ELECTRIC PROPERTIES OF LITHIUM-CONDUCTING SOLID ELECTROLYTE CERAMICS

T. Šalkus a, A. Dindune b, Z. Kanepe b, J. Ronis b, A. Kežionis a, E. Kazakevičius a, L.J. Gauckler c, U.P. Mucke c, and A.F. Orliukas a

a Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: tomas.salkus@ff.vu.lt
b Institute of Inorganic Chemistry at the Riga Technical University, Miera 34, LV-2169 Salaspils, Latvia
c Department of Materials, ETH Hönggerberg, Wolfgang-Pauli-Str. 10, CH-8093 Zürich, Switzerland

Received 28 November 2006

The high temperature solid electrolyte Li$_{1.3}$Sc$_{0.7}$Ce$_{1.7}$(PO$_4$)$_3$ (where \square is an absence of Li$^+$) compound was synthesized by a solid state reaction and studied by X-ray diffraction at room temperature. At room temperature the investigated compound belong to monoclinic symmetry (space group P2$_1$/n) with four formula units in the lattice. The ceramic samples were sintered at 923 K for 1 h. The surface of the ceramics was investigated by SEM and the chemical composition was tested by EDX. Complex impedance spectroscopy was performed in the frequency range from 10^{-1} to 1.2×10^9 Hz in temperature range from 500 to 700 K. Three relaxation dispersions were found. The dispersions are related to the fast Li$^+$ ion transport in the grain boundaries and grains of the ceramics and to the processes at the Pt electrode–electrolyte interface.

Keywords: ionic conductivity, permittivity, relaxation dispersion, synthesis, ceramic, sintering

PACS: 61.10.Nz, 66.30.Hs, 81.05.Je, 82.45.Yz

1. Introduction

Highly ion-conducting solids are promising materials for development of high energy batteries [1] and CO$_2$ sensors [2]. LiM$_2$(PO$_4$)$_3$ (where M = Ge, Zr, Ti) compounds with Li$^+$ ion transport were extensively studied because of their high ionic conductivity and chemical stability [3–5]. Esaka et al. reported that the addition of Li$^+$ ions in YPO$_4$ compound caused the appearance of the ionic conductivity of Li$_{3x}$Y$_{1-x}$PO$_4$ solid solution [6]. Orlova et al. synthesized LiCe$_2$(PO$_4$)$_3$ and Li$_3$Ce$_{1.5}$(PO$_4$)$_3$ compounds by the liquid-phase method and studied by X-ray diffraction at room and elevated temperatures [7]. These compounds have typical CePO$_4$ monazite-type structure and belong to monoclinic symmetry (space group P2$_1$/n) with four formula units in the lattice [7]. The authors [8] reported that monazite crystals synthesized by hydrothermal method at temperature of 373 and 473 K belong to hexagonal and monoclinic symmetry respectively. The XPS indicate that the phosphorus exists completely in the form of PO$_4^{3-}$ and cerium exists as Ce(III) with no Ce(IV) in all investigated crystals [8].

It was shown that conductivity of Li$_3$Sc$_2$(PO$_4$)$_3$ was increased by partial isomorphous substitution of three valence Sc$^{5+}$ by B$^{3+}$ [9]. High Li$^+$ ion conductivity, their low activation energy stimulate the search and investigation of new Li$^+$ conducting solid electrolyte materials.

In the present work we have performed the partial substitution of Ce$^{3+}$ by Sc$^{3+}$ in the system Li$_3$O–Ce$_2$O$_3$–P$_2$O$_5$ (stoichiometric compound is Li$_3$Ce$_2$(PO$_4$)$_3$). We report the conditions for the synthesis of the Li$_{1.3}$$\square$$_{1.7}Sc_{0.3}Ce_{1.7}$(PO$_4$)$_3$ powder, sintering of the ceramic samples, and the results of the structure investigation of the compound. The electrical properties of the ceramics have been investigated in the frequency range from 10^{-1} to 1.2×10^9 Hz in the temperature range from 500 to 700 K.

2. Experimental

The powder of Li$_{1.3}$$\square$$_{1.7}Sc_{0.3}Ce_{1.7}$(PO$_4$)$_3$ was synthesized from mixture of CeO$_2$, Li$_2$CO$_3$ (purity 99.999%), Sc$_2$O$_3$ (99.99%), and NH$_4$H$_2$PO$_4$ (extra pure) by solid state reaction. The mixture was milled as emulsion with ethyl alcohol in a planetary mill with
one milling ball of 52 mm in diameter and then heated at 723 K for 3 h. Thereafter the mixture was milled, heated at 1093 K for 1 h (in such a system at the temperatures above 773 K a transition of Ce⁴⁺ to Ce³⁺ takes place), milled again, and heated at 1093 K for 3 h. Finally, the mixture was milled for 8 h and dried at temperature 393 K for 24 h. The chemical analysis has shown that the synthesized compound has an absence of Li⁺ □ = 1.7.

