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Why quantum Zeno effect?

Why quantum Zeno effect is interesting:
Quantum Zeno effect is a direct consequence of the fundamental
features of quantum mechanics
Quantum Zeno effect is important for some error-correcting codes
in quantum computing.
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Postulates of quantum mechanics

In quantum mechanics there are two kinds of dynamical rules:
1 Unitary evolution. Evolution of the closed quantum system is

determined by the Schrödinger equation

i~
d
dt
|Ψ〉 = Ĥ|Ψ〉.

2 A projective measurement is described by a Hermitian operator
M̂. The possible outcomes of the measurement correspond to the
eigenvalues m of the operator. Upon measuring the state |Ψ〉, the
probability of getting result m is given by

p(m) = 〈Ψ|P̂m|Ψ〉,
where P̂m is the projector onto the eigenspace of M̂ with
eigenvalue m. Given that outcome m occurred, the state of the
quantum system immediately after the measurement is

|Ψ〉 → P̂m|Ψ〉√
p(m)

.
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Non-exponential decay

Non-exponential decay
From the unitarity of the quantum evolution follows that for short
durations the decay law cannot be exponential.

The proability to find the system in the initial state can be at most
quadratic

P(t) ≈ 1− at2.
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Non-exponential decay

Example: Non-exponential decay in two-level system interacting with
the reservoir.

|g>
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Non-exponential decay

 1
 0.9
 0.8
 0.7

 0.6

 0.5

 0.4

 0.3

 0.2

 0  500  1000  1500  2000

t/∆t

ρee

 0.9

 0.95

 1

 0  50  100  150

t/∆t

 1

 0.9

 0.8

 0.7

 0.6

 0.5

 0.4

 0  200  400  600  800  1000

t/∆t

ρee

 0.94

 0.96

 0.98

 1

 0  20  40  60  80

t/∆t

Time dependence of the occupation of the exited level of the decaying
system.
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Quantum Zeno effect

Quantum Zeno effect is a consequence of two peculiarities of quantum
mechanics:

1 Unitary evolution: non-exponential decay for short times,
P(t) ≈ 1− at2.

2 Projection postulate: after the measurement the state of the
system becomes one of the eigenstates of the measured
observable.

The probability to find the system in the initial state after N
measurements is

P(T ) =
(

1− a(T/N)2
)N

→ 1.

Evolution of the frequently measured quantum system is frozen —
quantum Zeno effect.
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Quantum Zeno effect

Jump rate during the measurement

R(i → f ) =
2π

~

∫ +∞

−∞
G(ω)Pif (ω)dω (1)

where

G(ω) = ρ(ω)|Vif (ω)|2,

Pif (ω) =
1
π

Re
∫ ∞

0
Fif (t)ei(ω+ωif )t dt .

Julius Ruseckas (Lithuania) Quantum Zeno and anti-Zeno effects September 3, 2006 9 / 30



Quantum Zeno and anti-Zeno effects
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Conditions for the quantum Zeno effect.
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Classical Monte-Carlo method

Let us consider the following equation:

dx
dt

= −λ(x − a). (2)

After short time interval ∆t the variable x is

x(t + ∆t) = (1− λ∆t)x(t) + λ∆t a .

During the time interval ∆t two possibilities can occur. Either x is equal
to a with probability

p = λ∆t ,

or x does not change with probability 1− p.
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Classical Monte-Carlo method

Equation (2) can be replaced by the stochastic process:
1 Generate a random number rn distributed uniformly on the interval

[0, 1] .
2 Compare p with rn and calculate x(tn+1) according to the rule

x(tn+1) = a, p < rn,

x(tn+1) = x(tn), p > rn.
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Quantum Monte-Carlo method

Let us consider the system described by a master equation

∂

∂t
ρ̂(t) = Mρ̂. (3)

The superoperator M can be separated into two parts

M = L+ J .

Since equation should preserve the trace of the density matrix, we
have the equality

Tr{Lρ̂(t)}+ Tr{J ρ̂(t)} = 0.
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Quantum Monte-Carlo method

Equation (3) can be rewritten in the form

ρ̂(t + ∆t) =
ρ̂(t) + Lρ̂(t)∆t

1 + Tr{Lρ̂(t)}∆t
(1− Tr{J ρ̂(t)}∆t)

+
J ρ̂(t)

Tr{J ρ̂(t)}
Tr{J ρ̂(t)}∆t .

This equation can be interpreted in the following way: during the time
interval ∆t two possibilities can occur.

Julius Ruseckas (Lithuania) Quantum Zeno and anti-Zeno effects September 3, 2006 14 / 30



Quantum Monte-Carlo method

Either after time ∆t the density matrix is equal to conditional density
matrix

ρ̂jump(t + ∆t) =
J ρ̂(t)

Tr{J ρ̂(t)}
with the probability

pjump(t) = Tr{J ρ̂(t)}∆t

or to the density matrix

ρ̂no−jump(t + ∆t) =
ρ̂(t) + L∆t ρ̂(t)

1 + Tr{Lρ̂(t)}∆t

with the probability 1− pjump(t). Thus the equation (3) can be replaced
by the stochastic process.
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Quantum Monte-Carlo method

Further we assume that the superoperators L and J have the form

Lρ̂ =
1
i~

(Ĥeffρ̂− ρ̂Ĥ†eff),

J ρ̂ = Ĉρ̂Ĉ†.

