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Outline:

• Motivation: single-photon sources, diamagnetic materials etc.

• QED in linear dielectrics — a reminder

• Nonlinear interaction Hamiltonian and nonlinear noise polarization
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A brief guide towards nonlinear quantum optics

• Vacuum QED: Maxwell’s equations in free space without matter, Lorentz
invariant

• Minimal coupling: breaks relativistic invariance, matter–field contained
in canonical momentum p̂α − qα/cÂ(r̂α)

• Multipolar coupling: alternative description in terms of polarization and
magnetization, Power–Zienau transformation

• Linear response theory: response of polarization and magnetization to
electric and magnetic fields

• ‘Macroscopic’ QED: quantization of the electromagnetic field in linear
dielectrics with dispersion and absorption

• Nonlinear QED: . . .

Goal: to provide a consistent theory for quantizing the electromagnetic field
in nonlinear dielectrics with dispersion and absorption



Single-photon sources, etc.
QED in linear dielectrics
Nonlinear noise polarization

Some practical motivation, if needed...
single-photon and entangled-photon sources needed in

• all-optical quantum information processing

• metrology, for building luminosity standards

QIP with linear optics still needs highly nonlinear elements such as single-
photon sources and detectors!

ρ1

ρ2

ρ3

ρ4

5ρ

ρ

U(N) Enhancing single-photon efficiency by post-
selection does not work!
Neither does enhancing the detection efficiency
by post-selection.
⇒ Better sources and detectors are needed!

D.W. Berry, S. Scheel, B.C. Sanders, and P.L. Knight, Phys. Rev. A 69, 031806(R) (2004);
D.W. Berry, S. Scheel, C.R. Myers, B.C. Sanders, P.L. Knight, and R. Laflamme, New J.
Phys. 6, 93 (2004); P. Kok, IEEE: Sel. Top. Quantum Electron. 9, 1498 (2003).
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Some practical motivation, if needed...
single-photon and entangled-photon sources needed in

• all-optical quantum information processing

• metrology, for building luminosity standards

QIP with linear optics still needs highly nonlinear elements such as single-
photon sources and detectors!

ρ1

ρ2

ρ3

ρ4

5ρ

ρ

U(N) Enhancing single-photon efficiency by post-
selection does not work!
Neither does enhancing the detection efficiency
by post-selection.
⇒ Better sources and detectors are needed!
How well can single-photon sources be made?

D.W. Berry, S. Scheel, B.C. Sanders, and P.L. Knight, Phys. Rev. A 69, 031806(R) (2004);
D.W. Berry, S. Scheel, C.R. Myers, B.C. Sanders, P.L. Knight, and R. Laflamme, New J.
Phys. 6, 93 (2004); P. Kok, IEEE: Sel. Top. Quantum Electron. 9, 1498 (2003).
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Causality and unavoidable decoherence

Causality in macroscopic electrodynamics: Kramers–Kronig relations

εI(ω) =
1

π
P

∞∫
−∞

dω′
εR(ω′)− 1

ω′ − ω
≡ ε(ω)− 1 =

1

iπ
[ε(ω)− 1] ∗ P

1

ω

(Kramers–Kronig relations also exist for nonlinear susceptibilities!)
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Causality and unavoidable decoherence

Causality in macroscopic electrodynamics: Kramers–Kronig relations

εI(ω) =
1

π
P

∞∫
−∞

dω′
εR(ω′)− 1

ω′ − ω
≡ ε(ω)− 1 =

1

iπ
[ε(ω)− 1] ∗ P

1

ω

(Kramers–Kronig relations also exist for nonlinear susceptibilities!)

Immediate consequences from causality requirements:

• effective Lagrangians such as Heisenberg–Euler are complex

• trapping capabilitity of atoms and ions related to loss rate

• lower bounds on absorption probability of beam splitters p ∼ 2·10−6(ω/ωT)4

ability to manipulate ⇐⇒ decoherence

S. Scheel, Phys. Rev. A 73, 013809 (2006).
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Diamagnetism and superconductivity

Goal: find phenomenological description of e.m. field interaction with macro-
scopically large systems

Linear response theories: • linear dielectric media
• paramagnetic materials (paramagnetism is

present even without external magnetic fields)

Nonlinear response theories: • nonlinear dielectric media
• diamagnetic materials (diamagnetism is in-

duced by external magnetic fields)
• superconductivity (perfect diamagnetism)
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Naive extension of vacuum QED
mode expansion of the field operators

Ê(r) = i
∑

λ

ωλAλ(r)âλ + h.c.

in terms of bosonic modes with [âλ, â†λ′] = δλλ′

Naive introduction of a (complex) n(ω) leads to decaying commutation rules!

