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Problem formulation

Quantum system described by a Hamiltonian
     which is periodic with respect to 
the first argument and has additional slow time dependence:

Expanding                                              and using extended 
space approach [1]                          , where               
is orthonormal basis, we transform  Eq (*) in to:

with         and

               
The main task is to find block-diagonalizing operator
such that 

contains non-zero blocks only on a central diagonal [2]:

                .
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|φ (t)〉〉 = K (t) |φ (t)〉〉
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Flow towards diagonalization

The main idea of  the flow equation approach is to gradually 
diagonalize some Hamiltonian:

          run flow equation

The flow equation

with a generator [3]
is able to diagonalize finite non-degenerate Hamiltonian.

The flow equation to block-diagonalize the extended space 
Hamiltonian (#)

with the generator
where a shift operator
and a m-th Fourier harmonic of  the generator

H (s = 0) = nainotlimaHlaitini

H (s = +∞) = nainotlimaHdezilanogaid

dH (s)

ds
= [η (s) , H (s)]

ηnk (s) = Hnk (s) (Hnn (s)−Hkk (s))
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Three posible forms of  the generator

(1) For a discrete flow, when s=0,1,2,... , the m-th Fourier 
harmonic of  the extended space Hamiltonian
        can be expanded as a power series of  the 
inverse frequency               , where 
         . The main idea is, at each step s, to get 
rid of  the leading order term in the expansion of  the non-zero 
Fourier harmonics of  the extended space Hamiltonian. Thus, at 
the step s, the extended space Hamiltonian

is diagonal up to the order s-1. It can be realized with the 
generator of  the form

(2) Continuous flow generator proposed in Ref. [4]

gives following flow equations:

and

(3) If  the initial Hamiltonian does not contain high enough 
Fourier harmonic,   , then it would be 
convenient to have this property on all interval              .
In Ref. [5] we propose the generator (generalization of  the 
Toda generator)

which gives             .
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.

H(m≥|m0|) (s = 0, t) = 0

s ∈ [0,+∞)

iS (s, t) =
1

�ω
∑
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sgn (m)Pm ⊗H(m) (s, t)

H(m≥|m0|) (s, t) = 0
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