The operators Ĥeff and Ĉ are non-Hermitian in general.
If the density matrix at the time t factorizes as ρ̂(t) = |Ψ(t)〉〈Ψ(t)| then
after time interval ∆t the density matrices ρ̂jump(t + ∆t) and
ρ̂no−jump(t + ∆t) factorize also.
Therefore, equation for density matrix can be replaced by the
corresponding equation for the state vectors.
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Quantum Monte-Carlo method

The probability of a jump occurring in the time interval ∆t is

pjump(t) = 〈Ψ(t)|Ĉ†Ĉ|Ψ(t)〉∆t .

When the wavefunction |Ψ(tn)〉 is given, the wavefunction |Ψ(tn+1)〉 is
determined by the following algorithm:

1 evaluate the collapse probability pjump(tn)
2 generate a random number rn distributed uniformly on the interval

[0, 1]

3 compare pjump(tn) with rn and calculate |Ψc(tn+1)〉 according to the
rule

|Ψ(tn+1)〉 ∼ Ĉ|Ψc(tn)〉, pjump(tn) < rn,

|Ψ(tn+1)〉 ∼ exp
(
− i

~
Ĥeff∆t

)
|Ψ(tn)〉, pjump(tn) > rn.
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Model of the measurement
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The detector

The Hamiltonian of the detecting atom is

ĤD =
~ΩD

2
σ̂z .

The detecting atom interacts with the electromagnetic field. The
interaction of the atom with the field is described by the term

LDρ̂D = −Γ

2
(σ̂+σ̂−ρ̂D − 2σ̂−ρ̂Dσ̂+ + ρ̂Dσ̂+σ̂−).

Interaction with the measured system:

ĤI = ~λ|g〉〈g|(σ̂+ + σ̂−).
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Duration of the measurement

Two level system can act as an effective detector when the decay rate
Γ is large. Then

Fe,g(t) = ρbb(t) ≈ exp
(
− t

τM

)
where

τM =
Γ

2λ2

is the characteristic duration of the measurement.
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Stochastic simmulation of the detector

The Hamiltonian of the measured system is

ĤA = ~ωA|e〉〈e|,

The operator Ĉ describing jumps is

Ĉ =
√

Γσ̂−,

and the effective Hamiltonian

Ĥeff = ĤA + ĤD + ĤI − i~
Γ

2
σ̂+σ̂−.
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Stochastic simmulation of the detector
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Rabi oscillations

The perturbation operator is

V̂ = −~ΩR(|e〉〈g|+ |g〉〈e|) cos Ωt ,

One can estimate the transition rates in the measured system as

Γe→g ≈ Γg→e ≈
Ω2

R
2

τM

1 + (τM∆ω)2 ,

where ∆ω = ωA − Ω is the detuning.
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Rabi oscillations
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Decaying system

Fermi’s golden rule:

Γ
(0)
e→g = 2πρ(ωA)|g(ωA)|2.

In the numerical calculations we take the frequencies of the reservoir ω
distributed in the region [ωA − Λ, ωA + Λ] with the constant spacing ∆ω.
Simplest choice of the interaction strength g(ω):

g(ω) = g0

(
1 +

a
Λ

(ω − ωA)
)

.

The decay rate, obtained using the Laplace transform method

Γ
(1)
e→g ≈ Γ

(0)
e→g

(
1−

Γ
(0)
e→g

πΛ
(5a2 − 1)

)
.
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Measurement of the decaying system

When the parameter a is zero, the decay rate of the measured
system is

Γe→g = Γ
(0)
e→g

(
1− 2

π

1
ΛτM

+ · · ·
)

.

When a is not zero: in order to estimate the decay rate, we solve
the Liouville-von Neumann equation for the density matrix of the
system, including additional terms describing decay of the
non-diagonal elements with rate 1/τM . The
measurement-modified decay rate is

Γe→g = Γ
(0)
e→g

(
1−

Γ
(0)
e→g

πΛ
(5a2 − 1)

)
+ Γ

(0)
e→g

2
π

(a2 − 1)

ΛτM
.
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Measurement of the decaying system
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Typical quantum trajectories of the measured decaying system.
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Measurement of the decaying system
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Summary

The quantum trajectories produced by stochastic simulations
show the probabilistic behavior exhibiting the collapse of the
wave-packet in the measured system, although the quantum
jumps were performed only in the detector.
The general expression (1) for the jump rate during the
measurement gives good agreement with the numerical data,
unless the interaction of the measured system with the reservoir is
strongly mode dependent.
The decay rates mostly depend only on one parameter — the
duration of the measurement. Other details of the detector are not
important.
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Thank you!
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