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1. Introduction

Multiconfiguration approximation nowadays is one

of the main and most developed methods of investi-

gation of atoms and ions. One of the basic stages in

establishing this method was the work by A. Jucys

[1], where the multiconfiguration Hartree–Fock equa-

tions were correctly and consistently derived for the

first time. Taking into account this consideration and

the following tradition of many years, in this paper

these equations will be referred to as the Hartree–Fock–

Jucys (HFJ) equations. The publication of the paper

[1] is closely related to the fact that A. Jucys, still

being a young scientist before the World War II, has

been trained by R.D. Hartree, and in the beginning of

fifties – by V. Fock. Right after the above-mentioned

publication, a whole series of works were performed

where these equations for particular atoms were solved

both numerically and analytically [2–7]. This enabled

determination of the main properties of the solutions

of HFJ equations and formulation of simpler to solve

and easier to perceive simplified (two-configuration)

equations. In all the above-mentioned publications,

as well as in many others, the equations were solved

“by hand”, i. e. using only mechanical calculating ma-

chines. By the initiative of Prof. A. Jucys, the first

electronic computer in Lithuania (BESM-2M) was ob-

tained and a Computation Centre was established. This

allowed development of a program for solving the or-

dinary Hartree–Fock (HF) equations numerically [8],

i. e. considerable automation of calculations of the ra-

dial orbitals. Later on, such programs were developed

in series for more advanced computers as well, first in

the machine codes [9] and then in the FORTRAN algo-

rithmic language [10]. The development of one’s own

programs was justified mostly by the significant dif-

ferences between the locally available computers and

those from the West both in the structure and in the

peculiarities of the algorithmic languages. The pro-

grams for numerical solution of the HF equations, de-

veloped at the Department of Theory of Atom (previ-

ously the Department of Quantum-Mechanical Compu-

tations), and many other programs, once were widely

accepted in the scientific centres of the former Soviet

Union. This was enhanced by the publication of 20 is-

sues of “Collection of Programs for the Automation

of Atomic Calculations” in our Institute from 1977 to

1988, where 48 FORTRAN programs were published.

It must be noted that it was a personal initiative of

Prof. A. Jucys to use FORTRAN for program devel-

opment as early as in the beginning of the seventies of

the previous century. This fact is now undoubted. It

is the language that the overwhelming majority of the

programs used for the atomic calculations all over the

world are written in.

The author of this paper developed the program for

numerical solution of the simplified HFJ equations in

the course of his thesis. It was communicated at the
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All-Union seminars on the theory of atom and atomic

spectra in 1971 [11] and 1972 [12]. The second sem-

inar was held at the Institute of Spectroscopy (ISAN)

near Moscow, and the members of the seminar lived in

Moscow city and went to and from ISAN by a special

bus. Once in the evening on the trip back to Moscow,

Prof. A. Jucys seated me beside him and we had a

lengthy discussion on the problems of solving the mul-

ticonfiguration equations. Then, making reference to

the known properties of the solutions of this type of

equations, Professor expressed a wish that it would be

better not to solve the equations but rather to obtain the

radial orbitals (ROs) of the virtually excited electrons

directly from the Hartree–Fock functions of the shells

being corrected. Regrettably, this idea has been imple-

mented for the first time considerably later [13]. The

survey of its development is one of the tasks of this

work.

In the next section, the complete and simplified HFJ

equations are briefly examined, as well as the main

properties of their solutions. The topics of obtaining

the transformed radial orbitals simulating the solutions

of the multiconfiguration equations are discussed in

Section 3. In Section 4, some ideas in practical ap-

plication of the multiconfiguration method that have

been implemented during the last decade are treated. In

the majority of publications, the approximation when

the interconfiguration matrix elements (ICMEs) of the

Hamiltonian are taken into account is called the config-

uration interaction. Yet, Prof. A. Jucys has been em-

phatically against using this term, because there are

no real physical interactions behind the nonzero val-

ues of ICMEs, but just the fact that the initial single-

configuration approximation is not sufficiently accu-

rate. Following the mandates of his teacher, the author

in this paper uses the term of the superposition of con-

figurations (SC), which reflects the essence of the men-

tioned method quite adequately. A couple of examples

of the results of its application are given in Section 5.

2. Multiconfiguration HFJ equations and some

properties of their solutions

The use of approximation where the many-electron

wave function of the whole atomic configuration is

built from the wave functions of individual electrons

has led to the creation of the Hartree–Fock equations

[14]. Application of the solutions of these equations

allows to ensure the energy minimum of a particular

configuration, treated in a single-configuration approx-

imation. Such an approximation allowed in many cases

obtaining a reasonable qualitative explanation of the

properties of many atoms and their spectral charac-

teristics, but a quantitative correspondence to the re-

sults of experiments remained only very rough. Mean-

while it was clear from the beginning that the single-

configuration wave functions of the Hartree–Fock ap-

proximation are not the eigenfunctions of the Hamilto-

nian, i. e. the ICMEs of the kinetic energy operator and

the operators of energies of interaction with the nucleus

and between the electrons remain nonzero. In order to

obtain sufficiently accurate energy values and the cor-

responding eigenfunctions, it was necessary to diago-

nalize the energy matrix. Application of solutions of

the conventional Hartree–Fock equations for building

this matrix revealed that in order to obtain high accu-

racy it is necessary to include a very large number of

configurations that take into account even the excitation

of electrons into the continuous spectra. Thus, the use

of the Hartree–Fock ROs leads to a very slow conver-

gence of the method. In order to ensure its fast conver-

gence, it is necessary to take SC into account already

in determining the ROs.

In [1], an approach has been proposed, which can be

described schematically as follows. Similarly as in the

case of the conventional HF equations, a Hamiltonian

that includes only the nonrelativistic terms is used. The

wave function Ψ(K0λLS|x) of the investigated state

λLS of the configuration K0 being corrected is initially

represented in the form of an expansion into the wave

functions of terms TLS (T is an array of all the inter-

mediate momenta of the term, LS are its final orbital

and spin momenta) of the configuration K:

Ψ(K0λLS|x) =
∑

KT

a(K0λLS,KTLS)Ψ(KTLS|x).

(2.1)

The summation includes the investigated configura-

tion K0 having a term T0LS, with the energy and the

wave function to be corrected, as well as a whole se-

ries of other configurations. They are obtainable from

the investigated configuration by the single- or two-

electron excitations without the change of the parity of

configuration. ROs obtained under this approximation

for the single-electron states nl, that are absent in the

configuration considered, as a rule, differ considerably

from the conventional Hartree–Fock ROs and describe

the physically nonexistent states. These excitations are

usually called virtual, and the configurations obtained

while using them – admixed configurations. The coef-

ficients of expansion a(K0λLS,KTLS) are assumed

to be normalized to unity:
∑

KT

a2(K0λLS,KTLS) = 1. (2.2)



P. Bogdanovich / Lithuanian J. Phys. 44, 135–153 (2004) 137

The wave function (2.1) is used in writing down the energy functional:

Φ̃(K0λLS) =
∑

KT,K ′T ′

a(K0λLS,KTLS)a(K ′T ′LS,K0λLS)

×
[
E(KTLS,K ′T ′LS) +

∑

nl

εnl(KTLS,K ′T ′LS)

∫
Ψ(KTLS|x)Ψ(K ′T ′LS|x) dx

]
. (2.3)

Here E(KTLS,K ′T ′LS) are the matrix elements of the energy operator, and the summation over nl, including

the Lagrange multipliers εnl, is meant to ensure the orthonormality of the solutions obtained. Variation of the

expression (2.3) against the expansion coefficients, when Eq. (2.2) is taken into account, leads to the system of

equations
∑

KT

a(K0λLS,KTLS)
{
Ẽ(KTLS,K ′T ′LS) − Eδ(KTLS,K ′T ′LS)

}
= 0. (2.4)

Ẽ(KTLS,K ′T ′LS) denotes the whole square brackets from Eq. (2.3), and E is the eigenvalue. The system (2.4)

corresponds to the secular equation for the energy matrix. Variation of Eq. (2.2) against the single-electron wave

functions ϕKTLS,nl leads to the system of equations of the following form:

∂Ẽ(KTLS,KTLS)

∂ϕKTLS,nl

+ 2
∑

K ′T ′ 6=KT

a(K0λLS,K ′T ′LS)

a(K0λLS,KTLS)

∂Ẽ(KTLS,K ′T ′LS)

∂ϕKTLS,nl

= 0. (2.5)

It is the system of algebraic equations (2.4), together with the system of the integro-differential equations (2.5),

that presents the multiconfiguration HFJ equations. As this system is obtained from the variation principle, the ROs

obtained ensure the maximal possible energy corrections and the optimal speed of convergence of the method, that

are obtainable for the investigated basis of admixed configurations. The problems of solving the HFJ equations

with the use of contemporary computers are covered in detail in monographs [15, 16].

