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2.1 INTRODUCTION

The resonance transfer of energy between chemical species separated beyond
wavefunction overlap has, until quite recently, commonly been regarded as
being mediated by one of two distinct mechanisms: radiationless transfer, gen-
erally associated with the names of Perrin {46], Forster [23], Dexter [19] and
Galanin [24, 25], and radiative transfer. The former applies over short distances
and is characterized by an inverse sixth-power dependence on the separation
between the donor and acceptor; the latter is a longer-range effect characterized
by an inverse square law. Within the framework of a unified theory [4,6,7, 8,
10,11, 26,37, 38, 53], it has emerged that both are but limits of a more general
mechanism which operates over all distances. This includes an intermediate
range over which some degree of competition between the two traditional
mechanisms might have been envisaged — and where it transpires that a third,
previously hidden, interaction gains equal prominence. However, the new
approach offers a number of other advantages beyond its greater compass. In
particular, it can properly accommodate the dielectric influence of the medium
across which energy transfer takes place [37], it lends itself to the rigorous
analysis of energy transfer dynamics [38, 52], and it can be incorporated into
stochastic theories of ensemble energy transport [15]. Further, it is a theory
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which has successfully expedited the resolution of a number of serious concep-
tual and other problems latent in earlier treatments. It is the purpose of this
chapter to summarize the key features of the modern theoretic development, to
identify results in a form amenable to direct implementation, and to highlight
the paradigm shift in the conceptualization of resonance energy transfer.

2.2 BACKGROUND
2.2.1 Theoretical framework

The framework within which the unified theory naturally emerges is quantum
electrodynamics (QED) [28], best implemented in the molecular formulation
largely due to Craig and Thirunamachandran [16]. This is a theory in which
bothmatter and radiation are subject to quantum development, in contrast to the
more familiar semiclassical approach where radiation is treated as a classical
electromagnetic field. Quantum electrodynamics is in fact the only theory in
which the photon concept has any legitimacy, despite the latter’s invocation at
some point in almost every semiclassical description. It is a theory in which
retardation is also naturally accommodated, reflecting the finite speed of signal
propagation. It is such retardation features, for example, which are responsible
for modifying at mesoscopic distances the inverse sixth-power distance-depend-
ence of the London potential (the attractive part of the 6-12 Lennard-Jones
potential) to the correct and experimentally verified form given by the Casimir—
Polder formula - in which the asymptotic behavior at large distances proves to be
of inverse seventh-power form [16,42]. Lastly, QED is a theory in which matter
and radiation, treated on a common footing, together comprise a closed dynam-
ical system, as illustrated in Fig. 2.1 for the simple case of photon absorption.
Notwithstanding the theory’s intrinsic logical appeal, it is the incorporation of
retardation features in particular which vindicates the application to resonance
energy transfer. It is this aspect which proves crucial in identifying the link
between radiationless and radiative transport of excitation energy — it also
clarifies their relationship to the classical model of dipole coupling [5].

2.2.2 Historical development

More than a half century has elapsed since the first pioneering attempts by
Kikuchi [39], Fermi [21], Heitler and Ma [30] and Hamilton [27] to address by
quantum electrodynamical methods the theory of resonance energy transfer. It
was clearly not the intention in the earliest studies, concentrating on the longer-
range (far zone) energy transfer, to forge any link between the so-called radiat-
ive and radiationless mechanisms. In the 1960s, Avery [10] and Gomberoff and
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Figure 2.1 A representation of the absorption of light by a molecular system, empha-
sizing the quantum-electrodynamical view of the molecule plus the radiation as a single
closed system. The molecule undergoes an upward transition from its ground to its first
excited singlet state, while the radiation experiences a transition from a state with
n photons to one with i — |

Power [26] made the first attempts to extend the Férster theory of the short-
range radiationless energy transfer [2, 23-25] to arbitrary transfer distances, to
include long-range radiative transfer. Such a unified approach to radiative and
radiationless energy transfer received a considerable boost of interest in the
1980s [4,8,9,11,17,47] and 1990s [6, 7, 14, 18, 35, 52, 53]. Through such studies
it has been demonstrated [35,11,8,7, 6,4] that, in the far zone, the unified
mechanism for energy transfer equates to emission of a photon by a donor
molecule and subsequent recapture of the photon by an acceptor, thus proving
the equivalence of the so-called radiationless and radiative mechanisms. In
other developments [44,54, 18, 38, 52], the time evolution of the transfer
dynamics has been explicitly considered within the framework of the unified
theory, analysing in detail the transfer dynamics beyond the rate regime.
Another important raft of issues relates to the incorporation within the unified
theory of the effects of the surrounding medium. Although a handful of sporadic
attempts to accommodate medium effects in excitation transfer has appeared
previously [7, 10, 17], it was the case until quite recently that most QED theories
totally ignored the influence of such effects. The 1989 treatment by Craig and
Thirunamachandran [17], incorporating effects of a third molecule in the energy
transfer between a selected pair of molecules, led to a new discussion of the way
to include dielectric characteristics. It was suggested from macroscopic argu-
ments that the vacuum dielectric permittivity ¢, entering the rate of excitation
transfer in vacuo should be replaced by its medium counterpart e to represent the
screening. Nevertheless, in using this prescriptive approach other important
medium effects, such as local fields, energy losses due to the absorbing medium,
and influences on the character of the transfer rates in passing from the near to
the far zone, were not considered. More recently, a QED theory was developed
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by us [37, 38] which systematically dealt with these issues by microscopically
including the molecular medium. In contrast to the conventional QED theories
in which energy transfer is cast in terms of the intermolecular propagation of
virtual photons, the new theory has been formulated by invoking the concept of
bath polaritons (“medium-dressed” photons) mediating the process. The med-
ium effects have been shown to play an important role in making the unified
theory self-consistent [35, 37, 38]. In fact, it was a systematic treatment of the
surrounding medium that made it possible to solve the problem of potentially
infinite ensemble rates of energy transfer associated with the far zone inverse
square law, as will be discussed in detail in Section 2.5.