[â(r, ω), â†(r′, ω′)] = e−nI(ω)ω/c|r−r′|δ(ω − ω′)



Single-photon sources, etc.
QED in linear dielectrics
Nonlinear noise polarization

Naive extension of vacuum QED
mode expansion of the field operators

Ê(r) = i
∑

λ

ωλAλ(r)âλ + h.c.

in terms of bosonic modes with [âλ, â†λ′] = δλλ′

Naive introduction of a (complex) n(ω) leads to decaying commutation rules!

[â(r, ω), â†(r′, ω′)] = e−nI(ω)ω/c|r−r′|δ(ω − ω′)

—

Solution: introduce Langevin noise!
Example: damped harmonic oscillator 〈â(t)〉 = 〈â(t′)〉 e−Γ(t−t′)

But: relation for expectation values cannot hold for operators!
⇒ add Langevin noise f̂ with 〈f̂〉 = 0

˙̂a = −Γâ + f̂

Langevin force takes care of ETCR
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Classical electrodynamics with media without external sources:

∇ ·B(r, t) = 0 , ∇× E(r, t) = −Ḃ(r, t) ,

∇ ·D(r, t) = 0 , ∇×H(r, t) = Ḋ(r, t)

need to be supplemented by constitutive relations D[E] and H[B]
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⇒ causal response to electric field
But: what about fluctuations associated with the dissipation?
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Classical macroscopic electrodynamics

Classical electrodynamics with media without external sources:

∇ ·B(r, t) = 0 , ∇× E(r, t) = −Ḃ(r, t) ,

∇ ·D(r, t) = 0 , ∇×H(r, t) = Ḋ(r, t)

need to be supplemented by constitutive relations D[E] and H[B]
assume purely dielectric materials without magnetic response

D(r, t) = ε0E(r, t) + P(r, t)

assume linear response

P(r, t) = ε0

∞∫
0

dτ χ(r, τ)E(r, t− τ) + PN(r, t)

⇒ causal response to electric field
But: what about fluctuations associated with the dissipation?

use results of Leontovich–Rytov theory

⇒ noise polarization PN(r, t) is a Langevin force!
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Langevin forces as fundamental fields

Helmholtz equation for electric field:

∇×∇× E(r, ω)−
ω2

c2
ε(r, ω)E(r, ω) = µ0ω

2PN(r, ω)

Solution in terms of classical dyadic Green function:

E(r, ω) = µ0ω
2

∫
d3sG(r, s, ω) ·PN(s, ω)

Can express all e.m. fields in terms of
Langevin forces and dyadic Green function!

calculating Green function is a classical scattering problem

(and is better left to electrical engineers who know better how to solve it. . . )

L. Knöll, S. Scheel, and D.-G. Welsch, in Coherence and Statistics of Photons and Atoms
(Wiley, New York, 2001).
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Field quantization

Regard the fundamental field f(r, ω) as a bosonic vector field with the ETCR[̂
f(r, ω), f̂ †(r′, ω′)

]
= δ(r− r′)δ(ω − ω′)U

relation between fundamental fields and noise polarization:

P̂N(r, ω) = i

√
~ε0

π
εI(r, ω) f̂(r, ω)

Schrödinger operator of the electric field:

Ê(r) =

∫ ∞

0
dω Ê(r, ω) + h.c.

Ê(r, ω) = i

√
~

ε0π

ω2

c2

∫
d3s

√
εI(s, ω)G(r, s, ω) · f̂(s, ω)

compare with Ê(r) = i
∑

λ ωλAλ(r)âλ + h.c.: generalized mode decomposition
in terms of bosonic variables that describe collective excitation!
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Mesocopic justification — Hopfield model'

&

$

%
e.m. field

A, E
-�

'

&

$

%
polarization

X, P
-�

'