Even the first solutions of the HFJ equations [2–7], performed still without using the computer programs, have

demonstrated that the ROs describing the single-electron states present in the adjusted configuration change only

slightly as compared to their Hartree–Fock analogues. This allows one to use the conventional Hartree–Fock

equations for the ROs of the adjusted configuration:

∂Ẽ(K0T0LS,K0T0LS)

∂ϕK0T0LS,nl

= 0. (2.6)

Meanwhile, the ROs describing the electrons in the virtually excited states change very strongly. But even for

the ROs of the virtually excited electrons a simplification of equations is possible, as has been proposed in

[17]. The estimation of the values of the expansion coefficients indicates that in the overwhelming majority of

cases a(K0λLS,K0T0LS) is only slightly less than 1 and a(K0λLS,K0T0LS) ≫ a(K0λLS,KTLS) ≪ 1, if

KTLS 6= K0T0LS. In that case it is possible to leave only one term in Eq. (2.5) in the sum over K ′T ′LS that has

K ′T ′LS = K0T0LS. As a result, one gets a two-configuration equation for the ROs of virtually excited electrons:

∂Ẽ(KTLS,KTLS)

∂ϕKTLS,nl

+
2

a(K0λLS,KTLS)

∂Ẽ(K0T0LS,KTLS)

∂ϕKTLS,nl

= 0. (2.7)

It is a combination of the usual HF equations for ROs of the adjusted configuration (2.6) with the two-configuration

equations for the virtually excited electrons (2.7) that constitutes the simplified HFJ equations. The equations of the

form (2.7) may be obtained [18] not by neglecting particular terms in the more general Eq. (2.5), but by variation

with respect to the ROs of virtually excited electrons, taking into account the orthonormality conditions, of the

energy correction to the term energy ∆E(K0T0LS,KTLS), written in the second order of the perturbation theory

as

∆E(K0T0LS,KTLS) =
E2(K0T0LS,KTLS)

E(K0T0LS,K0T0LS) − E(KTLS,KTLS)
. (2.8)
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Equation (2.7) can be written in the explicit form:

[
d2

dr2
− l(l − 1)

r2
− U(nl|r) − εnl,nl

]
P (nl|r)

− X(nl|r) − 2

a(K0λLS,KTLS)
Ω(K0,Knl|r)

= 0. (2.9)

In the given integro-differential equation U(nl|r)
is the direct part of the potential and X(nl|r) is its

exchange part (including all orthogonalization condi-

tions), and they both coincide with the corresponding

potentials of the conventional Hartree–Fock method.

The configurational potential Ω(K0,Knl|r) is ob-

tained at the variation of ICME and may be represented

in the following form:

Ω(K0,Knl|r)

=
∑

n0l0,k

ρk(K0T0LS,KTLS)
1

r
Yk(n0l0, nl|r)

× P (n0l0|r). (2.10)

Here, ρk(K0T0LS,KTLS) denotes the angular parts

of the ICME and Yk(n0l0, nl|r) is the potential func-

tion appearing at the variation of the interconfiguration

radial integrals of the electrostatic interaction Rk.

The program for solving just the simplified equa-

tions (2.9) was developed at our Institute in the begin-

ning of the seventies [19, 20]. Unfortunately, insuf-

ficient performance of the computers we had at that

time did not allow us to perform extensive calcula-

tions, but it allowed us to reveal a number of inter-

esting features of the solutions obtained. At the very

beginning of exploiting the solutions of HFJ equations

it was noticed that the pairwise excitations, i. e. when

two equivalent electrons were excited into two equiva-

lent states n0l
2
0 → nl2, played an important role [21].

There, it was always obtained that the εnl,nl values

(hereafter εnl,nl are assumed to be positive) of the vir-

tually excited electrons were considerably greater than

the single-electron energies of the electrons being ex-

cited:

εn0l0,n0l0 < εnl,nl. (2.11)

While solving Eqs. (2.9) in the case of the single-

electron virtual excitations n0l0 → nl it was noticed

[19] that

εn0l0,n0l0 = εnl,nl. (2.12)

It is essential to note that in spite of the indicated

properties of εnl,nl, the total energies of the admixed

configurations containing the virtually excited elec-

trons are always markedly higher than the total ener-

gies of the adjusted ones. If the energies of the virtu-

ally excited electrons are to be defined according to the

energies of the admixed configurations, they appear to

be quite high and often match the energies of electrons

in the continuum spectrum, i. e. have the opposite sign.

This discrepancy indicates that in the case of virtually

excited electrons εnl,nl cannot be treated as the single-

electron energies.

These properties of εnl,nl for the case of two-

configuration equations were mathematically proven in

[18]. There, in the case of pairwise virtual excitation,

the difference between the energies of configurations

may be written as

E(KTLS,KTLS) − E(K0T0LS,K0T0LS)

= εn0l0,n0l0 − εnl,nl + F 0(n0l0, n0l0) − F 0(nl, nl)

−
∑

k

(
l0||C(k)||l0

)2

(2l0 + 1)(4l0 + 1)
F k(n0l0, n0l0)

+
∑

k

(
l||C(k)||l

)2

(2l + 1)(4l + 1)
F k(nl, nl)

− 2

a(K0λLS,KTLS)
E(K0T0LS,KTLS).

(2.13)

Here
(
l||C(k)||l

)
denotes the submatrix element of the

spherical function. In the given formula the integrals of

kinetic energy and of the interaction with the nucleus

are substituted by their expressions obtained while in-

tegrating the corresponding Eqs. (2.6) and (2.7). As a

result, the simple expression given above is obtained,

where only the integrals of electrostatic interaction

within the active shells F k(nl, nl), εnl,nl, ICME, and

the coefficient of expansion are retained, and all the in-

tegrals describing the interactions with other shells can-

cel out. The equality (2.13) is satisfied while solving

Eq. (2.7), at any values of the coefficient of expansion.

If the integro-differential equations are solved self-

consistently with the corresponding secular equation,

as required, then the coefficient a(K0λLS,KTLS) in

the second order of the perturbation theory satisfies the

equality
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a(K0λLS,KTLS)

=
E(K0T0LS,KTLS)

E(K0T0LS,K0T0LS) − E(KTLS,KTLS)
.

(2.14)

Substituting (2.14) into (2.13) gives the expression

εnl,nl − εn0l0,n0l0

= E(KTLS,KTLS) − E(K0T0LS,K0T0LS)

+ F 0(n0l0, n0l0) − F 0(nl, nl)

−
∑

k

(
l0||C(k)||l0

)2

(2l0 + 1)(4l0 + 1)
F k(n0l0, n0l0)

+
∑

k

(
l||C(k)||l

)2

(2l + 1)(4l + 1)
F k(nl, nl). (2.15)

The radial orbital of the admixed configuration, ob-

tained in solving the HFJ equations, by nature is a su-

perposition of all the physically existent ROs of the

given symmetry, with all the possible energies, the con-

tinuous spectrum included. As a result, in all the cases,

as mentioned earlier,

E(KTLS) − E(K0T0LS) ≫ 0. (2.16)

ROs of the virtually excited electrons strongly over-

lap with the ROs of the adjusted configuration, con-

sequently, the electrostatic interaction of a pair of such

electrons between themselves is approximately equal,

and they cancel each other in Eq. (2.15). As a result,

taking into account (2.16), one obtains the inequal-

ity (2.11) from (2.15). In the case of nonpair excita-

tions a similar reasoning may be applied leading to the

analogous conclusions.