2.2.3 Physical basis

Before proceeding further, it is worth saying something about the electronic basis
for these interactions. Although usually couched in terms of a coupling between
molecules, the theory to be described here is valid for energy transfer between
any two species with a distinct electronic integrity - for convenience and general-
ity we can simply refer to them as the donor and acceptor. The theory thus
embraces not only intermolecular transfer, but also transfer between chromo-
phores within any larger structure such as a protein or other host structure —
provided that these chromophores are not electronically coupled by a resonance
structure such as a conjugated chain. As it is generally most convenient to
consider electronic properties in terms of electric dipoles, quadrupoles, etc., we
shall deal in the common multipolar (Power-Zienau-Woolley) form of QED. A
key feature of this formulation is the exact cancelation of all intermolecular
coulombic (longitudinal) interactions [16], so that any process involving two or
more electrically neutral species invokes the creation and annihilation of virtual
photons: in the jargon of particle physics, where QED is more often applied, we
would say that these are the gauge bosons that mediate intermolecular interac-
tion. If that sounds daunting, the calculations which it engenders in the case of
Tesonance energy transfer nonetheless prove remarkably straightforward.

2.2.4 Layers of complexity

To develop a usable and general result for the rate of energy exchange in a real
system, it is most instructive and convenient to progressively refine a working
model by inclusion of salient detail. The plan in the following sections of this
chapter is therefore to work as follows:

® The first stage (Section 2.3) is to define the basic concepts of the unified
theory, subsequently providing the derivation of the transition matrix
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element for energy transfer between a pair of chromophores separated by an
arbitrary distance R. This leads to identification of the radiative R~! term
featured in the quantum amplitude for the transition (the transition matrix
element), along with the near-zone R-3 contribution. At this stage, neither
the effect of the surrounding medium nor the vibrational structure for each
of the transfer species is explicitly included.

e The nextstep (Section 2.4) is to include the effects of energy-level structure for

each donor and acceptor. Accordingly, the transfer rate is represented in terms
of the overlap integral between the donor fluorescence and the acceptor
absorption spectra. establishing a connection with the Forster theory of
radiationless energy transfer. The subsequent consideration of the range-
dependence of the fluorescence depolarization illustrates the general theory.

e The third element (Section 2.5) is accommodation of the electronic influence

of the absorbing molecular medium between the donor and acceptor sites.
This is reflected in refractive and dissipative effects on the transfer of excita-
tion energy, rectifying the otherwise anomalous R-2 dependence of the trans-
fer rates between the selected pair at large separation. Using the corrected pair
rates one can calculate (Section 2.5.2) the total rate of decay of an initially
excited molecule due to the energy transfer to the surrounding medium. The
contributions due to energy transfer in the far zone are then identified as the
rate of spontaneous emission in the absorbing medium, the effects of the
surrounding medium being incorporated on a fully microscopic basis.

e Finally, Section 2.6 analyses in detail the transfer dynamics for a pair of
species in a dielectric medium. Starting from a general consideration of the
time evolution, a connection is first established with the temporal basis of the
previous sections that describe the process in terms of the energy transfer
rates. Attention is then focused on situations that do not fit into the rate
regime, and where different dynamical aspects are apparent.