&

$

%
heat bath

Yω, Qω

J.J. Hopfield, Phys. Rev. 112, 1555 (1958); B. Huttner and S.M. Barnett, Phys. Rev. A
46, 4306 (1992); L.G. Suttorp and M. Wubs, 70, 013816 (2004).
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J.J. Hopfield, Phys. Rev. 112, 1555 (1958); B. Huttner and S.M. Barnett, Phys. Rev. A
46, 4306 (1992); L.G. Suttorp and M. Wubs, 70, 013816 (2004).
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J.J. Hopfield, Phys. Rev. 112, 1555 (1958); B. Huttner and S.M. Barnett, Phys. Rev. A
46, 4306 (1992); L.G. Suttorp and M. Wubs, 70, 013816 (2004).
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Consistency checks

• ETCR between electric field and magnetic induction
√

[
Ê(r), B̂(r′)

]
= −

i~
ε0

∇× δ(r− r′)U

S. Scheel, L. Knöll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998); T.D. Ho, S.Y. Buh-
mann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, Phys. Rev. A 68, 043816 (2003).
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Consistency checks

• ETCR between electric field and magnetic induction
√

[
Ê(r), B̂(r′)

]
= −

i~
ε0

∇× δ(r− r′)U

• consistent with fluctuation-dissipation theorem
√

〈0|Ê(r, ω)Ê†(r′, ω′)|0〉 =
~ω2

πε0c2
ImG(r, r′, ω)δ(ω − ω′)

S. Scheel, L. Knöll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998); T.D. Ho, S.Y. Buh-
mann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, Phys. Rev. A 68, 043816 (2003).
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Consistency checks

• ETCR between electric field and magnetic induction
√

[
Ê(r), B̂(r′)

]
= −

i~
ε0

∇× δ(r− r′)U

• consistent with fluctuation-dissipation theorem
√

〈0|Ê(r, ω)Ê†(r′, ω′)|0〉 =
~ω2

πε0c2
ImG(r, r′, ω)δ(ω − ω′)

• Maxwell’s equations follow from bilinear Hamiltonian
√

Ĥ =

∫
d3r

∞∫
0

dω ~ω f̂ †(r, ω) · f̂(r, ω)

S. Scheel, L. Knöll, and D.-G. Welsch, Phys. Rev. A 58, 700 (1998); T.D. Ho, S.Y. Buh-
mann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kästel, Phys. Rev. A 68, 043816 (2003).
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What is it all good for?
entanglement degradation in quantum communication:

• Entanglement degradation of Gaussian states in optical fibres
S. Scheel and D.-G. Welsch, PRA 64, 063811 (2001)

• Kraus operator decomposition of a lossy beam splitter
S. Scheel, K. Nemoto, W.J. Munro, and P.L. Knight, PRA 68, 032310 (2003)

atomic decoherence processes:

• Spontaneous emission in LHMs and near carbon nanotubes
T.D. Ho, S.Y. Buhmann, L. Knöll, D.-G. Welsch, S. Scheel, and J. Kaestel, PRA 68,

043816 (2003); I.V. Bondarev and P. Lambin, PRB 70, 035407 (2004)

• Thermal spin flips in atom chips and spatial decoherence
P.K. Rekdal, S. Scheel, P.L. Knight, and E.A. Hinds, PRA 70, 013811 (2004); S. Scheel,

P.K. Rekdal, P.L. Knight, and E.A. Hinds, PRA 72, 042901 (2005); R. Fermani,

S. Scheel, and P.L. Knight, PRA 73, 032902 (2006)

Interatomic and intermolecular forces

• Casimir–Polder forces
S.Y. Buhmann, L. Knöll, D.-G. Welsch, and T.D. Ho, PRA 70, 052117 (2004)

• Casimir forces
C. Raabe and D.-G. Welsch, PRA 71, 013814 (2005)
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Nonlinear (cubic) Hamiltonian

Two ways to approach nonlinear interaction:

• microscopic theory with anharmonic oscillators

• macroscopic ansatz for Hamiltonian

⇒ microscopic justification needed!

Derivation of approximate interaction Hamiltonians:

• collection of N-level atoms non-resonantly coupled to electromagnetic
field

• pick out nonlinear process of interest (e.g. three-wave mixing, Kerr
effect, etc.)