The structure parameters were obtained at room temperature from the X-ray powder diffraction patterns recorded with a step of 1°min⁻¹ in the region 2θ = 6°-80° using Cu Kα₁ radiation.

The powder was uniaxially cold pressed at 300 MPa. The sintering of the ceramics was conducted in air at temperature $T = 923$ K for 1 h.

The surface of the ceramics was investigated by SEM (Leo 1530). The sintering of the ceramics was conducted in air at temperature $T = 923$ K for 1 h. The surface of the ceramics was investigated by SEM (Leo 1530). For the SEM investigation the surface of the ceramic sample was polished using suspension with 1-μm diamond particles and thermally etched for 1.5 h at 873 K with 10 Kmin⁻¹ heating and cooling rates. The average grain size of the ceramic samples was estimated from SEM image using the program LINCE which is based on the intercept method [10]. Noran Vantage EDX detector was used to record EDX spectra.

Complex conductivity $\sigma = \sigma' + i\sigma''$, complex impedance $Z = Z' + iZ''$, and complex dielectric permittivity $\varepsilon = \varepsilon' + i\varepsilon''$ were measured while cooling the sample from 700 down to 500 K. In the frequency range from 10^{-1} to 10^{5} Hz the impedance measurements were conducted by impedance measurement unit (IM6, Zahner Electric) by two electrode method and the temperature was stabilized by Eurotherm. The measurements in a frequency range from 10^{6} to $1.2 \cdot 10^{9}$ Hz were performed by coaxial impedance spectrometer set-up [11]. Pt paste was used to form electrodes on the ceramic samples. The measurements were carried out in air.

3. Results and discussion

The results of the X-ray diffraction study have shown that Li₁₃Sc₀₃Ce₁₇(PO₄)₃ powder is mainly single phase material. The corresponding X-ray powder diffraction pattern at room temperature is presented in Fig. 1. The X-ray powder diffraction data are listed in Table 1. The Li₁₃Sc₀₃Ce₁₇(PO₄)₃ compound belongs to the monoclinic symmetry (space group P2₁/n) with four formula units in the lattice. The lattice parameters were found to be $a = 6.8001(13)$ Å,

![Fig. 1. X-ray diffraction pattern of the Li₁₃Sc₀₃Ce₁₇(PO₄)₃ powder.](image-url)
A grain intersection to grain size factor of 1.56 was used [10]. EDX spectrum has shown the sample to be free of foreign elements (Fig. 3).

$b = 7.0294(14)$ Å, $c = 6.4737(14)$ Å, $\beta = 103.468(21)^\circ$, and the unit cell volume is $V = 300.93$ Å3. The theoretical density of the compound was found to be $d_{X-ray} = 4.01$ g/cm3. The average grain size of the obtained powder was calculated from X-ray powder diffraction pattern according to Scherer formula:

$$D = \frac{K \lambda}{(\Delta 2\Theta) \cos \Theta_0},$$

where D is a particle size, a constant $K = 0.9$, the wavelength of the Cu K$_\alpha$ radiation $\lambda = 1.5418$ Å, Θ_0 is an angle of peak intensity, $\Delta 2\Theta$ is a width of peak at half of intensity. The average grain size of Li$_{1.3}\square_{1.7}$Sc$_{0.3}$Ce$_{1.7}$(PO$_4$)$_3$ was 0.41 µm.

The density of the ceramics was found to be 81% of the theoretical density of the compound. SEM image of the studied ceramic sample is presented in Fig. 2. The average grain size of the ceramics determined was 2.2 µm. A grain intersection to grain size factor of 1.56 was used [10]. EDX spectrum has shown the sample to be free of foreign elements (Fig. 3).

The impedance investigation of the ionic conductivity in the wide frequency and in the broad temperature ranges has an advantage because it allows separating all three charge carrier transport processes in grains, grain boundaries of the ceramics, and in the electrode–solid electrolyte interface [12]. The characteristic frequency dependences of the real part of σ of Li$_{1.3}\square_{1.7}$Sc$_{0.3}$Ce$_{1.7}$(PO$_4$)$_3$ ceramics at different temperatures are shown in Fig. 4. Three dispersion regions were found in σ^* spectra. All dispersion regions shift towards higher frequencies with increase of the temperature. The low frequency dispersion ranges of 10^2–10^4 Hz at temperature $T = 520$ K and 10^4–10^5 Hz at temperature $T = 700$ K are related to the blocking Pt electrodes. The temperature dependences of total (σ_t) and grain (σ_g) conductivities of Li$_{1.3}\square_{1.7}$Sc$_{0.3}$Ce$_{1.7}$(PO$_4$)$_3$ ceramics were derived from complex plots of $\sigma(f)$ at different temperatures. The characteristic complex conductivity plots of the ceramic sample are shown in Fig. 5. Higher frequency part of the obtained spectra may be attributed to the relaxation in grains, while lower frequency part corresponds to grain boundary processes as in a wide range of other solid electrolyte ceramics [13–16]. σ_t and σ_g are indicated with arrows in this graph. At 650 K the values of total and grain conductivities of the investigated ceramics were found to be $\sigma_t = 8.59 \times 10^{-4}$ S/m and $\sigma_g = 1.95 \times 10^{-3}$ S/m respectively. The temperature dependences of σ_t and σ_g of the ceramic sample are shown in Fig. 6. The activation energies of σ_t and σ_g were found from the slopes of the Arrhenius plots. The activation energy of total conductivity is $\Delta E_t = 1.34$ eV and the activation energy of grain conductivity is $\Delta E_g = 0.73$ eV.