In the case of single-electron excitations the ap-

proximation, analogous to the one used in deriving

Eq. (2.13), leads to the following simple expression:

E(KTLS,KTLS) − E(K0T0LS,K0T0LS)

=
1

2

(
εn0l0,n0l0 − εnl,nl

)

− 1

a(K0λLS,KTLS)
E(K0T0LS,KTLS).

(2.17)

Taking here into account the expression for the mix-

ing coefficient (2.13) immediately leads to the equal-

ity (2.12).

Fig. 1. Multiconfiguration RO, calculated in (1s2 + 2p′2)2p ap-

proximation, for Li I.

The behaviour of εnl,nl described above is a fairly

fundamental fact. The matter is that the multiconfig-

uration radial orbitals, similarly as the Hartree–Fock

functions, decay exponentially at large distances from

the nucleus:

P (nl|r)r→∞ ∼ exp
(
−√

εnl,nl r
)
. (2.18)

Therefore, the correction of wave function with the aid

of ROs satisfying the conditions (2.11) or (2.12) does

not change the behaviour of the wave function at large

distances from the nucleus. The changes in asymp-

totic are possible only when solving Eqs. (2.5), when

because of the influence of the configurational terms

the value of the single-electron energy of the single-

electron state n0l0 being corrected is slightly changed

itself.

As mentioned above, the ROs describing the vir-

tual excitations while solving the HFJ equations change

very much as compared to their Hartree–Fock ana-

logues, by moving to the region of existence of the

wave functions of electrons being corrected. An ex-

ample of such behaviour of the solutions of Eq. (2.5)

can be taken from [21]. Figure 1 replicates the graph

from that paper. There the radial orbitals are given

that are obtained while solving the multiconfiguration

equations for the lithium atom in the approximation

(1s2 + 2p′2)2p. It is clearly seen in the figure how

much the RO of the virtually excited electrons overlaps

with P (1s|r), thus being thoroughly distinct from the

Hartree–Fock function P (2p|r) of the same symmetry.

While investigating the pairwise excitations such a be-

haviour is quite characteristic of the ROs. In that, the

ROs demonstrate quite a weak dependence on the par-

ticular term of the adjusted configuration.

A totally different situation arises when the single-

electron excitations are used. This is clearly seen from

the results of [19]. As an example the graphs of ROs
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Fig. 2. Multiconfiguration RO, calculated in 2p5(3s + 3d) approx-

imation, for Ne I.

Table 1. Correlation corrections ∆E and expansion coefficients a

obtained for Ca XVII.

SHFC SC RSC

∆E(2s2−2p2) −0.29460 −0.26900 −0.2972

a(2s2−2p2) 0.3041 0.2746 0.3036

from that work are given in Fig. 2 that are obtained us-

ing the two-configuration approximation 2p5(3s + 3d)
for the Ne I atom. As the adjusted configuration has

two terms, 1P and 3P, the RO of the virtually excited

electron 3d has been determined for each of the terms.

It is seen from the graph that the function obtained for

the case 3P very closely follows the behaviour of the

radial orbital of the 3s electron. In the case of 1P term

the behaviour of P (3d|r) is totally different. The radial

orbital has no nodes, but two “humps” appear. Thus, in

the case of single-electron virtual excitations a strong

dependence of solutions of the HFJ equations upon the

term is detected. This is related to the peculiarities of

the ICME at such excitations and is discussed in the

next section.

Some questions arising in solving the HFJ equations

for highly charged ions are treated in [22]. The prob-

lem lies in the fact that in such a case a considerable

influence upon the difference of energies between the

adjusted configuration and the admixed configurations

is due to the relativistic corrections that in this case

are calculated in the Breit–Pauli approximation. These

may be taken into account by solving the secular equa-

tion, but are not included into the integro-differential

equations. This influence gets particularly noticeable

at the virtual quasi-degenerate excitation, i. e. without

the change of the principal quantum number. As an

example, the results obtained in the two-configuration

approximation 1s2(2s2+2p2) for the Ca XVI ion while

using three sorts of correcting ROs are presented in Ta-

ble 1. The first approximation is a superposition of

the Hartree–Fock configurations (SHFC), i. e. when all

the ROs are the solutions of HF equations; the second

and the third cases use the solutions of the multiconfig-

uration equations obtained without including the rel-

ativistic corrections (SC) and with including those in

the secular equation (RSC). As seen from the table, in

this case the solving of HF equations performed with-

out accounting for the relativistic corrections makes the

energy correction even less as compared to the super-

position of the Hartree–Fock configurations, because

the energy calculation is performed in the Breit–Pauli

approximation. Only the account of this factor while

solving the two-configuration equation allowed to ob-

tain some increase of the energy correction, meanwhile

the mixing coefficient had remained smaller than in the

SHFC approximation. This example also demonstrates

the known fact that while mixing the quasi-degenerate

configurations the use of conventional Hartree–Fock

functions is quite well founded. Physically, this is jus-

tified by the consideration that the Hartree–Fock func-

tions corresponding to the states with the same values

of n usually have roughly the same average distance

from the nucleus and, as a result, overlap strongly.

3. Transformed ROs as an alternative to the

solutions of HFJ equations

Solution of the HFJ equations with thorough self-

consistency of ROs as well as of the coefficients of ex-

pansion still constitutes a quite complex computational

problem. In addition, the complexity of it increases fast

with the growth of the basis used. This problem was

still more complex thirty years ago, when the possibil-

ities of the computers used, both in speed and in the

available memory, were some tens of thousands times

lower than those of the contemporary ones. It was this

factor that stimulated the idea to create a method al-

lowing generating a set of radial orbitals for the virtu-

ally excited electrons in a simple way. There, such ROs

have to imitate well the main features of the solutions

of HFJ equations, which must ensure a quite fast con-

vergence with respect to the number of configurations

superposed.

As seen from the brief review presented in the pre-

vious section, the main requirement for the correcting

RO is its strong overlap with the RO being corrected

and the preservation of the asymptotic (2.18) of the

Hartree–Fock function. Still one more necessary con-

dition always observed by the solutions of Eqs. (2.5),
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(2.6), and (2.7) is their similar behaviour at the origin

of coordinates:

P (nl|r)r→0 ∼ rl+1. (3.1)

Following these considerations, it was proposed in [13]

to obtain the ROs of virtually excited electrons from

the Hartree-Fock functions of the adjusted configura-

tion with the aid of a most simple transformation:

Ptr(nl|r)

= N

[
rkPHF(n0l0|r)

−
∑

n′<n

P (n′l|r)
∫ ∞

0
P (n′l|r)rkPHF(n0l0|r) dr

]
,

k ≥ l − l0, k > 0. (3.2)

In this case the transforming function is just a power

of the radial variable, the summation over n is neces-

sary for ensuring the orthogonality of all the ROs, and

the factor N is used for normalization. The restrictions

upon k allow one to observe the condition (3.1). In

the case k = l − l0 > 0 this proportionality emerges

immediately, and in the case k > l − l0 > 0 it is guar-

anteed through the orthogonalization. As the RO be-

ing transformed decays exponentially at long distances

(see Eq. (2.18)), this feature is preserved at any finite k

for the TRO with the same exponent, only this is pro-

nounced at larger distances from the nucleus. As noted

in the previous section, this corresponds to the prop-

erties of the solutions of HFJ equations in the case of

single-electron excitations.

Applying the transformation (3.2) one may rather

easily obtain large bases of the radial orbitals. They

have been widely and quite successfully used in a

whole series of publications [13, 23–30]. There they

have been applied both at the conventional SC and at

the simplified account of the correlation effects in the

second order of the perturbation theory. The simplified

account of the correlation effects is most completely

described in [31], and the main ideas are given at the

end of the next section.