• effectively remove dependencies on atomic quantities

• approximate interaction Hamiltonian containing only photonic operators
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Nonlinear (cubic) Hamiltonian
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• free e.m. field coupled to N-level atoms
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Nonlinear (cubic) Hamiltonian
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• free e.m. field coupled to N-level atoms

• derive approximate interaction Hamiltonian (e.g. three-wave mixing)
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Nonlinear (cubic) Hamiltonian

'

&

$

%
e.m. field

A, E
-�

'

&

$

%
approximate Hint

a2
1a

†
2, a†21 a2

�
�

�
�

�
�

�
�
��

'

&

$

%
polarization

X, P
-�

'

&

$

%
heat bath

Yω, Qω

• free e.m. field coupled to N-level atoms

• derive approximate interaction Hamiltonian (e.g. three-wave mixing)

• approximate N-level atoms by harmonic oscillators, coupled to bath
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Nonlinear (cubic) Hamiltonian
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• free e.m. field coupled to N-level atoms

• derive approximate interaction Hamiltonian (e.g. three-wave mixing)

• approximate N-level atoms by harmonic oscillators, coupled to bath

• diagonalize the matter Hamiltonian
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Nonlinear (cubic) Hamiltonian
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• free e.m. field coupled to N-level atoms

• derive approximate interaction Hamiltonian (e.g. three-wave mixing)

• approximate N-level atoms by harmonic oscillators, coupled to bath

• diagonalize the matter Hamiltonian

• diagonalize the bilinear part of the total Hamiltonian
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Nonlinear (cubic) Hamiltonian

'

&

$

%
polaritons

f(r, ω), f †(r, ω)

6

?

'

&

$

%
approximate Hint

ai 7→ f(r, ωi)

• free e.m. field coupled to N-level atoms

• derive approximate interaction Hamiltonian (e.g. three-wave mixing)

• approximate N-level atoms by harmonic oscillators, coupled to bath

• diagonalize the matter Hamiltonian

• diagonalize the bilinear part of the total Hamiltonian

• re-express photonic operators by dynamical variables
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Nonlinear (cubic) Hamiltonian

Find interaction Hamiltonian consistent with microscopic considerations:

ĤNL =
∫

d1 d2 d3αijk(1, 2, 3)̂f †i (1)̂fj(2)̂fk(3) + h.c. k ≡ (rk, ωk)

most general normal-ordered form of the nonlinear interaction energy corre-
sponding to a χ(2) medium
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Nonlinear (cubic) Hamiltonian

Find interaction Hamiltonian consistent with microscopic considerations:

ĤNL =
∫

d1 d2 d3αijk(1, 2, 3)̂f †i (1)̂fj(2)̂fk(3) + h.c. k ≡ (rk, ωk)

most general normal-ordered form of the nonlinear interaction energy corre-
sponding to a χ(2) medium

Observation #1: Faraday’s law

∇× Ê(r) = − ˙̂B(r) = −
1

i~
[
B̂(r), ĤL + ĤNL

]
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Nonlinear (cubic) Hamiltonian

Find interaction Hamiltonian consistent with microscopic considerations:

ĤNL =
∫

d1 d2 d3αijk(1, 2, 3)̂f †i (1)̂fj(2)̂fk(3) + h.c. k ≡ (rk, ωk)

most general normal-ordered form of the nonlinear interaction energy corre-
sponding to a χ(2) medium

Observation #1: Faraday’s law

∇× Ê(r) = − ˙̂B(r) = −
1

i~
[
B̂(r), ĤL + ĤNL

]
But (transverse) electric field and magnetic induction are purely electromag-
netic fields without knowledge of the interaction. Therefore, their functional
form is as in the linear theory!
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Nonlinear (cubic) Hamiltonian

Find interaction Hamiltonian consistent with microscopic considerations:

ĤNL =
∫

d1 d2 d3αijk(1, 2, 3)̂f †i (1)̂fj(2)̂fk(3) + h.c. k ≡ (rk, ωk)

most general normal-ordered form of the nonlinear interaction energy corre-
sponding to a χ(2) medium

Observation #1: Faraday’s law

∇× Ê(r) = − ˙̂B(r) = −
1

i~
[
B̂(r), ĤL + ĤNL

]
⇒

[
B̂(r), ĤNL

]
= 0

But (transverse) electric field and magnetic induction are purely electromag-
netic fields without knowledge of the interaction. Therefore, their functional
form is as in the linear theory!
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk,
other terms contribute to higher-order nonlinear processes!

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk,
other terms contribute to higher-order nonlinear processes!

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
⇓

+
µ0

~2

[[
D̂L(r), ĤL

]
, ĤL

]
+

µ0

~2

[[
D̂L(r), ĤL

]
, ĤNL

]
+

µ0

~2

[[
D̂L(r), ĤNL

]
, ĤL

]
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk,
other terms contribute to higher-order nonlinear processes!

