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Introduction

The harmonic fluid (HF) approach:

The HF-approach allows to describe many different
one-dimensional (1D) quantum systems within the same
framework.

A universality class of systems with gapless excitations can be
described (approximated) by one and the same harmonic fluid
Hamiltonian.

It can be applied to fermionic as well as bosonic systems.

The HF-Hamiltonian is quadratic in its two canonically conjugated
operators. The dispersion relation (the spectrum) is linear.

External input is needed from exactly solvable systems. High
momentum cutoffs must be introduced.

Why interesting ? : One-dimensional systems have become
more and more experimentally relevant.



History

1950: S. Tomonaga considers a Hamiltonian which describes a
collection of harmonic oscillators, whose quanta, the ’phonons’
correspond to low-energy density and phase fluctuations.
1963: J. M. Luttinger finds the exact solution for an interacting
fermionic system which has a linear spectrum of free Bosons.
1975: First application to a bosonic system by K. B. Efetov and
A. I. Larkin.
1980: F. D. M. Haldane argues that almost all gapless 1D Fermi
systems are equivalent to the Luttinger model, at least in lowest
order pertubation theory.
1981: F. D. M. Haldane shows that a harmonic fluid description
applies quite generally to 1D quantum systems of Fermions as
well as Bosons.
2004: M. A. Cazalilla calculates correlations of interacting
homogeneous Fermi- and Bose gases for different boundary
conditions and finite temperature using the harmonic fluid
approach. He applies it particularly to the Lieb-Liniger Model of
δ-interacting bosons.



Linearization of a nonlinear Hamiltonian

Example: Spinless Bose (or Fermi) fluid:

H =
~

2

2m

∫

dx|∂xΨ(x)|2 +
1

2

∫

dx

∫

dyV (x− y)ρ(x)ρ(y)

[Ψ(x), Ψ̂†(x′)] = δ(x− x′)

Density-Phase representation:

Ψ†(x) =
√

ρ(x)eiϕ(x)

Long wavelength approximation:

ρ(x) ≈ ρ0 + Π(x)

Lineralization in Π(x) leads to the harmonic Hamiltonian (Haldane):

H =
~

2

2π

∫

dx[vJ(∂xϕ(x))2 + vN (πΠ(x))2]

[ϕ(x),Π(x′)] = iδ(x− x′)



The density operator in first quantization

The density operator in first quantization

ρ(x) =

N
∑

i=1

δ(x− xi)

can equivalently been written as

ρ(x) = ∂xΘ(x)

+∞
∑

n=−∞

δ(Θ(x) − nπ)

by using

δ[f(x)] =
δ(x− x0)

|f ′(x0)|
, where f(x0) = 0.



Long wavelength approximation

Poisson’s summation formula:

+∞
∑

n=−∞

f(n) =
+∞
∑

m=−∞

∫ +∞

−∞

dzf(z)e2mπiz

which yields:

ρ(x) = ∂xΘ(x)

+∞
∑

n=−∞

δ(Θ(x) − nπ) =
1

π
∂xΘ(x)

+∞
∑

m=−∞

e2miΘ(x)

from which the long wavelength approximation (m = 0 term)

ρ(x) ≈ ρ0 + Π(x) =
1

π
∂xΘ(x)

can be identified.
Definition:

θ(x) := Θ(x) − ρ0x⇒ ∂xθ = πΠ(x)



Visualization of Θ(x)
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Periodic Boundary Conditions

Let Ψ(x) obey periodic boundary conditions

Ψ(x+ L) = Ψ(x).

For the particle number operator we have

N =

∫ L

0

ρ(x)dx =

∫ L

0

(ρ0+Π(x))dx =

∫ L

0

1

π
∂xΘ(x)dx =

1

π
[Θ(L)−Θ(0)].

This suggests
Θ(x+ L) = Θ(x) + πN,

where N is the particle number operator. Furthermore

ϕ(x+ L) = ϕ(x) + πJ,

where J is an operator whose eigenvalues are even integers



Open Boundary Conditions (weak)

Let the current density j obey the condition

j(x = 0) = 0.

From the continuity equation

∂tρ(x, t) + ∂xj(x, t) = 0

and using that
ρ(x, t) ≈ ∂xΘ(x)/π,

it follows that the current density

j(x, t) ≈ −∂tΘ(x, t)/π.