It is easy to see that the expression (3.2) may be in-

terpreted as a result of variation with respect to P (nl|r)
of the following functional:

Φ̃ =

∫ ∞

0
Ptr(nl|r)rkPHF(n0l0|r) dr

+
∑

n′<n

εnl,n′l

∫ ∞

0
Ptr(nl|r)P (n′l|r) dr, (3.3)

i. e. of satisfying the requirement of maximum of the

corresponding integral of the power of radial variable,

together with the orthonormality of the obtained solu-

tion. While using the transformation (3.2), as well as

the next ones, the values of the nondiagonal Lagrange

multipliers are expressed through the values of the cor-

responding integrals. The maximum of the first inte-

gral in Eq. (3.3) determined the success of applying

the TROs (3.2) in studying the dipole polarizability of

atoms [32]. As follows from [33], the maximum of in-

tegrals of the powers of the radial variable is also a sub-

stantial factor in calculating the matrix elements of the

corresponding powers of the operator of electric tran-

sition in its length form. The compliance with the re-

quirement of maximum of Eq. (3.3) allows one, even

at a comparatively small set of the admixed configu-

rations, to obtain sufficiently reliable characteristics of

the electron transitions. In the same work it is shown

that the TROs (3.2) at k = 1 are the solutions of per-

turbative equations for the operator of electric dipole

transition written in the velocity form. This, by conse-

quence, ensures the plausibility of the values of matrix

elements calculated while using such an operator.

It is very simple to get the TROs ensuring the maxi-

mum of ICME [18]. For this purpose, it is sufficient to

perform the variation of the following functional:

Φ̃ =
∑

n0l0,k

ρk(K0T0LS,KTLS)

× Rk(nl, n0l0;n0l0, n1l1)

+
∑

n′<n

εnl,n′l

∫ ∞

0
Ptr(nl|r)P (n′l|r) dr. (3.4)

The first sum in Eq. (3.4) is an ICME written in the

given expression for the case of the single-electron ex-

citation (n1l1 → nl, l1 6= l). The variation of Eq. (3.4)

leads to the following expression for the TRO:

Ptr(nl|r)

= N

[ ∑

n0l0,k

ρk(K0T0LS,KTLS)

× 1

r
Yk(n0l0, n1l1|r)P (n0l0|r)

−
∑

n′l

P (n′l|r)
∑

n0l0,k

ρk(K0T0LS,KTLS)

× Rk(n
′l, n0l0;n0l0n1l1)

]
. (3.5)
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In the case of a two-electron virtual excitation instead

of a simple transformation (3.5) it is necessary to solve

the Fredholm equation of the second kind. Still, the

practical application of the TROs ensuring the maxi-

mum ICME has shown that they do not improve the

convergence of the configuration superposition, and

even worsen it as compared to the use of the powers

of the radial variable.

The use of the results of transformation (3.5) al-

lows one to obtain quite simple explanations of the be-

haviour of solutions of the HFJ equations in the case of

single-electron excitations. So, for the pair of configu-

rations 2p5(3s + 3d) of the neon atom, investigated in

the previous section (Fig. 2), the TRO for the term 3P

contains a single transformation of the form (3.5),

Ptr(3d
3P|r) = N

2√
5

1

r
Y2(2p, 2p|r)P (3s|r), (3.6)

and for the term 1P – two ones:

Ptr(3d
1P|r) = N

[
2√
5

1

r
Y2(2p, 2p|r)P (3s|r)

−
√

2

3

1

r
Y1(2p, 3s|r)P (2p|r)

]
. (3.7)

This allows one to understand at least qualitatively why

the ROs of the virtually excited electrons depend on the

term so strongly, and why in the case of 3P they follow

the course of P (3s|r) so well, while in the case of 1P

they contain two humps, the first of which corresponds

to the position of the maximum of P (2p|r).
The TROs (3.2) along with the solutions of the HFJ

equations were successfully used in [34] correcting the

data on the electron densities in the nucleus, which

play quite an important role in some nuclear processes.

There, instead of the condition (3.1) while obtaining

the TROs, a more stringent condition was used:

P (nl|r)r→0 ∼ rl+1
(

1 − Z

l + 1
r

)
. (3.8)

This made it necessary to introduce some additional re-

strictions upon the values of k in Eq. (3.2), but practi-

cally it did not worsen the convergence of the method.

A wide comparison of the properties of the simplest

TROs (3.2) to the solutions of HFJ equations was per-

formed in [35]. As it is seen from the examples given

there and from the practice of use of the simplest TROs,

such an approximation is quite efficient. Meanwhile,

these TROs do not reflect sufficiently the properties of

the solutions of HFJ equations allowing with a single

TRO to account for just about 80% of the correlation

energy as compared to the corresponding multiconfig-

uration function. While the TROs were used mainly in

order to take into account the correlations in the sec-

ond order of the perturbation theory, this could not be

treated as an essential drawback, because, as known,

the second order of the perturbation theory gave some-

what higher estimates. In the beginning of nineties with

the transition to the use of personal computers in the

calculations and with a fast growth of their efficiency

and the amount of memory, the direct inclusion of more

and more admixed configurations in the energy matrix

has become possible. This has posed still higher re-

quirements to the quality of TROs used and has led to

the development of a new class of the radial orbitals –

the transformed radial orbitals with a variable param-

eter (TROVP) [36]. The derivation of TROVP can be

presented as follows:

Ptr(nl|r)

= N

[
f(k,m,B|r)PHF(n0l0|r) −

∑

n′<n

P (n′l|r)

×
∫ ∞

0
P (n′l|r)f(k,m,B|r)PHF(n0l0|r) dr

]
.

(3.9)

In this case a transforming function f(k,m,B|r) con-

taining three parameters is used. The choice of the

form of this function was determined by the follow-

ing considerations [18, 36]. At the origin of coordi-

nates it should behave as the simplest transformation

from (3.2), because this allows one to get the right be-

haviour of the TRO near the nucleus. Meanwhile, the

transforming function rk already at k values of a few

units grows very fast in the outer region of the atom,

pushing the maximum of a TRO too much into the

outer region. Consequently, the TRO should dimin-

ish at large r. Only this may allow one to obtain the

TROs that reflect the properties of the real multiconfig-

urational ROs to the fullest. This also corresponds to

the properties of the transformation (3.3) that ensures

the maximum of ICME. On the basis of the said above,

in [36] it has been proposed to use the transforming

functions of two types, the algebraic:

fa(k,m,B|r) =
rk

B + rm
,

m ≥ k, k ≥ l − l0, k > 0, B > 0, (3.10)
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and the exponential one:

fe(k,m,B) = rk exp(−Brm),

k ≤ l − l0, k > 0, m > 0, B > 0. (3.11)

The algebraic transforming function allows one to re-

tain the convergence to zero (2.18) of the used Hartree–

Fock RO being transformed (this corresponds to the

properties of the solutions of HFJ equations in the case

of single-electron excitations), and the exponential one

always makes the convergence faster (this corresponds

to the properties of the solutions of HFJ equations in

the case of two-electron excitations). Both transform-

ing functions considered contain two integer-valued pa-

rameters (k and m) and a freely variable parameter B.

The presence of the integer-valued parameters pro-

vides the possibility to use a vast set of most different

transformations, and the parameter B makes the choice

infinitely large. Consequently, it is necessary to set a

criterion that would constitute a basis for making the

choice of both the integer-valued parameters and the

parameter B. As such a criterion the energy correction

is used, which is written in the second order of pertur-

bation theory and is averaged over all the terms of the

adjusted configuration:

∆E(K0,K) =
Θ(K0,K)

g(K0)[E(K0) − E(K)]
. (3.12)

Here

Θ(K0,K) =
∑

T0TLS

(2L + 1)(2S + 1)

× E2(K0T0LS,KTLS) (3.13)

represents the sum of squares of the ICMEs. The ana-

lytic expressions for (3.13) at all the possible types of

virtual excitations may be found in [37, 38]. The de-

nominator of the expression (3.12) contains the statis-

tical weight of the adjusted configuration

g(K0) =
∑

T0LS

(2L + 1)(2S + 1) (3.14)

and the difference of the mean configuration energies.

The latter may be obtained by averaging the energy of

each configuration according to the conventional for-

mula

E(K) =
∑

TLS(2L + 1)(2S + 1)E(KTLS,KTLS)

g(K)
, (3.15)

which leads to the well-known simple expression. It is

possible to perform a considerably more complex but

also sounder in this case averaging that uses not the

statistical weights of the terms (3.15), but the squares

of the ICMEs:

E(K0) − E(K)

→E(K0T0LS) − E(KTLS)

= Ω−1(K0,K)
∑

T0TLS

(2L + 1)(2S + 1)

× E2(K0T0LS,KTLS)

×
[
E(K0T0LS,K0T0LS)

− E(KTLS,KTLS)
]
. (3.16)

The analytical expressions for calculating the energy

difference according to the formula (3.16) and the dis-

cussion of the influence of such an approach upon the

averaged energy correction may be found in [39].