2.3 THE BASIS OF THE UNIFIED THEORY

2.3.1 General formulation

In the multipolar (Power-Zienau-Woolley) formulation of QED [16, 50, 57].
the Coulomb interaction between molecules is represented by the propagation
of transverse virtual photons, and it is the coupling between the molecules and
the quantized radiation field which is responsible not only for molecular
absorption and emission, but also for intermolecular energy transfer. In this
formalism, the Hamiltonian for the system can generally be written as

H:Hrad+ZHmol(X)+ZHim(X)a (21)
X X
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where Hi,q is the Hamiltonian for the radiation field and Hyo(X) is the
Hamiltonian for molecule X, the summations being over all molecules of the
system. The coupling between the molecular subsystem and the quantized field
is represented by a set of terms H;,y (X) that describe the interaction of the field
with the individual molecules. For general purposes, it is sufficient to express
the interaction terms in the electric dipole approximation, although the form-
alism that we employ is perfectly amenable to the incorporation of higher
multipole terms [52]. Thus we write

Hin(X) = —g5'm(X) - d+ (Ry), (2.2)

where p(X) is the electric dipole operator of the molecule X positioned at Ry,
and d*(Ry) is the electric displacement operator calculated at the molecular
site. The latter displacement operator and the radiation Hamiltonian may be
cast as [16]

N2
d“(R) = (ﬁd“”“’) e<A>(k){a<*)(k)e“"R e (k)e"“"R} (2.3)
A

and

Hua =Y a™* (K)a™ (k)hck + ey, (2.4)
kA

where in each expression a sum is taken over radiation modes characterized by
wave-vector k and polarization vector (k) (with A = 1,2); a*(k) and
aM(k) are the corresponding operators for creation and annihilation of a
photon, V is the quantization volume, and ey, is the energy of the photon
vacuum.

2.3.2  Energy transfer between a donor and acceptor pair in vacuum

In this and the next sections, we shall analyse the energy transfer between a pair
of species (to be referred to as donor and acceptor, labeled by D and 4) without
taking into account the influences of other molecules comprising the surround-
ing medium [4, 6, 7, 8, 9, 10, 1 1, 16, 18, 26]. In such a situation the general
Hamiltonian Eqn 2.1 reduces to the following:

H=H"1+V, (2.5)

with
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H® = Huag + Humot(D) + Hynot(A) (2.6)

and
V'= Hin(D) + Hin (A4). (2.7)

To represent the energy transfer from D to A4, the initial and final state vectors
are chosen to be the following eigenvectors of the zero-order Hamiltonian H":

1) = 1D")4)[0).  |F) = |D)|4")|0). (2.8)
the corresponding energies being
Er = €p +eqt+ ey, Erp= Dt Cqr + ey, (29)

where |0) denotes the photon vacuum, |D*) and |D) label the initial and final
states of the donor, |4) and |4") are the corresponding state vectors of the
acceptor (the asterisk referring to a molecule in an electronically excited state),
and ep. and e, (ep and e4.) are the appropriate energies of the donor and
acceptor in their initial (final) states. For generality, the state vectors of donor
and acceptor are considered to implicitly contain vibrational contributions that
are normally separable from the electronic parts on the basis of the Born.
Oppenheimer principle, both for the ground and excited electronic molecular
states. The vibronic sublevels will be explicitly included into the theory in the
following section.

In passing, we note that the conventional (semiclassical) theories of radia-
tionless energy transfer [2, 23, 25] do not consider photon states, and the energy
transfer appears as a first-order process induced by an instantaneous Coulomb
interaction. Such an approach is Justified in the near zone, i.e. when the distance
R of donor-acceptor separation is much less than the reduced wavelength
A = A/2m, X being the wavelength corresponding to the transfer energy. In the
QED formalism employed here, the quantized electromagnetic field is treated
on an equal footing to the molecular subsystem, both subsystems comprising a
united dynamical system described by the full Hamiltonian H. Here the energy
transfer emerges as a second-order process mediated by intermolecular
propagation of virtual photons (see Fig. 2.2), and the theory is no longer
restricted to the near zone of the separation distances R. The rate of excitation
energy transfer, associated with the initial and final states of Eqn. 2.8, can be
generally written using the Fermi Golden Rule (see Section 2.6 for more detail;
and, for example, [21, 51]), as

Wey == % (FITIDS(E; - Er), (2.10)
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D A D A

kA kA

(a) (b)

Figure 2.2 The two time-ordered diagrams for resonance energy transfer, time progres-
sing upward. In both cases the virtual photon labeled k, A mediates the transfer of energy
from the initially excited donor D* to the acceptor 4

where T is the transition operator, given by

T= V+VE——]1{(:TSV+A..:T(”+T‘Z’+... (S —+0) (2.11)
-

and the higher order terms can be neglected for our purposes. In the QED
approach, the first-order term 7' = V', representing photoabsorption and
photoemission by individual molecules (Fig. 2.3), does not contribute to the
transfer rate as given by Eqns 2.10 and 2.11. It is the second-order contribution

(a) (b)

Figure 2.3 Time-ordered diagrams for (a) photoabsorption and (b) photoemission
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T®) that is the leading term responsible for the resonance energy transfer in
question. Using Eqns 2.4-2.9, the second-order transition matrix element reads

> I = (FIVIM, (k, )Y (M, (k. N VI
<F1T<-)Il>:fzk2;>;< | qu)("*l'c)lzt(l-/(«ﬂ«)vl -