Demanding j(x = 0) = 0 amounts to

∂tΘ(x = 0, t) = 0.



Open Boundary Conditions (strong)

Let ρ(x) obey the boundary condition

ρ(x = 0) = 0.

From the expression

ρ(x) = ∂xΘ(x)

+∞
∑

n=−∞

δ(Θ(x) − nπ)

one can see that ρ(x = 0) = 0 provided that Θ(x = 0) 6= nπ, where n
is an integer. The property

[Θ(L) − Θ(0)] = Nπ

also fixes Θ(L) = Θ(0) +Nπ.



Diagonalization of the HF-Hamiltonian

Harmonic Fluid Hamiltonian:

H =
~

2

2π

∫

dx[vJ(∂xϕ(x))2 + vN (∂xθ(x))
2]

Mode Expansions (PBC):

Θ(x) = θ0 +
πx

L
N +

1

2

∑

q 6=0

∣

∣

∣

∣

2πK

qL

∣

∣

∣

∣

1/2

e−a|q|/2[eiqxb(q) + e−iqxb†(q)]

ϕ(x) = θ0 +
πx

L
J+

1

2

∑

q 6=0

∣

∣

∣

∣

2πK

qL

∣

∣

∣

∣

1/2

e−a|q|/2 sgn(q)[eiqxb(q)+e−iqxb†(q)]

K =
√

vJ/vN , vs =
√
vNvJ , a : momentum cutoff

Result:

H =
∑

q 6=0

~vs|q|b†(q)b(q) +
~π

2L
[vN (N −N0)

2 + vJJ
2] + const



Momentum cutoff

For short-range interactions,

a−1 . qc.

qc is then fixed by demanding that

~vsqc = µ

It is an estimate of the momentum where the excitation spectrum
deviates from the linear behavior.



Field Operator

Ψ†(x) =
√

ρ(x)eiφ(x)

→ Calculate the square root of the density operator!

ρ(x) = [ρ0 + Π(x)]
+∞
∑

n=−∞

δ(Θ(x) − nπ).

Fermi’s trick:

[δ(y)]2 = Aδ(y) ⇒
√

δ(y) = A−1/2δ(y)

where the constant A depends on the particular way the Dirac delta
function is defined.

Using Poisson’s formula again:

Ψ†(x) ∝
√

ρ0 + Π(x)

+∞
∑

m=−∞

e2miΘ(x)eiφ(x)

Construction of the Fermi operator by the Jordan Wigner type
transformation

Ψ†
F (x) = Ψ†(x)eiΘ(x)



Correlations at T = 0 (PBC)

Bosons:

〈Ψ†(x)Ψ(0)〉 =

ρ0

{

b0

[

1

ρ0d(x|L)

]1/2K

+
+∞
∑

m=1

bm

[

π

ρ0d(x|L)

]2m2K+1/2K

cos(2πmρ0x)

}

Fermions:

〈Ψ†
F (x)ΨF (0)〉 =

ρ0

+∞
∑

m=0

bm

[

π

ρ0d(x|L)

]2(m+ 1

2
)2K+1/2K

sin

∣

∣

∣

∣

2π

(

m+
1

2

)

ρ0x

∣

∣

∣

∣

d(x|L) = L sin(πx/L)/π
L→∞−→ x



Correlations at T=0 (PBC)
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Correlations at T=0 (open boundary cond.)

〈Ψ†(x)Ψ(0)〉 = ρ0

[

ρ−1
0

√

d(2x|2L)d(2x′|2L)

d(x+ x′|2L)d(x− x′|2L)

]1/2K

+ . . .

d(x|L) = L sin(πx/L)/π
L→∞−→ x
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Correlations at finite temperature

Bosons:

〈Ψ(x)Ψ(0)〉T = ρ0C

[

π/LT
ρ0 sinh(πx/LT )

]
1

2K

+ . . .

Fermions:

〈ΨF (x)ΨF (0)〉T = ρ0A

[

π/LT
ρ0 sinh(πx/LT )

]
K

2
+ 1

2K

sin |πρ0x| + . . .

