Control of synchronization in complex oscillator

networks via time-delayed feedback

Viktor NoviCenko

2017 Szeged, Hungary



-

The synchronous behavior can be desirable or harmful.

* Power grids

» Parkinson’s disease, essential tremor
* Pedestrians on a bridge

* Cardiac pacemaker cells

* Internal circadian clock

The ability to control synchrony in oscillatory networks covers a wide range of real-world
applications.



Phase reduction method
e —

Phase reduction method allows the approximation of high dimensional dynamics of oscillators
with a single-phase variable.

(X) has periodic solution ~ &(t+T)=&(t)

x =1
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J=1 phase gradually increase from 0 to T
x =f(x) +eg(x,t) Here Z(J )is a phase response curve — the periodic
l solution of the adjoint equation Z= —[Df (E)]T Z
J=1+ez"(3)-9EQ ).1) Initial condition for the phase response curve: Z' (0) £(0) =1
% = f (x(t)x(t—t ))+eg(x(t)t) 27 (t)=-z"(t)A(t)-z" (t+t B(t+t)
l where the matrices A(t) = D/f (E (t),&(t—t ))
J=1+e2'(0)-gEQ 1) B(t)=D,f (E(t),E(t—t))
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Initial condition for the phase response curve: z' (O)E (0) + J-ZT (t + S)B('[ + S)E(S) ds=1
t
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Complex oscillator network — the phase reduction approach

Weakly coupled near-identical limit cycle oscillators:

without control under the delayed feedback control
X, =1 (%) +ef (x)) +e Y a;g(x;.x;) X, =1(x,)+ef () +e> a;g(x,,x;) + K[x (t—t ;)= x,(t)]
! j | !
%) it )=, ()= b, (t=T) -, (@O + %, (T T, -t
| (t)l—QJ (t)-Qt where O =2 !
Jil)=223J; whete 33 = T By treating a free oscillator as
| | X, =f (x,) +€f, () + K x,(t =T, )=, (t)]
y .(t)= average j .(t) over theperiod T [ |
l Applying the phase reduction method for systems
yi=w +ez a h(y iy i) with tlme—dfiay
i
here the frequencies W, =Q, —Q y,=w" +e* Zaij h@’ iy i)
j

e =a(Ke w =w +Qti_|_ Lla(K)-1]

Synchronization condition:

YVi=Yo=...=Yy
V. Novi€enko, Phys. Rev. E 92, 022919 (2015)



Control of synchronization 1n a complex oscillator network

(1) The delay times are the same t;, =t =T A oK)

Wieff —a (K )Wi — synchronization cannot be controlled 12

(i1) The delay times are equal to the natural periods

ti=T =w =w, 1/C 0 >

(i) The delay times are
t —T W. off
| | — | _ — O

T ofi-a(k)]

y ,(t)=y ,(t)=...=y (t) is a stable solution, under additional assumptions: h(0)=0, h(0)>0

V. Novi€enko, Phys. Rev. E 92, 022919 (2015)



Numerical demonstrations

8 FitzHugh-Nagumo oscillators:
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Ri(t)=K [ (t-T,)- Xl(t)]

V. Novi€enko, Phys. Rev. E 92, 022919 (2015)



Odd number limitation

)= () K 7))
* According to the odd number limitation theorem,
, the periodic solution & (t+T,)=§,(t) is unstable, if
e S . KC <-1
«1/C 0 K
E. W. Hooton and A. Amann, Phys. Rev. Lett. 109,

154101 (2012)
What happen for K—-1/C ?

Motion of the Floquet multipliers
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The delayed feedback control force applied to a limit cycle oscillator changes its

stability properties and, as a consequence, perturbation-induced phase response. The
phase model of the oscillator network shows that the coupling strength and the
frequencies depend on the parameters of the control.

Advantages:

* does not require any information about the oscillator model
* does not depends on network topology
* can be simple realized in experiment

* theoretically synchronization can be controlled for the arbitrary small/large coupling
strength

* the control scheme has only two parameters: control gain and delay time

Disadvantages:

* the phase model can be derived only for a weak coupling
* the control force can disrupt the stability of periodic orbit



The end