The paper [36] contains a large number of tables

demonstrating the properties of the TROVPs. In the

present publication a single table from [36] is chosen

as an example, which illustrates the possibilities of the

TROVPs. Table 2 contains the energy corrections ob-

tained in the two-configuration approximation for the

pair of configurations 3d10 + 3d8nl2 of the nickel iso-

electronic series. In the table the results obtained with

the aid of the solutions of HFJ equations are compared

to the corrections obtained while using the TROVP.

The transformations used are marked in the parenthe-

ses. First, the quantum numbers of the Hartree–Fock

RO being transformed are indicated, and after the ver-

tical dash – the type of transformation and the values

of parameters k and m are given. As it is seen from

the table, the best TROVP give the corrections almost

coinciding with the results of using the solutions of

HFJ equations. The analogous data were obtained also

while investigating the different virtual excitations for

most various ions and different ionization degrees. The

TROVPs in that paper are not compared graphically to

the solutions of HFJ equations because their curves on

the graphs practically coincide.

The TROVPs, of course, cannot reproduce in all the

cases the solutions of HFJ equations for a particular

term at single-electron excitations. In the case of the

example above 2p5(3s + 3d) Ne I, two transformed

radial orbitals are necessary, one of which is obtained

from P (3s|r) and the second one from P (2p|r). The

superposition of such TROVPs may reproduce the fea-

tures of P (3d|r) that are obtained for 3P and 1P.
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Table 2. Correlation corrections ∆E(3d10 + 3d8nl2) for the isoelectronic series of

nickel.

nl (n′l′|tkm) Z = 30 Z = 32 Z = 34 Z = 37 Z = 40

4s HFJ 0.001627 0.001169 0.000968 0.000815 0.000731

(3p|e31) 0.001613 0.001155 0.000951 0.000795 0.000708

(3s|e32) 0.001609 0.001155 0.000955 0.000802 0.000717

(3s|e41) 0.001218 0.001159 0.000962 0.000810 0.000725

4p MCRO 0.012007 0.009570 0.008365 0.007354 0.006744

(3p|e31) 0.011962 0.009521 0.008304 0.007282 0.006666

(3s|e31) 0.011952 0.009537 0.008330 0.007312 0.006698

(3s|a32) 0.011915 0.009539 0.008341 0.007287 0.006640

(3s|e32) 0.011887 0.009428 0.008213 0.007193 0.006576

4d MCRO 0.247370 0.196216 0.169875 0.147532 0.134232

(3d|a22) 0.247282 0.195427 0.168952 0.146594 0.133286

(3d|e21) 0.246965 0.195211 0.168801 0.146463 0.133183

(3d|a33) 0.245887 0.194803 0.168705 0.146629 0.133470

(3d|a23) 0.245749 0.194595 0.168472 0.146413 0.133275

4f MCRO 0.166144 0.181441 0.191571 0.201964 0.208808

(3d|e21) 0.165877 0.181149 0.191251 0.201606 0.208945

(3d|a13) 0.165865 0.181147 0.191289 0.201698 0.208409

(3d|e12) 0.165185 0.180536 0.190705 0.201139 0.207928

(3d|a14) 0.164967 0.180163 0.190326 0.200694 0.206510

The properties of the TROVPs were investigated in

[36], and their use in actual calculations of spectra of

complex configurations [40–50] has demonstrated that

the TROVPs by their properties in practice are not in-

ferior to the solutions of multiconfiguration equations.

Moreover, it appeared that both transformations after

the parameter adjustment led to the same corrections.

Therefore, in the latest publications usually only the

exponential transformation (3.11) is used. The expe-

rience gained in calculations while using the TROVPs

allowed us to almost completely automate their calcula-

tion. Only the adjusted configuration and the quantum

numbers for a virtual excitation must be given in input.

The program automatically selects the admixed config-

uration having the given virtual excitation that gives the

largest averaged correction (3.12), selects the Hartree–

Fock function to be transformed, and optimizes the val-

ues of all the parameters, too. This allows one to com-

pile the extensive bases of the radial orbitals without

any value judgement and to apply them successfully for

achieving high accuracy and reliability of calculations.

4. Topics of the optimization of basis of admixed

configurations and the reduction of order of

multiconfigurational matrices

In solving the HFJ equations, as well as in using the

methods described in the previous section, it is possible

to compile quite extensive bases of the radial orbitals

that later on are used for calculating the multiconfigura-

tion matrix of the energy operator. However, compiling

the basis of ROs is only the first stage of the calcula-

tion. Moreover, the wider the basis, the more admixed

configurations are possible to create by using it. It may

be taken approximately that the quantity of admixed

configurations is proportional to the squared number of

ROs describing the virtual excitations. Thus, the ex-

pansion of the basis that is necessary for the higher

accuracy and reliability of theoretical results leads to

fast growth of the number of possible admixed config-

urations and the related number of the terms accounted

for, which in this case are often called the configuration

state functions (CSFs). But the role of different ad-

mixed configurations is not nearly the same. The quite

simple empirical rules exist that allow one to select a

dozen of configurations that have to influence the given

configuration most of all. On one hand, these rules are

not of absolute character and, on the other hand, they

are totally worthless when many hundreds of configu-

rations must be selected from thousands of the possible

ones.

A special method has been designed [51] for the im-

partial solving of this problem. It is based on calculat-

ing the sum of squares of the ICMEs Θ(K0,K) (3.12)

and the averaged energy distances between configura-

tions, which are defined in the usual manner (3.15) as

well as with the account of ICMEs (3.16). The pres-

ence of these quantities relating the admixed configura-
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tion to the one being corrected allows one to determine

according to (3.12) the averaged energy correction, the

magnitude of which may serve as a criterion in the se-

lection. As a criterion one may also use the averaged

weights of the admixed configurations that are deter-

mined according to the formula

W (K0,K) =
Θ(K0,K)

g(K0)[E(K0) − E(K)]2
. (4.1)

In doing so, two definitions of the energy difference

may be used in (4.1), too. Such an approach has been

used in our calculations for more than a decade already,

and justifies itself completely. The corresponding pro-

gram is published in [52]. It allows one to evaluate

and to select thousands of admixed configurations in

seconds and makes the calculations substantially eas-

ier.

In spite of how refined a program of calculating and

diagonalizing the energy matrix is, it depends on the

possibilities of the computer used and imposes certain

restrictions upon the order of matrices being calculated

and diagonalized. The order of matrices themselves de-

pends less on the number of the configurations taken

into account than on the number of the CSFs present

there. Usually not nearly all configuration state func-

tions present in the admixed configuration have the

ICMEs connecting them with the terms of the adjusted

configuration. This, first, is caused by the known di-

agonality of the matrix elements of the Hamiltonian

used with respect to the final orbital and spin angular

momenta LS. In the case of two-electron virtual exci-

tations (and these are more ample than single-electron

ones) still other selection rules may be valid.

Let us treat the adjusted configuration 2s22p43d and

the admixed one 2s2p33d4d4f (hereinafter the passive

occupied inner shells are omitted in the designation of

a configuration). A set of terms of the adjusted config-

uration is written as follows:

2s2 1S 2p4 L20S20 3d 2DL0S0. (4.2)

The given admixed configuration has 2065 terms in to-

tal, that can be symbolically described as

2s 2S 2p3 L2S2(L12S12) 3d 2D(L123S123)

4d 2D(L1234S1234) 4f 2FLS. (4.3)

In (4.2) as well as in (4.3) the sequential coupling

of momenta as determined in the complex of pro-

grams [53] is used. If of the whole set (4.3) only the

terms having final momenta coinciding with the final

momenta of the adjusted configuration are kept, i. e.

the δ(L0S0, LS) property of ICMEs of the Hamilto-

nian is taken advantage of, the number of terms (4.2) is

reduced to 1054.

Further selection of CSFs of the admixed configu-

ration at the sequential coupling of momenta and the

given traditional position of shells is impossible. Now

let us move the virtually excited electrons to the begin-

ning of the configuration:

4d 2D4f 2F(L′
12S

′
12) 2s 2S(L′

123S
′
123)

2p3 L4S4(L
′
1234S

′
1234) 3d 2DL0S0. (4.4)

The energy operator while calculating the ICMEs in

this case acts upon the “edge” electron 3d neither in

the adjusted configuration nor in the admixed one. This

provides the possibility to introduce an additional re-

striction clause: δ(L20S20, L
′
1234S

′
1234). As a result,

the number of terms of the admixed configuration is

reduced to 187.