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)

+
µ0

~2

[[
D̂L(r), ĤL

]
, ĤNL

]
0 = +

µ0

~2

[[
D̂L(r), ĤNL

]
, ĤL

]
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk,
other terms contribute to higher-order nonlinear processes!

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
⇓

0 = +
µ0

~2

[[
D̂L(r), ĤNL

]
, ĤL

]
+

µ0

~2

[[
P̂NL(r), ĤL

]
, ĤL

]
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Derivation of the nonlinear polarization

Observation #2: Ampere’s law, keep only terms linear in αijk,
other terms contribute to higher-order nonlinear processes!

∇×∇× Ê(r) = −µ0
¨̂DL(r) −µ0

¨̂PNL(r)
⇓

0 = +
µ0

~2

[[
D̂L(r), ĤNL

]
, ĤL

]
+

µ0

~2

[[
P̂NL(r), ĤL

]
, ĤL

]
Particular solution:

[
D̂L(r), ĤNL

]
= −

[
P̂NL(r), ĤL

]
General solution includes commutants with ĤL which are functionals of the
number density operator f̂ †(r, ω)̂f(r, ω).

But: commutants must vanish to avoid divergences ⇒ Particular solution is
general solution!
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Derivation of the nonlinear polarization

Neglected terms in one particular order appear as additional contributions in
higher orders.

Example: χ(3)

• terms
[
D̂L(r), Ĥ

(3)
NL

]
and

[
P̂(3)

NL(r), ĤL

]
are trilinear in the dynamical vari-

ables

• contributions from χ(2) such as
[[

D̂L(r), Ĥ
(2)
NL

]
, Ĥ(2)

NL

]
,
[[

P̂(2)
NL(r), ĤL

]
, Ĥ(2)

NL

]
and

[[
P̂(2)

NL(r), Ĥ
(2)
NL

]
, ĤL

]
are also trilinear

• double commutators are quadratic in χ(2) and can be neglected only if
|χ(2)|2/|χ(3)| � 1

⇒ hierarchy as known from classical nonlinear optics
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Derivation of the nonlinear polarization

Solve formally for nonlinear polarization:

P̂NL(r) = −
1

i~
L−1

L

[
D̂L(r), ĤNL

]
Liouvillian LL generated by Hamiltonian ĤL: LL• = 1/(i~)[•, ĤL]

By decomposition of the linear displacement into its reactive and noise parts,
we can identify the noise contribution to the nonlinear polarization:

P̂(N)
NL (r) = −

1

i~
L−1

L

[
P̂(N)

L (r), ĤNL

]
P̂(N)

NL (r) vanishes if εI(r, ω) → 0, i.e. if there is no noise!

Inversion of the Liouvillian:

P̂NL(r) =
i

~
lim
s→0

∞∫
0

dτ e−sτe−
i

~ĤLτ
[
D̂L(r), ĤNL

]
e

i

~ĤLτ
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Classical nonlinear polarization

Definition of the nonlinear polarization within framework of response theory:

PNL,l(r, t) = ε0

t∫
−∞

dτ1dτ2 χ(2)
lmn(r, t− τ1, t− τ2)Em(r, τ1)En(r, τ2) + P (N)

NL,l(r, t)

We have to match this expression to what we have derived before!
In that way we find functional relation χ(2)

lmn ↔ αijk.
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Classical nonlinear polarization

Definition of the nonlinear polarization within framework of response theory:

PNL,l(r, t) = ε0

t∫
−∞

dτ1dτ2 χ(2)
lmn(r, t− τ1, t− τ2)Em(r, τ1)En(r, τ2) + P (N)

NL,l(r, t)

We have to match this expression to what we have derived before!
In that way we find functional relation χ(2)

lmn ↔ αijk.

Slowly-varying amplitude approximation: only three relevant field amplitudes
with mid-frequencies Ω1 = Ω2 + Ω3,Ω2,Ω3, taken out of the integral at t:

P̃ (++)
NL,l (r,Ω1) = ε0χ

(2)
lmn(r,Ω2,Ω3)Ẽm(r,Ω2)Ẽn(r,Ω3) + P̃ (N,++)

NL,l (r,Ω1)
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Classical nonlinear polarization

Definition of the nonlinear polarization within framework of response theory:

PNL,l(r, t) = ε0

t∫
−∞

dτ1dτ2 χ(2)
lmn(r, t− τ1, t− τ2)Em(r, τ1)En(r, τ2) + P (N)

NL,l(r, t)

We have to match this expression to what we have derived before!
In that way we find functional relation χ(2)

lmn ↔ αijk.