, (2.12)

with
heK =ey —ey = ep- —ep >0 (2.13)

being the transfer energy. Here IM,(k,\) (¢ = 1,2) denote the intermediate
states in which both donor and acceptor are either in the ground (¢ = 1) or in
the excited (¢ = 2) electronic states:

IMi(k.2) = [D)|A)]k, \) (2.14)
and
|Ma(k.A)) = [D")|4") [k, 2), (2.15)

the radiation field being promoted to a one-photon state:
k. A) = a™ (k)|0). (2.16)

The two types of intermediate state correspond to the two possible sequences of
transitions undergone by the donor and acceptor. In the first case (g = 1), the
transition D* — D precedes the transition 4* — A*, as in Fig. 2.2a, whereas in
the second case (g = 2) one has the opposite ordering, as in Fig. 2.2b. The latter
sequence represents an apparently anomalous situation in which the upward
transition of the acceptor A is accompanied by the creation of a virtual photon,
and the subsequent annihilation of the photon induces the downward transition
by the donor D* — D. Nevertheless, both types of transition must be included
in the theory according to the normal rules of time-dependent perturbation
theory. The precision with which the law of energy conservation has to apply to
the virtual photons is determined by the time-energy Uncertainty Principle:
0Eét>h, where 6t = R/c is the time necessary for a photon to cover the
distance between the donor and acceptor, giving

fhicK
>

E> ——.
5 KR

(2.17)

Consequently, the contribution due to intermediate states of the second type,
Fig. 2.2b, is of essential importance in the near zone (KR < 1), for which the
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energy uncertainty 6E greatly exceeds the energy transferred, ficK. At large
separations (KR > 1), where a virtual photon mediating the interaction
between the donor and acceptor exists for a time that appreciably exceeds the
duration of the optical cycle, the photon acquires real character: §E < hcK. In
such a situation, the contribution associated with Fig. 2.2b diminishes to a
point at which it can be considered negligible.

Substituting Eqns 2.2, 2.8, 2.9, and 2.14-2.16 into Eqn 2.12, one arrives at the
following expression for the transition matrix element:

(FIT 1) = " g2 (K Ryl (2.18)
with

(Oldr (Ra) [k, ) (k. A (R)|0)

] I
O (K, R) = -~

hey 4 cK — ck +is
~ (0ldi* (Rp)Ik, A) (K, Ald} (R 4)[0) Rers w (2.19)
cK +ck —is
and
o' = (DID)DY),  wl = (4| (4)]4). (2.20)

where implied summation over the repeated Cartesian indices (/ and ) is
assumed, and where uf! and p™" are the transition dipole moments of the
donor and acceptor, respectively. The superscript “full” indicates that the
molecular state vectors entering the transition dipoles of Eqn 2.20 contain
both electronic and vibrational contributions, as made explicit in the following
section. Here also 0;7“(K,R) is the tensor for the retarded dipole—dipole cou-
pling between the donor and acceptor in vacuum: modifications to the tensor
by the surrounding molecular medium will be considered in Section 2.5. Using
Eqn 2.3 for the displacement operator and performing summation over the
photon polarizations (A = 1,2), the tensor Eqn 2.19 reduces to

8y — kik )k eikR e—ikR
gvac K R) = ( g J . — —
i KR ; 220V |[K—k+iv K+k-iv|] R=Ra—Ryp)

(2.21)
where k = k/k is the unit vector along the wave-vector k,ands =s5/c — +01is

the new infinitesimal. Replacing the sum over k by an integral and performing
the angular integration, Eqn 2.21 can be written as
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1

7°(K.R) = (=V?6; 4+ V,V,) ——G(K, R), (2.22)
- ’ 47(“50
where

“sin(kR) 1 1
K, R) = T T —— | dk 2.23
(K R) A R {K~k+is’ K+k—ls/J (2.23)

1 o kR ikR

o A N P (2.24)

AR/ |K-k+is Kik+is

is the Green function, the sign of the infinitesimal s’ being reversed in the
nonresonant term of the original integral in Eqn 2.23 to expand the integration
contour to negative values of k in Eqn 2.24. The expanded contour of integra-
tion can be closed up by a large semicircle in the upper complex half-plane,
subsequently calculating the residue at & = K + is' to yield

Wexp(lKR) .

G(K.R) = —r =

(2.25)

It is noteworthy that the Imaginary infinitesimal featured in the transition
matrix element, Eqn 2.11 and the subsequent equations, emerges intrinsically
from the time-dependent analysis of the problem, as will be demonstrated in
Section 2.6. It is the presence of such an infinitesimal s that ensures the correct
bypassing of poles in Eqns 2.23 and 2.24. Thus, one automatically avoids
analytic problems associated with the choice of the integration contour of the
Green function, discussed previously [8].