Still, these are not all possible restrictions. Each

ICME connecting the given admixed configuration

with the one being corrected contains two-configuration

matrix elements 〈2s2pL′′S′′|h|4d4fL′′S′′〉 as factors,

and they also have the properties of diagonality with re-

spect to the final orbital and spin angular momenta. As

the momenta of virtually excited electrons in (4.4) are

the coupled ones, it is possible to require that L′
12S

′
12

be only such that are possible for the pair of electrons

2s2p, i. e. 1P or 3P. This reduces the number of CSFs

to be accounted for while calculating the matrix to 58.

Thus, after switching to a new layout of shells we suc-

ceeded in lowering the number of CSFs by more than

35 times. Not a single ICME was lost in that. Just

the number of nonzero ICMEs while using the cou-

pling (4.4) was reduced considerably, and their mod-

ules became considerably larger, because the sum of

squares of ICMEs remained the same.

Such an approach to the selection of CSFs is de-

scribed in detail in [54]. Hereafter such basis is de-

fined as refined, in contrast to the basis obtained with-

out transposing the quantum numbers of virtually ex-

cited electrons, which is defined by the term “tradi-

tional”. The refined basis provides the reduction of the

number of CSFs used up to several tens of times. The

program of generating the terms used for this is pub-

lished in [55]. The considerable reduction of the set of

CSFs allows one to increase the number of the admixed

configurations many times, which induces higher accu-

racy of calculations. It follows from the said above that

the number of CSFs often given in papers as the main

criterion of the complexity of calculations is not unam-
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biguous enough. Physically, a lot more important is the

number of virtual excitations used, i. e. the number of

admixed configurations.

An important role while calculating the energy spec-

tra is played by the program that forms and diagonal-

izes the energy operator matrix. There, differently from

calculating the ROs, the Hamiltonian includes not just

the electrostatic electron interaction, but also the mag-

netic interactions such as “spin–orbit” and others. This

leads to the situation that the energy matrix becomes

nondiagonal with respect to the final angular momenta

LS and retains the diagonality only with respect to the

total angular momenta J of particular states. Only a

small part adjusted corresponding to the energy levels

of the adjusted configuration of all the eigenvalues of

the energy operator matrix is physically relevant. This

fact has led to the establishment of a method of par-

tial diagonalization [56] that allows for comparatively

fast obtaining of the eigenvalues in question. Its further

development has led to the introduction of a method

of sequential diagonalization, where first the necessary

eigenvalues and then the corresponding eigenfunctions

are determined. This allows one to diagonalize the

symmetric matrices with the minimal use of hard disk

drives in the case when the triangular part of the ma-

trix fits into the RAM of a computer. So, while using

a computer with 0.5 GB of RAM, our program allows

us to diagonalize the matrices of the order of over ten

thousand.

Further refinement of programs has led to creation

of a method of separate diagonalization. As mentioned

earlier, the “spin–orbit” interaction and other relativis-

tic corrections taken into account in the Breit–Pauli

approximation lead to the nondiagonality of the en-

ergy matrix with respect to the final angular momenta

LS. But the corrections due to the operators hav-

ing J-dependent matrix elements usually are compar-

atively small and can be neglected while calculating

the matrix elements for the majority of the admixed

configurations. Such an approximation allows one to

perform the diagonalization of the matrix for partic-

ular pairs of final momenta first, and only then, by

using the eigenvalues and eigenfunctions obtained, to

take into account the J-dependent relativistic correc-

tions for only those configurations that are close in en-

ergy [54]. While doing so, the order of the matrix for J

is reduced hundreds of times practically without loss of

accuracy. As every value of J is made of several possi-

ble pairs LS in the case of configurations having a great

variety of different pairs of final angular momenta, the

orders of matrices for particular pairs of final angular

momenta are several times smaller than they were for

concrete J while using the full basis of configurations.

The more complex spectrum of the adjusted configura-

tion is, the more efficient is this method.

Still one more approximation used in the calcula-

tions should be mentioned: all the configurations of

a given ion, even those of different parity, are calcu-

lated in the same basis of ROs. If such an approach

were used in the single-configuration approximation or

at a small number of admixed configurations, it could

introduce considerable bias into the energy spectrum

and, correspondingly, into the eigenfunctions. While

accounting for hundreds of admixed configurations the

biases practically totally compensate. Meanwhile, the

use of a single basis for the initial and final config-

urations allows one to avoid the biases related to the

nonorthogonality of the basis used that are difficult to

control and to compensate.

The methods briefly described in this section are

quite efficient and reliable, which is confirmed by the

multiple actual calculations of spectral characteristics.

So, with the above-mentioned personal computer hav-

ing 0.5 GB of RAM, the calculations were performed

that would require a traditional basis of 400–500 thou-

sand CSFs. As mentioned above, the methods applied

nowadays allow one to use the restricted bases of CSFs,

where the lower triangle of the matrix of nonrelativis-

tic energy operator for a particular pair of LS occupies

practically the whole RAM of the computer. This fact

gives the reasons to assume that the potential of fur-

ther development of the programs in this direction is

exhausted.

Meanwhile, there exists a method of an approximate

account for the correlation effects in the energy spectra

of atoms that does not lead to increase in the order of

the matrices. It is based on employing the second order

of perturbation theory and stems from papers [57, 58]

that are devoted to explaining the nature of the semiem-

pirical corrections. The matter lies in the fact that the

total correction for the energy of a particular term may

be written in the following form:

∆E(K0T0LS,K)

=

∑
T (2L + 1)(2S + 1)E2(K0T0LS,KTLS)

E(K0) − E(K)
.

(4.5)

The sum of squares of ICMEs in the numerator can

be represented as the angular coefficients fk and gk

together with the radial parts containing the products

of integrals Rk. The angular coefficients that appear
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correspond to the angular coefficients of the matrix el-

ements of an electrostatic interaction operator, except

for the disappearance of the requirement of parity of a

triad l, k, l′. It is the proportionality f1 ∼ L(L+1) that

leads to the appearance of the most popular semiempir-

ical correction. Such a property of the sum of squares

of ICMEs allows one to take into account the correla-

tion effects via the correlation corrections to the F k,

Gk , Rk integrals and quantities similar to these. We

have developed such an approach in a whole series of

papers [13, 23, 24, 31, 39, 59]. All the necessary ana-

lytical expressions can be found there. In doing this,

the difference of the mean configuration energies may

be defined in the conventional way (3.15) as well as

with the account for the presence of ICMEs (3.16).

The main advantage of the method described here is

the low order of the calculated and diagonalized matri-

ces, which is the reason for its wide application with the

computers having small amount of RAM. Low orders

of matrices, on their turn, lead to the main advantage of

the method: similarly as with the semiempirical adjust-

ment, the eigenfunctions do not contain the expansion

in the whole basis of configurations and remain insuf-

ficiently accurate.

The described approximation has proved to be quite

useful at performing the common configuration super-

position, too. The complex of programs [53], the parts

of which are used in our calculations, allows the exis-

tence of only up to five active shells. Meanwhile, the

cases are known when the important admixed configu-

rations have greater numbers of active shells. In such

a case they may be taken into account by using the ap-

proximation described above.