Slowly-varying amplitude approximation: only three relevant field amplitudes
with mid-frequencies Ω1 = Ω2 + Ω3,Ω2,Ω3, taken out of the integral at t:

P̃ (++)
NL,l (r,Ω1) = ε0χ

(2)
lmn(r,Ω2,Ω3)Ẽm(r,Ω2)Ẽn(r,Ω3) + P̃ (N,++)

NL,l (r,Ω1)

Now insert expression for electric field in terms of Green function G(r, s, ω)
and dynamical variables f̂(r, ω) and compare...
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Comparison with classical polarization

find solution to integral equation∫
d3s

√
εI(s,Ω1)αmjk(s,Ω1, s2,Ω2, s3,Ω3)Glm(r, s,Ω1) =

~2

iπc2

√
π

~ε0

Ω2
2Ω

2
3

Ω1ε(r,Ω1)

√
εI(s2,Ω2)εI(s3,Ω3)χ

(2)
lmn(r,Ω2,Ω3)Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)

Fredholm integral equation is solved by inverting the integral kernel
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Comparison with classical polarization

find solution to integral equation∫
d3s

√
εI(s,Ω1)αmjk(s,Ω1, s2,Ω2, s3,Ω3)Glm(r, s,Ω1) =

~2

iπc2

√
π

~ε0

Ω2
2Ω

2
3

Ω1ε(r,Ω1)

√
εI(s2,Ω2)εI(s3,Ω3)χ

(2)
lmn(r,Ω2,Ω3)Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)

Fredholm integral equation is solved by inverting the integral kernel

Helmholtz operator: Hij(r, ω) = ∂r
i ∂

r
j − δij∆r − (ω2/c2)ε(r, ω)δij

inverts Green function: Hij(r, ω)Gjk(r, s, ω) = δikδ(r− s)

αijk(r,Ω1, s2,Ω2, s3,Ω3) = ~2

iπc2

√
π

~ε0

Ω2
2Ω

2
3

Ω1

√
εI(s2,Ω2)εI(s3,Ω3)

εI(r,Ω1)

×Hli(r,Ω1)
[

χ(2)
imn(r,Ω2,Ω3)

ε(r,Ω1)
Gmj(r, s2,Ω2)Gnk(r, s3,Ω3)

]
⇒ sought functional relation between nonlinear coupling αijk in the nonlinear

Hamiltonian ĤNL and measurable nonlinear susceptibility χ(2)
lmn
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Nonlinear noise polarization

• insert solution for αijk into expression for P̂(N)
NL (r)

• rewrite expression in terms of (slowly-varying) electric fields

P̂ (N)
NL,m(r,Ω1) =

ε0c2

Ω2
1

Hmn(r,Ω1)

[
χ(2)

imn(r,Ω2,Ω3)

ε(r,Ω1)
Ẽm(r,Ω2)Ẽn(r,Ω3)

]

(Helmholtz operator should not be taken as second-order partial differential
operator for consistency with SVAA)

estimate strength of nonlinear noise polarization:

〈P̂ (N)
NL 〉

〈P̂ (N)
L 〉

∼
|χ(2)|
|ε|

|E|

⇒ nonlinear noise grows with amplitude of pump fields

S. Scheel and D.-G. Welsch, Phys. Rev. Lett. 96 073601 (2006);
S. Scheel and D.-G. Welsch, J. Phys. B: At. Mol. Opt. Phys. 39, S711 (2006).
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Summary and outlook

• macroscopic quantum theory for χ(2) interactions that includes absorption
and dispersion

• gives a cubic Hamiltonian with a nonlinear coupling constant that can be
related to the nonlinear susceptibility

• can treat inhomogeneous situations easily because all geometrical infor-
mation is contained in Green functions

• theory leads to a nonlinear noise polarization that has hitherto been
ignored

• extension to higher-order nonlinearities in the same way; lower-order pro-
cesses contribute to noise polarization

• application to entangled-light generation, limits to fidelity

• limits to uses of Kerr and cross-Kerr effects in QIP

• new way of finding nonlinear fluctuation-dissipation theorems


