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Synchronous behavior can be desirable or harmful.

 Power grids
 Parkinson’s disease, essential tremor
 Pedestrians on a bridge
 Cardiac pacemaker cells
 Internal circadian clock

The ability to control synchrony in oscillatory network covers a wide range of real-world 
applications.
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Our goal is to derive an algorithm for authomatic adjusment 
of the time delays to acheve in-phase synchronization
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(1)/3− x(2) + 0.5

εi x(1) (1 + u) + 0.7− 0.8x(2)

)
]

G (y,x) =

[
y(1)/ 2 + y(2)

)
− x(1)/ 2 + x(2)

)

0

]
⇒
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The end


