From the Bose-Hubbard model over disorder to the Bose-Fermi-Hubbard model:

a short introduction to cold bosons (and fermions)

Alexander Mering

Humboldt Workshop, 3rd September 2006

Alexander Mering Humboldt Workshop

introduction

the Bose-Hubbard model

- limiting cases
- phase properties
- phase diagram

the Bose-Hubbard model with disorder

- general idea
- limiting cases
- phase diagram
- the Bose-Fermi-Hubbard model
 - comparison to the BHM with disorder
 - some results

introduction

• want to consider ultracold atoms in optical lattice

introduction

- want to consider ultracold atoms in optical lattice
- working frame:
 - Ind quantization
 - short range interaction (δ -like)
 - low energy regime (⇒ only lowest Bloch band occupied)
 - choose Wannier basis

introduction

- want to consider ultracold atoms in optical lattice
- working frame:
 - Ind quantization
 - short range interaction (δ -like)
 - low energy regime (\Rightarrow only lowest Bloch band occupied)
 - choose Wannier basis
- study resulting effective Hamiltonian:
 - include addional species
 - change interaction (for instance site-to-site interaction)
 - introduce disorder

limiting cases properties of the phases phase diagram

Bose-Hubbard model

Simplest model for interacting bosons in optical lattice

the (pure) Bose-Hubbard model

$$\widehat{\mathcal{H}} = -J_B \sum_{\langle ij \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \frac{U}{2} \sum_i \widehat{n}_i (\widehat{n}_i - 1) - \mu_B \sum_i \widehat{n}_i$$

- J_B: nearest neighbour hopping amplitude
- U: on-site interaction
- μ_B : chemical potential

We are interested in the (μ_B, J_B) -phase diagram

limiting cases properties of the phases phase diagram

vanishing hopping $J_B/U \rightarrow 0$

BHM Hamiltonian decouples sites and can be rewritten:

$$\widehat{\mathcal{H}} = \sum_{i} \frac{U}{2} (\widehat{n}_{i} - \overline{n})^{2} + const$$

with $\bar{n} = \frac{1}{2} + \frac{\mu}{U}$

limiting cases properties of the phases phase diagram

vanishing hopping $J_B/U \rightarrow 0$

BHM Hamiltonian decouples sites and can be rewritten:

$$\widehat{\mathcal{H}} = \sum_{i} \frac{U}{2} (\widehat{n}_{i} - \overline{n})^{2} + const$$

with
$$\bar{n} = \frac{1}{2} + \frac{\mu}{U}$$

Mott insulator

All sites have the same groundstate with $n_0 = \lfloor \bar{n} \rfloor$ bosons

exception: degenerate groundstate if $\mu \in \mathbb{Z}$

limiting cases properties of the phases phase diagram

vanishing interaction $J_B/U \rightarrow \infty$

resulting in free bosons (solution via Fourier transform):

$$\widehat{\mathcal{H}} = -2J_B \sum_{k} \cos(k) \, \widehat{f}_k^{\dagger} \widehat{f}_k - \mu_B \sum_{k} \widehat{f}_k^{\dagger} \widehat{f}_k$$

limiting cases properties of the phases phase diagram

vanishing interaction $J_B/U \rightarrow \infty$

resulting in free bosons (solution via Fourier transform):

$$\widehat{\mathcal{H}} = -2J_B \sum_k \cos(k) \, \widehat{f}_k^{\dagger} \widehat{f}_k - \mu_B \sum_k \widehat{f}_k^{\dagger} \widehat{f}_k$$

superfluid phase

coherent ground state (spread over the whole lattice)

solution: filled fermi sea

AG Quanten

limiting cases properties of the phases phase diagram

summary: phase properties (1D)

Mott insulator

- fixed atom number per site
- rapidly decaying correlations (exponential decay)
- incompressible phase

$$(\kappa = \frac{\partial \langle n \rangle}{\partial \mu_B} \equiv 0)$$

limiting cases properties of the phases phase diagram

summary: phase properties (1D)