The temperature dependences of the real part of dielectric permittivity ε' and dielectric losses $\tan \delta$...
were investigated at a frequency of 1 GHz. This frequency is higher than Maxwell relaxation frequency $f_M = \frac{\sigma_0}{(\varepsilon' \varepsilon_0)}$ (where $\varepsilon_0 = 8.85 \times 10^{-12}$ F/m is dielectric constant of the vacuum). At 550 K temperature the ω_M of the ceramics was found to be 38.7 MHz. The temperature dependences of ε' and $\tan \delta$ of Li$_{1.3}$Sc$_{0.3}$Ce$_{1.7}$PO$_4$ ceramics are shown in Fig. 7. At 550 K $\varepsilon' = 6.03$ and $\tan \delta = 0.095$. The increase of the values of ε' with temperature of the investigated compound can be caused by contribution of the migration polarization of lithium ions, vibration of lattice, and electronic polarization. The increase of $\tan \delta$ with temperature is related to the contribution of conductivity in the investigated temperature region.

4. Conclusions

The solid electrolyte Li$_{1.3}$Sc$_{0.3}$Ce$_{1.7}$PO$_4$ compound has been synthesized by solid phase reactions and studied by the X-ray powder diffraction. The investigated compound belongs to monoclinic symmetry (space group P2$_1$/n) with 4 formula units in the lattice. The ceramics of Li$_{1.3}$Sc$_{0.3}$Ce$_{1.7}$PO$_4$ were sintered at a temperature of 923 K. The ceramic sample was investigated by complex impedance spectroscopy in the frequency range from 10^{-1} to 1.2×10^9 Hz in the temperature range from 500 to 700 K. Three regions of the relaxation dispersion are related to the blocking electrodes (low frequency range) and ion transport in the grain boundaries and grains of the
ceramic samples. At 650 K, $\sigma_t = 8.59 \times 10^{-4}$ S/m and $\sigma_g = 1.95 \times 10^{-3}$ S/m. The values of ε' at room temperature at 1 GHz frequency are related to the polarization process due to migration of Li$^+$ ions, lattice vibrations, and electronic polarization.

References

[15] M. Cretin and P. Fabry, Comparative study of lithium ion conductors in the system Li$_{1+x}$Al$_x$A$_{2-x}$Ti$_{2-y}$(PO$_4$)$_3$ with AIV = Ti or Ge and $0 \leq x \leq 0.7$ for use as Li$^+$ sensitive membranes, J. Eur. Ceram. Soc. 19, 2931–2940 (1999).
Santrauka

Kietasis \(\text{Li}_{1.3} \text{Sc}_{0.3} \text{Ce}_{1.7} \text{(PO}_4\text{)}_3 \) (čia \(\square \) yra \(\text{Li}^+ \) trūkumas) elektrolitas buvo susintetintas kietųjų fazių reakcijų metodu. Jo kristaline struktūra buvo tyrta kambario temperatūroje Rentgeno spindulių difrakcijos nuo miltelių metodu. Nustatyta, kad tyrtoasis junginys priklauso monoklinaite singonijai (erdvinė simetrijos grupė \(P2_1/n \)), o jo elementariojoje kristalineje gardele yra 4 formuliniai vienetai. Buvo pagamintos šių kietųjų elektrolitų keramikos. Keramikų elektrinės savybės buvo tyrtos impedansiospektroskopijos metodu, matuojant jų pilnutinę varžą, kompleksinį laidį ir kompleksinę dielektrinę skvarbą \(10^{-1} – 1.2 \cdot 10^9 \) Hz dažnio elektriniame lauke 500–700 K temperatūros intervale. Tirtose keramikose yra stebimos trys relaksacijos tipo elektrinių parametrų dispersijos, susijusios su blokuojančiais Pt elektrodais, \(\text{Li}^+ \) jonų pernaša kristalinėje ir tarpkristaline terpėse. Esant 650 K temperatūrai, bendrasis keramikos laidis \(\sigma_t = 8.59 \cdot 10^{-4} \) S/m ir kristalinių laidų \(\sigma_k = 1.95 \cdot 10^{-3} \) S/m. Didejant temperatūrą, keramikų \(\varepsilon' \) ir \(\tan \delta \) didėja. Keramikų \(\varepsilon' \) dydį lemia ličio jonų migracine, joninė tampriųjų bei elektroninė poliarizacijos. Matuotų kietųjų elektrolitų dielektrinius nuostolius lemia jų joninio laidumo kaita.