5. Examples of calculating the spectral

characteristics of atoms and ions

In the course of the seventies and the eighties a com-

plex of our own original programs meant for calculat-

ing all spectral characteristics of atoms and ions was

created at the Department of Theory of Atom. This in-

cluded the solving of HF and HFJ equations as well as

calculating the energy spectra and all the characteris-

tics of electron transitions in the configuration super-

position approximation. The programs for solving the

Dirac–Hartree–Fock equations and the corresponding

programs for calculating the spectral characteristics in

the relativistic approximation were made as well. But

the electronic computers used then had low power and

a specific architecture, which determined the insuffi-

cient adaptability of the made FORTRAN programs to

their immediate use on other computers. During the

last decade, since the beginning of the nineties when

the transition to PC began, the possibilities of PCs have

grown tremendously. This has allowed using the pro-

grams from complex [55] that are widely known among

the specialists. Nowadays while calculating the spec-

tral characteristics of atoms, along with own programs

written during the last years, usually the programs of

solving the HF equations [60], the programs of calcu-

lating the angular parts of matrix elements of the energy

[61, 62] and the transition [63] operators, and also the

programs of calculating the transition characteristics

[64] are used. Meanwhile, the programs [61, 62, 64]

have been modified aiming both at the extension of

their possibilities and at the different output of their re-

sults for using these in our programs. From our own

programs, apart from the cited above [52, 55], the most

important of those not published yet are: the program

for obtaining the transformed radial orbitals, the pro-

gram for calculating the correlation corrections to the

Slater integrals according to the second order of per-

turbation theory, the program for forming the energy

operator matrix and diagonalizing it.

Let us treat the energy spectrum and the radiative

lifetimes of the configuration 2p43p of the K XI ion

from [49], presented in Table 3 as the first example.

While calculating the energy spectrum the ROs of the

single-electron states with n ≤ 3 have been calculated

in the Hartree–Fock approximation, and ROs with 4 ≤
n ≤ 10 have been obtained with the aid of the exponen-

tial transform (3.11). The selection of admixed config-

urations and switching to the refined basis has been per-

formed as described in the previous section. The eigen-

functions and eigenvalues obtained have been used for

calculating the characteristics of electric dipole transi-

tions into all the lower-lying configurations. Two forms

of the transition operator have been used: the “length”

form (L) and the “velocity” form (V). While perform-

ing a wide SC the coincidence of the results obtained

in using two forms of the operator may serve as a cri-

terion of reliability of the obtained results. The radia-

tive lifetimes have been obtained by summing up all the

probabilities. As seen from Table 3, the values of SC

energies taken from the theoretical value of the low-

est level of the considered ion pretty well agree with

the possessed experimental data [65]. There, a quite

stable bias of 8000 cm−1 (i. e. about 0.28% of the to-

tal energy) is noted, which is characteristic of all 2p4nl

configurations of this ion. After taking this bias into ac-

count, the theoretical values of energies coincide with

all the possessed experimental data for this configura-
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Table 3. Energy levels and radiative lifetimes of 2s22p43p K XI.

Level Energy (cm−1) Composition (%) τ0 (ns) τt (ns)

Exp. [65] SC L V L V

2p4(3P)3p
4P5/2 2785204 2794000 89 0.602 0.572 0.602 0.572
4P3/2 2796000 84 0.615 0.568 0.601 0.561
4P1/2 2804000 88 0.639 0.597 0.626 0.588
4D7/2 2803297 2811000 97 0.399 0.416 0.399 0.416
4D5/2 2808161 2816000 53 + 39(3P)2D 0.464 0.472 0.464 0.472
4D3/2 2826000 85 0.427 0.429 0.427 0.426
2P1/2 2828000 21 + 48(3P)4D + 14(1D)2P + 10(3P)2S 0.537 0.529 0.504 0.507
4D1/2 2828846 48 + 16(3P)2P + 13(3P)2S + 13(1D)2P 0.479 0.489 0.415 0.414
2D5/2 2824955 2833000 56 + 37(3P)4D 0.456 0.486 0.456 0.486
2P3/2 2837000 41 + 24(3P)2D + 22(1D)2P 0.570 0.595 0.505 0.529
4S3/2 2844000 62 + 18(3P)2D 0.321 0.338 0.283 0.302
2D3/2 2847000 47 + 30(3P)4S + 11(3P)2P 0.390 0.419 0.370 0.393
2S1/2 2848000 72 + 15(3P)2P 0.482 0.518 0.471 0.510

2p4(1D)3p
2F5/2 2877507 2886000 65 0.515 0.510 0.515 0.510
2F7/2 2881197 2889000 97 0.475 0.497 0.475 0.497
2D3/2 2897361 2905000 96 0.341 0.360 0.324 0.348
2D5/2 2899633 2908000 95 0.333 0.356 0.333 0.356
2P3/2 2945000 58 + 38(3P)2P 0.119 0.144 0.067 0.074
2P1/2 2952000 54 + 27(3P)2P + 16(1S)2P 0.144 0.170 0.057 0.064

2p4(1S)3p
2P3/2 2984000 93 0.327 0.363 0.147 0.158
2P1/2 2988000 75 + 15(3P)2P 0.209 0.244 0.175 0.206

Table 4. Energy levels and radiative lifetimes of the twelve exited Ca IX.

Level Energy (cm−1) Composition τ (ns)

Exp. [67] SE [68] SC (%) L V Exp. [69] MOPM [70] MBPT [71]

3p2 1D2 336245 336762 335800 76 + 19(3s3d)1D 8.72E−01 9.07E−01 0.840 ± 0.060 1.06
3P0 339963 339754 339500 99 1.12E−01 1.15E−01 0.0636
3P1 341872 341740 341200 99 1.10E−01 1.14E−01 0.11
3P2 345472 345519 344500 94 1.12E−01 1.18E−01 0.134 ± 0.008 0.107
1S0 398900 398776 398300 94 1.10E−01 1.13E−01 0.150 ± 0.008 0.122

3s3d 3D1 412078 412341 412400 99 7.55E−02 7.79E−02 0.0774
3D2 412191 412582 412600 99 7.65E−02 7.83E−02 0.100 ± 0.015 0.0787
3D3 412405 412946 412900 99 7.81E−02 7.90E−02 0.117 ± 0.009 0.0806
1D2 467631 468131 468300 78 + 20 (3p2)1D 4.30E−02 4.44E−02 0.072 ± 0.003 0.0454

3p3d 3F2 563714 563743 563900 96 4.28E−01 4.28E−01 0.653 ± 0.063 0.431
3F3 565724 565974 565800 99 4.66E−01 4.78E−01 0.473 ± 0.021 0.476
3F4 568194 568589 568100 99 4.52E−01 4.79E−01 0.513 ± 0.040 0.459
1D2 571900 571469 571800 96 9.93E−02 1.02E−01 0.0978
3P2 597263 598500 80 + 18 3D 6.08E−02 6.24E−02 0.0611
3P1 598115 599400 63 + 36 3D 5.51E−02 5.70E−02 0.0548
3P0 599971 601000 99 6.34E−02 6.68E−02 0.0639
3D1 600981 601900 63 + 36 3P 4.90E−02 5.09E−02 0.0506
3D2 601204 601496 602500 81 + 18 3P 4.64E−02 4.79E−02 0.0474
3D3 602704 601684 602700 99 4.42E−02 4.52E−02 0.0451
1F3 650486 645400 98 4.05E−02 4.13E−02 0.0455
1P1 618520 656335 655000 96 4.77E−02 5.01E−02 0.0524

3s4s 3S1 760838 761800 99 1.50E−02 1.51E−02 0.0150
1S0 774480 775800 97 2.39E−02 2.39E−02 0.0244
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Table 4. (Continued.)

Level Energy (cm−1) Composition τ (ns)

Exp. [67] SE [68] SC (%) L V Exp. [69] MOPM [70] MBPT [71]

3s4p 3P0 831600 98 7.23E−02 7.35E−02 0.0721
3P1 831800 86 + 12 1P 5.14E−02 5.26E−02 0.0517

3d2 3F2 832000 99 4.76E−02 4.88E−02 0.0373
3F3 832300 99 4.82E−02 4.90E−02 0.0491
3F4 832600 99 4.91E−02 4.93E−02 0.0500

3s4p 3P2 833100 99 7.25E−02 7.24E−02 0.0726
1P1 832314 833900 83 + 12 3P 1.90E−02 1.92E−02 0.0200

3d2 1D2 850600 97 3.96E−02 4.14E−02 0.0375
1G4 850800 98 9.17E−02 8.73E−02 0.102
3P0 853700 99 3.69E−02 3.90E−02 0.0362
3P1 853800 99 3.70E−02 3.90E−02 0.0434
3P2 854000 98 3.74E−02 3.92E−02 0.0324
1S0 902300 95 3.22E−02 3.48E−02 0.0073