Mott insulator

- fixed atom number per site
- rapidly decaying correlations (exponential decay)
- incompressible phase

$$(\kappa = \frac{\partial \langle n \rangle}{\partial \mu_B} \equiv 0$$

Superfluid

- atom number fluctuating
- slowly decaying correlations (algebraic decay)
- compressible phase $(\kappa = \frac{\partial \langle \hat{n} \rangle}{\partial \mu_B} \neq 0)$

limiting cases properties of the phases phase diagram

phase distinction - site occupation

Mott insulator

fixed atom number per site

limiting cases properties of the phases phase diagram

phase distinction - site occupation

Mott insulator

fixed atom number per site

Superfluid

atom number per site fluctuating

limiting cases properties of the phases phase diagram

phase distinction - time of fight images

Mott insulator

exponential decay

$$\mathsf{TOF}\text{-}\mathsf{picture} = \mathcal{F}\left[\langle \widehat{\boldsymbol{a}}_{i}^{\dagger} \widehat{\boldsymbol{a}}_{j} \rangle\right]$$

limiting cases properties of the phases phase diagram

phase distinction - time of fight images

TOF-picture =
$$\mathcal{F}\left[\langle \widehat{a}_{i}^{\dagger} \widehat{a}_{j} \rangle\right]$$

limiting cases properties of the phases phase diagram

phase distinction - ramping of the lattice depth

Drive the transition by changing the depth of the lattice:

shallow

deep

limiting cases properties of the phases phase diagram

theoretical approaches

limiting cases properties of the phases phase diagram

theoretical approaches

• mean field approach (2nd order)

- mimic influence of neighbouring sites by local parameter Ψ
- $\bullet~$ this orderparameter gives phases: $\Psi \neq 0 \Rightarrow SF$

limiting cases properties of the phases phase diagram

theoretical approaches

• mean field approach (2nd order)

- mimic influence of neighbouring sites by local parameter Ψ
- this orderparameter gives phases: $\Psi \neq 0 \Rightarrow SF$
- strong coupling expansion (3rd order)
 - calculate energy of ground and exited (particle/hole) states by 3rd order degenerate perturbation theory
 - energy difference gives chemical potentials and therefore phase boundaries

limiting cases properties of the phases phase diagram

and finally: the phase diagram

First: remember the case $J_B = 0$

limiting cases properties of the phases phase diagram

and finally the diagram

Second: now include the hopping

general idea limiting cases phase diagram

Bose-Hubbard model with disorder

What happens if we introduce disorder to the system? Kinds of disorder:

- interaction disorder:
- hopping disorder:
- energy disorder:

 $egin{aligned} U &\mapsto U_i \ J &\mapsto J_i (\mapsto J_{ij}) \ \mu_{\mathcal{B}} &\mapsto \mu_i^{\mathcal{B}} \end{aligned}$

general idea limiting cases phase diagram

Bose-Hubbard model with disorder

What happens if we introduce disorder to the system? Kinds of disorder:

- interaction disorder:
- hopping disorder:
- energy disorder:

 $egin{aligned} U &\mapsto U_i \ J &\mapsto J_i (\mapsto J_{ij}) \ \mu_B &\mapsto \mu_i^B \end{aligned}$

disordered Bose-Hubbard model

$$\widehat{\mathcal{H}} = -J_B \sum_{\langle ij \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \frac{U}{2} \sum_i \widehat{n}_i (\widehat{n}_i - 1) - \sum_i (\mu_B + \delta_i) \widehat{n}_i$$

general idea limiting cases phase diagram

some notes on the disorder

consider a disorder distribution $\mathcal{D}(d)$ like:

distinguish small ($\mathcal{D}_{max} < U/2)$ and large ($\mathcal{D}_{max} > U/2)$ disorder

general idea limiting cases phase diagram

vanishing hopping $J_B/U \rightarrow 0$

superfluid phase

- compressible
- algebraicly decaying correlations
- ungapped (adding a additional boson to the system increases energy only infinitesimally)

general idea limiting cases phase diagram

vanishing interaction $J_B/U \rightarrow \infty$

What is groundstate?