Thermal length:
LT = ~vs/T



How to calculate vJ and vN

Hamiltonian of the system is

H =
∑

q 6=0

~vs|q|b†(q)b(q) +
~π

2L
[vN (N −N0)

2 + vJJ
2] + const

So we have

vN =
L

π~

[

∂2E(N)

∂N2

]

N=N0

=
1

π~

(

∂µ

∂ρ

)

And following from the derivation of the harmonic fluid
Hamiltonian, we have

vJ = ~πρ0/M

∂µ
∂ρ must be taken from exact analytic solutions of the system in
question, for example from the Bethe ansatz solution of the
delta-interacting Bosons.



Decay exponent of a 1D-Bose gas . . .

. . . with δ-interaction and T=0.
From harmonic fluid approach:

〈Ψ†(x)Ψ(0)〉 ∝ x−
1

2K

K =
√

vJ/vN = π~

√

ρ

m

(

∂µ

∂ρ

)−1/2
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Path integral formulation of HF

Advantage: A more rigorous treatment is possible.

Partition function of a bosonic system in the grand canonical
ensemble as a coherent-state path integral

Z =

∫

[dψ∗dψ]e−S[ψ∗,ψ]

The functional S[ψ∗, ψ] is the Euclidean action.

S[ψ∗, ψ] =

∫

~β

0

dτ

~

∫ L

0

dx

[

~ψ∗(x, τ)∂τψ(xτ) − µψ∗(x, τ)ψ(x, τ)

+
~

2

2m
|∂xψ(x, τ)|2+1

2

∫ L

0

dx′v(x−x′)ψ∗(x, τ)ψ∗(x′, τ)ψ(x′, τ)ψ∗(x, τ)

]



Path Integral formulation of HF

Using polar decompostion ψ(x, τ) =
√

ρ(x, τ)eiϕ(x,τ), where ρ(x, τ)
and ϕ(x, τ) are real functions (i. e. not operators), the action becomes

S[ψ∗, ψ] =

∫

~β

0

dτ

~

∫ L

0

dx

[

i~ρ(x, τ)∂τϕ(xτ)+
~

2

2m
ρ(x, τ)(∂xϕ(x, τ))2

+
~

2
∂τρ(x, τ) +

~
2

8m

(∂xρ(x, τ))
2

ρ(x, τ)
− µρ(x, τ)

+
1

2

∫ L

0

dx′ρ(x, τ)v(x− x′)ρ(x′, τ)

]



Intergrating out the fast modes

First we split

ρ(x, τ) = ρ<(x, τ) + ρ>(x, τ)

ϕ(x, τ) = ϕ<(x, τ) + ϕ>(x, τ)

where ρ>(x, τ) and ϕ>(x, τ) describe the fast modes.
Definition of the effective-low energy action by

e−Seff[Θ,ϕ] =

∫

[dρ>dϕ>]e−S[ρ>,ϕ>,Θ,ϕ]

In general the integral cannot be performed, but it can be justified by
physical considerations and pertubation theory that the result is

Seff[Θ, ϕ] =

∫

~β

0

dτ

∫ L

0

dx

[

i

π
∂xΘ(x, τ)∂τϕ(x, τ) +

~

2π
vJ(∂xφ(x, τ))2

+
~

2π
vN (∂xΘ(x, τ) − πρ0)

2

]



Constructive bosonization of fermionic systems

Assume for simplicity, that the Fermi-momentum kF = 0

Assume that the spectrum has been linearized arround kF
The vacuum state |0〉0 of the system is the "Dirac sea" of an
infinite number of fermions occupying all states with k ∈ (−∞, 0]

Fermionic operators have the property

ck|0〉0 = 0, k > 0

c†k|0〉0 = 0, k ≤ 0

Bosonic operators are introduced by

bq =

√

2π

Lq

∑

k

c†k−qck, (q > 0)

b†q =

√

2π

Lq

∑

k

c†k+qck, (q > 0)



Summary

The harmonic fluid approach is a general framework for
calculating properties of gapless 1D interacting quantum
systems.

The HF approach shows, that many 1D quantum systems are
equivalent to a Hamiltonian which is quadratic in its two
canonically conjugated operators.

It works for Fermions and Bosons.

It is valid for all regimes of interaction strength and finite
temperatures.

Density, first and second order correlations can be calculated
analytically.

The HF-approach shows that correlations in 1D at T = 0 decay
with a power law and exponential at T>0 .

Parameters must be determined by external input.
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