3s4d 3D1 917200 918700 96 2.06E−02 2.07E−02
3D2 917314 918800 96 2.06E−02 2.08E−02
3D3 917528 919000 96 2.05E−02 2.10E−02
1D2 921921 920300 95 4.00E−02 4.10E−02

3p4s 3P0 941471 943000 99 2.23E−02 2.27E−02
3P1 942658 944100 96 2.20E−02 2.23E−02
3P2 946378 947300 99 2.24E−02 2.25E−02
1P1 956400 91 1.45E−02 1.45E−02

3s4f 3F2 954594 956700 99 8.24E−03 8.33E−03
3F3 954594 956800 99 8.24E−03 8.33E−03
3F4 954594 956800 99 8.24E−03 8.33E−03
1F3 963050 965600 98 8.72E−03 8.82E−03

3p4p 1P1 999500 90 2.31E−02 2.40E−02
3D1 1005600 86 2.76E−02 2.87E−02
3D2 1005234 1006800 94 2.81E−02 2.91E−02
3D3 1008574 1009800 96 2.78E−02 2.89E−02
3P0 1010894 1012000 99 2.70E−02 2.79E−02
3P1 1012034 1013000 91 2.70E−02 2.78E−02
3P2 1014384 1015100 97 2.71E−02 2.77E−02
3S1 1015624 1017000 91 2.58E−02 2.76E−02
1D2 1026700 93 2.48E−02 2.49E−02
1S0 1045000 94 3.15E−02 3.19E−02

tion with the accuracy of four significant numbers. This

allows one to assume that the energies of the levels that

are presently unknown are foretold with a high accu-

racy. From the data on the composition of eigenfunc-

tions given in the table it is seen that part of levels cor-

responds well to LS-coupling, while some levels have

such high mixing that their classical notation (the first

column) is at a complete variance with the maximum

weight.

The complications in the experimental determina-

tion of the levels of configurations 2s22pN−13p may

be in part related to the fact that the two-electron transi-

tions from some of their levels to the levels of configu-

rations 2s2pN+1 have quite high probabilities, whereas

in experiment these transitions usually are not regis-

tered. The importance of two-electron transitions is

well understood from the data on the lifetimes from Ta-

ble 3. The lifetimes that are obtained by summing up

all the transitions (τt) and the ones obtained without the

account of two-electron transitions (τ0) are given there.

As seen from the table, the account of two-electron

transitions sometimes lessens the lifetimes more than

twice. It is characteristic that all up to now experi-

mentally determined levels does not possess any no-

table transitions to the level 2S of the configuration

2s2p6. The comparison of lifetimes obtained while

using two forms of the transition operator (L and V)

shows their good agreement and indicates that the per-
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formed superposition of configurations in the basis of

TROVP has allowed obtaining not just the energy val-

ues with high accuracy, but fairly reliable eigenfunc-

tions as well.

The energy spectrum and the radiative lifetimes of

12 excited configurations of the Ca IX ion are presented

in Table 4 as the second example. The presented data

were obtained in the same approximation as in the cal-

culation above. Still, one peculiarity exists. For a long

time, there was no success in obtaining good agree-

ment of the theoretical energy levels with the experi-

mental ones for the configurations containing the elec-

trons with Ca IX. In the case of these configurations

the deviation from the experimental data on energies

has been sharp. The calculations indicate that it is nec-

essary to take into account the virtual excitations from

the 2s2-shell. However, then the admixed configura-

tions with 6 active shells arise, e. g., 2s22p43s3pnln′l′

or 2s2p53s3pnln′l′. Meanwhile, the programs from

the complex [55] that we use for calculating the an-

gular parts of the matrix elements allow for no more

than 5 active shells. Therefore, the energy corrections

due to the configurations with 6 active shells have been

taken into account in a simplified manner: in the second

order of perturbation theory [40]. Besides the theoret-

ical (SC) results, this table also gives the experimental

data on the experimental levels taken from the NIST

Atomic Spectra Database [67] and the semiempirical

results (SE) from [68] obtained by the optimization

of theoretically calculated Slater parameters for con-

sistency with the established energy levels. The table

also contains the weights (those exceeding 10%) of the

most important terms composing the given level. The

analysis of the weight coefficients demonstrates that for

most levels the LS-coupling is a quite acceptable ap-

proximation. Two levels 1D2 from configurations 3p2

and 3s3d should be especially noted. The very strong

mixing of these levels is determined by the fact that

both configurations are odd and located quite closely

in the energy spectra. Such mixing has a large influ-

ence upon the characteristics of the transitions related

with these levels. As seen from Table 4, the theoretical

energy levels agree rather well with the available ex-

perimental data [31] and with the semiempirical results

[10]. Only the energy level 3p3d 1P1 differs from the

experimental value significantly, the relative difference

is about 0.2%. The experimental energy of this level

agrees well with the semiempirical one.

Table 4, like the previous one, contains the radia-

tive lifetimes obtained while using the two forms of

the transition operator. There they demonstrate quite

good agreement. This table also contains the available

experimental data [69] and the theoretical results of

the method of the optimized potential model (MOPM)

[70], as well as the many body perturbation theory

(MBPT) [71]. As mentioned before for the lifetimes

of configuration 2s22pN−13p, in this case the two-

electron transitions are also very important for the life-

times of levels from which these transitions may oc-

cur. If the two-electron transitions were not taken into

account, the lifetimes of levels 3s4p 1P1, 3p4s 1P1,

and 3s4f 1F3 would be about 20% larger. Our life-

times are more or less larger than the experimental

ones. The lifetimes obtained by the MBPT exceed

the experimental values, too, but they coincide with

our results for these levels quite well. The results

of SC very well agree with the MOPM when avail-

able.

6. Conclusion

More than fifty years have passed since the elab-

oration of the multiconfiguration Hartree–Fock–Jucys

equations, but their solutions or the transformed ra-

dial orbitals that closely approximate the above ones

still are the most efficient and popular bases used while

performing the superposition of configurations. Dur-

ing this time interval the possibilities both of the com-

puters used and the programs applied for the atomic

calculations have grown tremendously. While the first

applications of the multiconfiguration approximation

have been limited to the superposition of just a few

and sometimes only two configurations, nowadays in

the common calculations performed using just the sim-

ple PCs many hundreds and even thousands of ad-

mixed configurations are taken into account, and the

number of CSFs occurring there in the traditional ba-

sis may reach a million. The accuracy of ab initio

calculations achieved there allows one to easily rec-

tify the biases of the experimental identification of en-

ergy levels, and in the characteristics of the electron

transitions (oscillator strengths, radiative lifetimes) en-

ables one to obtain the data even superior in accuracy

than those of experiment. Still, the obtainable relia-

bility is not a limit and the development of theory is

under way. It seems plausible that using the solutions

of the corresponding quasi-relativistic equations in the

multiconfiguration approximation will be an essential

step that will extend considerably the field of appli-

cation of the method without its significant complica-

tion.
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ods of the preliminary evaluation of the role of ad-

mixed configurations in atomic calculations, Comput.

Phys. Commun. 134, 321–334 (2001).

[52] P. Bogdanovich, R. Karpuškienė, and A. Momkaus-
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DAUGIAKONFIGŪRACINIO ARTUTINUMO TAIKYMAS ATOMINIAMS SPEKTRAMS TIRTI

P. Bogdanovich

VU Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Santrauka

Apžvelgta daugiakonfigūracinio artutinumo metodų, sukurtų

Teorinės fizikos ir astronomijos instituto Atomo teorijos skyriuje

atomų bei jonų spektrinėms charakteristikoms tirti, plėtra per pasta-

ruosius penkiasdešimt metų, pradedant nuo to laiko, kai prof. A. Ju-

cys sukūrė daugiakonfigūracines lygtis. Trumpai aptartos tų ly-

gčių sprendinių savybės bei galimybė juos pakeisti transformuo-

tomis radialiosiomis orbitalėmis. Taip pat aprašyti būdai, leidžian-

tys efektyviai diagonalizuoti dideles energijos operatoriaus matri-

cas, jeigu tik apatinis jų trikampis telpa kompiuterio operatyvio-

joje atmintyje, ir metodai, leidžiantys efektyviai parinkti pataisi-

nes konfigūracijas bei dešimtimis kartų mažinti naudojamų termų

rinkinius. Aprašytų metodų taikymas iliustruotas keliais pavyz-

džiais.