Using Eqn 2.25, the electromagnetic tensor, Eqn 2.22, now takes the final
form

K3eiKR

471'60

1 i

va R.E DT 1

with R = R/R. The above tensor, whose role in the first-order dispersion
forces was much earlier established by Stephen [55], contains the R™3 term
characteristic of the near zone, the radiative R~! term operating in the far zone,
as well as an R~2 contribution that plays an important role at critical retarda-
tion distances: KR ~ 1. Note that the long- and short-range terms are char-
acterized by different orientational dependencies: this factor will lead to the
range dependence of the fluorescence anisotropy, to be discussed in Section
242,
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2.4 SPECTRAL FEATURES

2.4.1 Connection with the Forster theory

According to the Born-Oppenheimer Principle, the molecular state vectors can
be separated into electronic and vibrational parts, as

D) = DY)les). D) = [Da)el)), (2.27)
IA) = [Aa)le™, A7) = A e?), (2.28)

where the subscript “el” refers to the electronic part of the state vectors, the
indices n, r, m, and p specifying the vibrational, rotational, etc. sublevels of the
transfer species D and 4. The transition dipole moments, Eqn 2.20, then split
into electronic and vibrational contributions, as

ul * r n tr )
1o = (DaliD)D) el lef)) = mnles b)), (2:29)
. m { n
i = (AL RA) Aa) (P lel) = el 1ol (2.30)

where, according to the Condon Principle, the dipole operators of the donor
and acceptor, p (D) and p (A) respectively, are assumed not to depend on the
vibrational degrees of freedom, p and py being the appropriate electronic
parts of the transition matrix elements.

Substituting the transition dipoles, Eqns 2.29 and 2.30, into Eqn 2.18, the full
rate of donor-acceptor transfer reads, after performing the necessary averaging
over the initial molecular states and summing over the final molecular states in
Eqn 2.10,

2n n r n m 2 pvi 2
Wou=30 37 050l eh 15 @D 165 Pl P16 (K, R)

namr,p

5(ep; tea, —en, —ey). (2.31)

Here, pg'.) and pg") are the population distribution functions of the initial
vibrational states of the donor and acceptor respectively, the vibrational indices
also being included in the energies of the initial and final states that feature in
the energy-conserving delta function. In analogy to the Forster theory [2, 25,
the pair transfer rate, Eqn 2.31, can be expressed, using Eqn 2.26 for HZaC(K ,R),
in terms of the overlap integral between the donor and acceptor spectra:

= —2—/00 Fp(w)o 4(w)wg" (w, R)dw, (2.32)
D Jo
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with
6 4 2
vacy, _ .2 ¢ 2 ¢ 2 ¢
g%(w,R) =13 o RE + (3 ~ 27};773) R + 17 SR (2.33)
In the above equations,
2
A WL Iz nr
04(w) = 32D PR e, — e, - ) o (234)
€oc m.p !
and
DTOUD N )y (o2
Fp(w) = WZ’)D en'len ) 8 (en; — ep, — hw). (2.35)

are, respectively, the cross-section for the acceptor absorption and the donor
emission spectra (the latter Fp(w) normalized to unity), mp being the radiative
lifetime of the donor. Here also

=l bo) —a(Ri ) (Rop) (=13 (239

are the orientational factors, the carets referring to unit vectors. In passing we
note that the orientational factor 73 that characterizes the near-zone transfer is
identical to the kappa whose square is the familiar short-range orientational
factor; see, for example, Chapter 4.

The rate equation 2.32 accommodates contributions due to both radiation-
less and radiative energy transfer. In the near zone, Eqn 2.35 reduces to the
usual Forster rate for nonradiative energy transfer [2, 25):

/0 " Fp(w)o 4(w)w™ dw, (2.37)

characterized by an R~¢ distance dependence and the orientational factor 72
(kappa squared). In the far zone, Eqn 2.32 provides the radiative result
Wpa o i /R%. 1t is noteworthy that the two limiting cases differ not only in
their distance dependence, but also in their orientational factors. This leads to a
completely different transfer-induced fluorescence depolarization in these two
cases, an issue to be discussed in detail in the following subsection. Note also
that although the effects of retardation are contained in the pair-rate Eqn 2.32,
the result has been derived without taking into account the influence of mole-
cules other than the donor and acceptor: the effects of the intervening medium
will be considered in Section 2.5.
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We conclude this subsection with a remark concerning nonrigid systems that
have fast rotational motion of the donor and acceptor. In such a situation, the
factor g**°(w. R) that enters Eqn 2.32 should be replaced by its orientational
average:

¢ (. R) 2 3 . ¢ n ¢ (2.38)
Sy A\ - 9 wﬁR() \J./‘4R4 “JZRZ . =
The factor g'*(w, R) is then related 1o the excitation transfer function 4(K. R)
introduced in [8, 4]. as

5

vac 4rzgc? 539
Eav (“‘" R) = 3 A(w/(', R) (2.3 )

2.4.2  Range-dependence of the fluorescence depolarization

In this subsection we shall consider the polarization character of the system
fluorescence [25]. applying the unified approach to determine the depolariza-
tion of fluorescence through acceptor decay following radiative or radiationless
energy transfer. For the usual nonradiative (Forster) mechanism, the transfer
rate depends only weakly on the average mutual orientation of the donors and
acceptors (see Eqn 2.41 below for the average of the appropriate orientational
factor). This is the reason for the well-known and considerable (1/25) reduction
of fluorescence anisotropy following a single act of energy transfer in an
isotropic or randomly oriented system [2, 25]. By contrast, in the radiative
mechanism, the energy transfer between species with parallel transition dipoles
is greatly preferred. leading to a smaller loss of polarization in a randomly
oriented system (compare Eqn 2.40, in which the angle-dependent term is
weighted by a factor of 7]. Consequently, the residual anisotropy following a
single act of photon reabsorption is substantially (seven times) greater than in
the case of nonradiative transfer.

