

) − �iyi + εN−1
N∑

j=1

2(xj − xi)

+K[xi(t − τi) − xi(t)], (18a)

ẏi = yi

(
1 − x2

i − y2
i

) + �ixi. (18b)

As an averaged oscillator we choose the SL model
with � = 1. For this case, the periodic orbit and iPRC
can be found analytically: ξ (t) = [cos t, sin t]T and
z(t) = [− sin t, cos t]T . According to Eq. (13), the coupling
function h(χ ) = sin χ . For the oscillators natural frequencies
we choose following values �i = � + ωi , where ωi = 10−3 ×
{1.38, 2.54,−1.93,−4.87,−2.12, 3.95, 4.31,−3.26}. For
the SL model the factor α(K) = [1 + Kπ ]−1 and the
feedback control gain K can be selected from the interval
(−π−1, + ∞). We calculate numerically that the network (18)
without control (K = 0) possesses phase synchronization if ε

is above the threshold value εth = 7 × 10−3. The adjacency
matrix of the network (18) is aij = N−1 and the corresponding
phase model is the celebrated Kuramoto model

ψ̇i = ωeff
i + εeffN−1

N∑
j=1

sin(ψj − ψi). (19)

As a synchronization criteria we choose two
measurements: the Kuramoto order parameter
r(t) = N−1| ∑N

j=1 exp (iψj (t))| and the “local” periods
Tlocal (or sometimes called interspike intervals) defined as the
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FIG. 3. (Color online) Kuramoto order parameters of SL net-
work (18) depicted on a semilog plot. The thin blue line reproduces
results from Fig. 1(c), while the thick green line is calculated in
the full-phase-synchronization regime. The vertical dashed red line
shows the time when the control is turned on.
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FIG. 4. Topology of the FitzHugh–Nagumo oscillator net-

work (20).

time interval between two neighboring maxima of the first
dynamical variable. Figure 1 shows a numerical simulation
of the SL network (18) when the mismatches �Ti = 0.
The transition synchrony-asynchrony occurs at a critical
control gain Kc = π−1[ε/εth − 1]. In Fig. 2 we demonstrate
the synchrony-asynchrony transition in the SL network. As
we can see, the analytical results coincide with numerical
simulations.

In order to demonstrate the full-phase-synchronization
regime, we simulate a SL network with the same parameters
as presented in Figs. 1(a), 1(c), and 1(e), only the mismatch
times are selected according to Eq. (16). The local periods and
F1 are very similar to that presented in Figs. 1(a) and 1(e),
only the Kuramoto order parameter is much closer to unity
(cf. Fig. 3).

In order to show that analytical results are valid for
nontrivial oscillators and for the nontrivial network topology,
we investigate the network of N = 8 diffusively coupled
FitzHugh–Nagumo (FHN) [34,35] models

ẋi = xi − x3
i /3 − yi + 0.5 + ε

N∑
j=1

aij (xj − xi)

+K[xi(t − τi) − xi(t)], (20a)

ẏi = εi(xi + 0.7 − 0.8yi). (20b)
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FIG. 5. (Color online) Control of synchronization in the FHN
network (20) for the mismatches �Ti = 0. (a), (b) Local periods; (c),
(d) DFC force applied to the first unit F1(t) = K[x1(t − T1) − x1(t)].
The vertical dashed red line shows the time when the control is
turned on. (a), (c) DFC causes synchronization in network with
parameters ε = 5 × 10−5 and K = −0.09, since εeff > εth. (b), (d)
DFC causes desynchronization in network with parameters ε = 10−3

and K = 0.5, since εeff < εth.
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The adjacency matrix elements aij = 1 if the unit i is
connected to the unit j , and aij = 0 otherwise. The network
topology is illustrated in Fig. 4. As an averaged oscilla-
tor we choose a FHN model with ε = 0.08. For such a
model the constant C(1) ≈ 10.02 is computed numerically.
We checked that the averaged oscillator possesses a stable
periodic solution ξ (t) when the control gain K is in the
interval (−1/C(1), + ∞). In the network (20) each oscillator
has different parameters εi = ε + �εi , where �εi = 10−4 ×
{0.3,−1.7,−0.9, 2.1, 1.5,−2.6,−1.1, 0.8}, and without con-
trol (K = 0) it possesses phase synchronization if ε is above
the threshold εth = 3.6 × 10−4. Figure 5 shows a numerical
simulation of the FHN network (20) when the mismatches
�Ti = 0. Again, analytical results coincide with numerical
simulations.

IV. CONCLUSION

We present a framework for controlling synchrony in
weakly coupled oscillator networks by delayed feedback

control. We show that, when the delay time is close to
the period of a particular oscillator, the network’s phase
model almost coincides with the uncontrolled network’s phase
model. The only difference is that effective coupling strengths
and effective frequencies depend on control parameters. By
appropriate choice of the control parameters the magnitude of
the effective coupling strength can be selected arbitrarily, while
the sign cannot be changed. Unlike the coupling strength, the
sign of the effective frequencies can be inverted.

In this work we restricted ourselves to the case when
the control term appears as an external force applied to the
oscillator. However, it can be simply generalized to the case of
arbitrary functional dependence of the oscillator on the control
signal.
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