Answer is given by the questions:

- What happens if we again vary μ_B ?
- What are the (energetically) allowed states?
- Is the phase incompressible?

general idea limiting cases phase diagram

general idea limiting cases phase diagram

general idea limiting cases **phase diagram**

adding hopping

- Mott phases extend as usual with increasing hopping but vanish earlier
- superfluid is dominant at large hopping
- additional phase already appears at $J_B = 0$:

general idea limiting cases **phase diagram**

adding hopping

- Mott phases extend as usual with increasing hopping but vanish earlier
- superfluid is dominant at large hopping
- additional phase already appears at $J_B = 0$:

bose glas phase:

- fluctuating number of atoms per site
- compressible
- exponentially decaying correlations
- gapless

general idea limiting cases phase diagram

the phase diagram

from M.P.A. Fisher et. al., Phys. Rev. B 40, 546 (1988)

general idea limiting cases phase diagram

further remarks

- combines properties of Mott and superfluid phase:
 - decaying correlations like a Mott phase
 - compressible like a superfluid
- from TOF pictures industinguishable from Mott phase
- additionally measure the excitation spectrum
 - \Rightarrow ungapped like a superfluid

comparison to disordered BHM some results

Bose-Fermi-Hubbard model

- Now add polarized fermions to the system under same assumptions (Bloch band, Wannier states, ...)
- restrict to a fixed fermion density

comparison to disordered BHM some results

Bose-Fermi-Hubbard model

- Now add polarized fermions to the system under same assumptions (Bloch band, Wannier states, ...)
- restrict to a fixed fermion density

the Bose-Fermi-Hubbard model

$$\begin{aligned} \widehat{\mathcal{H}} = &-J_{F} \sum_{\langle ij \rangle} \widehat{c}_{i}^{\dagger} \widehat{c}_{j} - J_{B} \sum_{\langle ij \rangle} \widehat{a}_{i}^{\dagger} \widehat{a}_{j} + \frac{U}{2} \sum_{i} \widehat{n}_{i} (\widehat{n}_{i} - 1) \\ &- \mu_{B} \sum_{i} \widehat{n}_{i} + V \sum_{i} \widehat{n}_{i} \widehat{m}_{i} \end{aligned}$$

comparison to disordered BHM some results

$J_F = 0$: connection to disordered BHM

rewrite Hamiltonian:

the $J_F = 0$ Bose-Fermi-Hubbard model

$$\widehat{\mathcal{H}} = -J_B \sum_{\langle ij \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \frac{U}{2} \sum_i \widehat{n}_i (\widehat{n}_i - 1) - \sum_i (\mu_B - \sqrt{\widehat{m}_i}) \widehat{n}_i$$

• presence of a fermion acts like disorder

comparison to disordered BHM some results

$J_F = 0$: connection to disordered BHM

rewrite Hamiltonian:

the $J_F = 0$ Bose-Fermi-Hubbard model

$$\widehat{\mathcal{H}} = -J_B \sum_{\langle ij \rangle} \widehat{a}_i^{\dagger} \widehat{a}_j + \frac{U}{2} \sum_i \widehat{n}_i (\widehat{n}_i - 1) - \sum_i (\mu_B - \sqrt{\widehat{m}_i}) \widehat{n}_i$$

- presence of a fermion acts like disorder
- but a very special disorder distribution:

$$\mathcal{D}(\boldsymbol{d}) = (1 - \rho_F)\delta(\boldsymbol{d}) + \rho_F\delta(\boldsymbol{d} - V)$$

 \Rightarrow different effects

comparison to disordered BHM some results

2nd intuitive picture

only (some) fermions, no bosons

comparison to disordered BHM some results

2nd intuitive picture

non fermion sites filled up \Rightarrow incompressible but no Mott

comparison to disordered BHM some results

2nd intuitive picture

all sites filled up \Rightarrow true Mott phase

comparison to disordered BHM some results

comparison to disordered BHM some results

2nd intuitive picture

non fermion sites filled up \Rightarrow incompressible but no Mott

comparison to disordered BHM some results

comparison to disordered BHM some results

and finally the diagram

DMRG - calculation: U = 1, V = 0.25, $\rho_F = 0.25$

Alexander Mering Humboldt Workshop

comparison to disordered BHM some results

a little bit more

- lattice consits of two kinds: those with (without) fermions
- treating seperatly leads to shifted (3rd order) diagrams

comparison to disordered BHM some results

is this picture allowed?