Here, following [6], a general formula will be derived which connects and
accommodates the above limiting cases, also providing results that are valid for
intermediate distances where neither radiative nor radiationless transfer dom-
inates. Note that the rotational depolarization is assumed to be negligible. In
order to arrive at a formula that exhibits the effects of the relative donor-
acceptor orientation in an ensemble, it is necessary to average the pair-rate,
Eqn. 2.32, over the orientation of the radius vector R, keeping a fixed mutual
orientation between the donor and acceptor. We then obtain the following

results for the rotational averages of the orientational factors featured in
Egn 2.33.
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7 =1 (Tcos? 6+ 1), 7 = 1(cos? 6 + 3) (2.40,2.41)

and

T =3 (2.42)

[

where cos § = 1, - 1. Substituting the above averages into Eqns 2.32 and
2.33, we thus obtain

W(R) x (3v6 + 34 + Ty2)cos™ 0+ (9r6 + 3y + 12). (2.43)
with

= / I Ep(Wos(wde (n = 2.4.6) (2.44)
R fy

Therefore, the properly normalized function for the orientational distribution
of excited acceptors is given by

3 B+ KR+ TKARJoos? 0+ (9+3K2R + K*R¢)

f(6.R) = — — = (2.45)
T 3+ K2R + K4R*
with
/ (w/¢)"Fp(w)o4(w)w™ dw
K=l : (2.46)
/ Fp(w)o4(w)w™ dw
0
Of special interest is the fluorescence anisotropy, defined by
Iy -1,

= 2.47
I Iy + 21 (247)

where I;; and I, are components of the fluorescence intensity polarized,
respectively, parallel to and perpendicular to the polarization of the excitation
light. In the case where fluorescence occurs directly from the molecule which
absorbs the incident light (the donor), the anisotropy is designated ry; where
fluorescence occurs following a single-step transfer of energy to another mole-
cule (the acceptor), the anisotropy is designated r,. The value of rp, if intra-
molecular relaxation of the donor produces no change of electronic state, has
its theoretical maximum of 0.4 [2, 25].
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Here it is the result for r; which is of principal interest; the fluorescence
anisotropy following a chain of energy transfer events can be directly calculated
from this result. In terms of ro, the acceptor anisotropy r; can be expressed as

ri = (Py(cos 6))ry, (2.48)

where P;(cos §) = %(3 cos’ § — 1) is the second-order Legendre polynomial,
and the angular brackets denote the orientational average,

(Py(cos 0)) = % /O " Pa(cos 0)f (6)sin 6 db. (2.49)

Substituting Eqn 2.45 into Eqn 2.49, we obtain the following most general
result for the fluorescence anisotropy:

_ ro TK'R* 4 K2R 1 3
25 K'RY + K2R2 + 3

r( (2.50)

The above equation is valid for arbitrary separations R. As shown in Eqgns 2.55
and 2.56 below, the familiar near- and far-zone results are the asymptotes of
this formula. It is to be pointed out that, in general, the residual anisotropy
depends not only on the transfer distance, but also on the shapes of the spectral
lines through the averages K2 and K* featured in Egn 2.50. However, as the
widths of the absorption and emission lines are considerably less than the
photon frequency, Eqn 2.50 can be rewritten without significant loss of general-
1ty as

ro TK*RS + K2R? 4 3

1(R) = — — ,
ri(R) 25K4R4+K2R2—f—3’

(2.51)

where X is the averaged value of K calculated by use of Eqn 2.46 with n = 1. In
the case in which the absorption and emission lines are of Gaussian shape.

Fp(w) x wexp [(w - wD)z/zoﬂ, 0.4(w) o wexp [(w ~wa)? /202}, (2.52)

we have
K=l + (0/2/2], K= K4 [1+3(o/a) + 3(o/@)*/4].
(2.53,2.54)

This means that if, for instance, the ratio o/w is equal to 0.1, the error made
using the relationship of Eqn 2.51 instead of the exact result, Eqn 2.50, is less
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than a few percent. Further, both formulas provide the correct asymptotes at
small and large distances, as follows.
KR< 1. Here, Eqns 2.50 and 2.51 reproduce the usual Galanin result,

rp = ol — /05, (2.55)

KR > 1. Here we arrive at the result for the fluorescence depolarization
associated with radiative energy transfer from the donor to an acceptor in the
far zone:

ri= P = 70 /25, (2.56)

The distance-dependence of the relative anisotropy r; /ry calculated according
to Eqn 2.51 is presented in Fig. 2.4. One can see the anisotropy rise to
significant values at distances much less than those normally associated with
radiative energy transfer. For instance, with a donor-acceptor separation of
R = I.5/k = 0.75\/7, the relative anisotropy ry/ry attains the value of 3/25,
which is considerably higher than the result for radiationless transfer, as follows

from Eqn 2.51.
In connection with multiphoton fluorescence energy transfer, any microsco-
pically disordered system exhibits the same sevenfold increase in fluorescence

0.32 -
Filvo
0.24 S

0.16

0.08 4

0-00 T v L} L) ¥ |
2 3 4 p 5
0 1 KR

Figure 2.4 The distance-dependence of relative fluorescence anisotropy, displaying the
increase associated with the onset of significant retardation on progressing from “radia-
tionless” transfer at short distances to long-range “radiative” transfer. The abscissa
values KR signify the donor-acceptor distance R divided by the “reduced wavelength”
A/2m, where A is the wavelength corresponding to the transferred energy
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anisotropy as the donor-acceptor distance increases from the near-zone to the
far-zone range. However. the detailed dependence on the relative orientations
of the participating donor transition moments adds considerable complexity to
the results, even in the two-photon case {3].

2.5 REFRACTION AND DISSIPATION

In deriving the pair rate, Eqn 2.32, the influence of molecules other than the
selected donor and acceptor has not been taken into account. Therefore,
straightforward application of such pair rates to any ensemble can lead to
erroneous conclusions, the most dramatic fact being the prediction of a poten-
tially infinite donor decay rate, calculated as the sum of contributions to all
surrounding acceptors (by analogy with the Férster theory of radiationless
energy transfer [2. 25]). The problem arises because the pair rates, Eqn 2.35,
behave as R~ in the far zone. whereas for a uniform distribution the number of
acceptors in a shell centered on the donor grows as R2. In this section, con-
tributions due to other molecules are systematically included into the pair rates,
providing inter alia a resolution to the above problem.

2.5.1 Influence of the molecular medium on the pair rates

Let us return to the general Hamiltonian, Eqn 2.1, which describes an ensemble
of molecules (atoms or chromophore groups) coupled with the quantized
radiation field. To deal with excitation transfer between a selected pair of
molecules D and A, we shall now divide the full system into two parts. One
subsystem comprises the selected pair of species D and 4; another subsystem (to
be referred to as the polariton bath) contains the quantized electromagnetic
field and the remaining molecules that constitute the surrounding medium.
Note that the molecules of the medium may, but do not necessarily, differ in
type from D and A4. With regard to the chosen partitioning of the system, the

full Hamiltonian of Eqn 2.1 splits into a zero-order Hamiltonian and interac-
tion operator, as

H=H’+V, (2.57)

with
H = Hyuh + Huol(D) + Hipor(A), (2.58)
V = Hi (D) + Hi(A), (2.59)

and

s
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Hpan = Hpg + Z [Hmo(X) + Hin (X)), (2.60)
XDoA

where the latter Hy,y is the “bath” Hamiltonian that contains the radiation
Hamiltonian H,q4. as well as contributions due to all molecules other than the
donor and acceptor, the interaction Hamiltonians Hiy (X) being given by Eqns
2.2 and 2.3.

The partitioning of Eqns 2.57-2.59 has the same form as Eqns 2.5-2.7
employed for energy transfer in vacuo, subject to the replacement
Hrua — Hpan. Consequently, one can readily modify the previous Eqns 2.8-
2.20 to suit the present situation. Specifically, the state vector |0) featured in the
initial conditions, Eqn 2.8, now represents the ground state of the polariton
bath (a combined system of the radiation field and the molecular medium), ey,
being the corresponding zero-point energy of the bath. Next, the transition
matrix element, Eqn 2.12, and the state vectors for the intermediate states, Eqns
2.14 and 2.15, modify as follows:

i =i S IO
|Mi(0)) = |D)|4)|o), (2.62)
and
IM3(0)) = |D")|A")]o), (2.63)
where
I, = €5 ~ evac, (2.64)

is the excitation energy of the bath (i.e. the difference in energies between its
excited and ground states). Here the index o refers to the excited states of the
bath that are accessible though a single action of the interaction operator } on
the ground-state vector |0). Accordingly, the energy transfer is now regar@ed as
being mediated by the elementary excitations of the bath (virtual polaritons)
rather than by virtual photons of the “pure” electromagnetic field. The two
types of intermediate states, Eqns 2.62 and 2.63, again correspond to the two
time-orderings (Fig. 2.5) showing two different patterns for mediation of the
intermolecular coupling by a medium-dressed photon (a bath polariton).