Yes it is!

Red: total mean boson density, Green: sites without fermion, Blue: sites with fermion

comparison to disordered BHM some results

and even more

what about shaded non incompressible regions?

comparison to disordered BHM some results

What about the other regions? \Rightarrow Bose Glass

Consider Correlations $\langle \hat{a}_i^{\dagger} \hat{a}_j \rangle$:

obvious change: exponential to algebraic

Alexander Mering

Humboldt Workshop

comparison to disordered BHM some results

$J_F \rightarrow \infty$: completely different

What happens in the limit $J_F \rightarrow \infty$?

First Idea:

- the fermions are totally decoupled from bosons
- since they are free, the local number operator can be replaced by density
- we expect the phase diagram of a pure BHM, shifted by $V\langle \widehat{m}
 angle = V
 ho_F$

comparison to disordered BHM some results

$J_F \rightarrow \infty$: completely different

What happens in the limit $J_F \rightarrow \infty$?

First Idea:

- the fermions are totally decoupled from bosons
- since they are free, the local number operator can be replaced by density
- we expect the phase diagram of a pure BHM, shifted by $V\langle \hat{m}
 angle = V
 ho_F$

Unfortunatly (or luckily:)

The phase diagrams looks different, but familiar!

comparison to disordered BHM some results

phase diagram at $J_F \gg U, V$

comparison to disordered BHM some results

gap and width at $J_B = 0$

comparison to disordered BHM some results

gap and width at $J_B = 0$

 $V = 1.25, J_B = 0, J_F = 10$

comparison to disordered BHM some results

theoretical approach

Idea:

- treat fermions as bath for the bosons
- derive master equation
- therefore calculate (in interaction picture)for free fermions

 $\langle \widehat{m}_j(t) \widehat{m}_l(\tau) \rangle$

comparison to disordered BHM some results

theoretical approach

drawback

•

Resulting expression:

$$\langle \widehat{m}_{j}(t) \widehat{m}_{l}(\tau) \rangle = \int_{0}^{2\pi\rho_{F}} \mathrm{d}\xi \; \mathbf{e}^{i(\Delta D\xi - 2J_{F}\Delta T/\hbar\cos\xi)} \int_{2\pi\rho_{F}}^{2\pi} \mathrm{d}\xi' \; \mathbf{e}^{-i(\Delta D\xi' - 2J_{F}\Delta T/\hbar\cos\xi')}$$

- How to calculate $\int_0^{2\pi\rho_F} d\xi \ e^{i(\Delta D\xi 2J_F \Delta T/\hbar\cos\xi)}$? Ideas welcome!
- alternatively give expression for $\sum_{n=-\infty}^{\infty} i^n J_n(z) \frac{x^{nB}}{x^n \alpha}$

comparison to disordered BHM some results

conclusion

- BFHM with immobile fermions can be understood by shifted BHMs
- rise up of additional, non-integer incompressible phases
- rise up of compressible phases with exponential decay \Rightarrow Bose glass
- picture supported by correlations and density distributions
- numerics show: small fermionic hopping doesnt change a lot
- treatment of large J_F limit via master equation (?)

comparison to disordered BHM some results

open questions

- for huge fermionic hopping ($J_F \gg U, V$):
 - vanishing of non-integer Mott lobes
 - Mott lobes gain a gap at $J_B = 0$
 - gap vanishes at $\rho_F = 0, 1/2, 1$
- further phases? (CDW, ...)
- hypothesis: get Bose glass boundaries in disorderd BHM by shifting the BHM properly

(first) prediction of Bose glass superfluid border ???????