By analogy with Eqns 2.18 and 2.19, the transition matrix element can now
be represented as

(FITO|I = uf;"e,j(K,R)pg", (2.65)
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Figure 2.5 Time-ordered diagrams for polariton-mediated energy transfer

where

Oy(K.R) = L ) Oldi"(R4)[o){old (Rp)[0)  (O}d* (Rp)o)(o]d} (R 4)]0)
o 0 K 11, +is K +11, — is

g

0 o
(2.66)

1s the tensor for the retarded dipole—dipole coupling between a pair of mole-
cules within the medium: here the influences of the material medium arise
through the detailed form of the eigenstates and the eigenenergies of the bath
that enter Eqn 2.66. The eigenvalue problem can be bypassed in calculating the
tepsor 9,(K.R) by invoking the Green function formalism [37]. As an altern-
ative. explicit summation over the normal modes ¢ can be performed in Eqgn
2:66; this can be achieved by expanding (in terms of the normal modes of the
dielectric medium [33, 34)) the local displacement operators di*(R4) and
di*(Rp) that enter Eqn 2.66. By either method, one arrives at the same result,
E.qn 2.68, presented below. For instance, applying the Green function tech-
nique, the tensor of Eqn 2.66 is found to be [37]

2e0V K—k+is nK+k—iy
(2.67)

1 /2 2 6,-—/}111'» k ik-R —ik-R
w4 (222) s (Kb )

where n = n(cK) is the refractive index of the medium given by Eqns 2.69-2.70
below. One can now repeat steps similar to those for the vacuum case,
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Eqns 2.21-2.26, to yield the following final result for the retarded tensor of the
dipole—dipole coupling in the dielectric medium:

I 42\
(KR = & (13_.) 65(nK R), (2.68)

The tensor of Eqn 2.68 accommodates a screening contribution n2 and a
local field (Lorenz) factor (n* +2)/3. In addition, the result contains the tensor
6"(nK,R) with the same structure as the vacuum tensor, Eqn 2.26, the argu-
ment y = nK now, however, being scaled by the refractive index n, as given by

ap/eg

ne=l 40
1 —a[)/3€()

(2.69)

where p = N/V in turn is the number of molecules X per unit volume, and a is
the molecular polarisability (calculated at the transfer frequency w = ¢K):

2 . (m)y (2 5 , s
1 el oy )| n 13 1Y 1Y)

EX;—EX’”~CK—iS EX,; _eXm+CK+iS .

(2.70)

1 n
a=ay(cK) = iﬁz/)f,‘,)

n.p

In this representation, the quantity s is considered to be a small though a finite
parameter that reflects the natural widths of each molecular line: replacement
of an infinitesimal s by its finite counterpart to can be justified on rigorous
dynamical grounds, as discussed in Section 2.6 (in which connection, the width
s is labeled by another letter, ). Here also the indices 1 and p label the sublevels
(vibrational, etc.) of the ground and excited state manifolds for the species X
comprising the medium, yy is the electronic part of the transition dipole, as in
Eqn 2.30, ex. — ey, represent the excitation energies, and pf‘f") are the popula-
tion distributions of the vibrational sublevels in the ground electronic state of
the molecule X. It is noteworthy that an arbitrary number of vibrational
sublevels can be accommodated for each molecule X of the medium in the
framework of the formalism applied [33, 34,37). This includes inter alia a
situation in which the molecular sublevels form a dense (quasi-continuum)
set. In such a case, the molecular polarizability, Eqn 2.70, acquires an imagin-
ary part in the absorbing areas of the spectrum, making the refractive index,
Eqn 2.68, a complex quantity:

n=n+in". (2.71)

The derivation of the tensor represented by Eqns 2.67 and 2.68 is based on a
microscopic theory [33,34,37] in which the molecules of the medium are
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considered to be all of the same type, regularly placed to form a simple cubic
lattice, and characterized by the same isotropic polarizabilities o¥ = a. Such a
model may also describe a common situation in which nonisotropic species are
randomly oriented in their sites. The resulting Eqn 2.68 seems, however, not to
be sensitive to the possible lack of translational symmetry as well, as long as the
vibrational widths of the spectral lines exceed the characteristic energies of
resonance coupling between the molecules comprising the medium. It is there-
fore expected that the transition matrix element given by Eqns 2.65 and 2.68,
should adequately describe the transfer of energy in a variety of amorphous
media constituted of randomly situated and oriented molecules, and character-
ized by some energetic disorder as well. For such systems, the quantity « that
enters Eqn 2.69 is to be understood as an averaged polarizability for all of the
species X that constitute the medium:

a=a"=N"1Y"a", (2.72)
X

N being the total number of molecules in the system. The subsequent analysis is
also consistent with such a definition of the polarizability .

The full rate of donor—acceptor transfer is again given by Eqn 2.31, subject to
replacement of the tensor for the electromagnetic coupling in the vacuum by the
tensor for the coupling in the medium, as 0;7(K,R) — 6,(K.R). Using Eqn
2.68 for 0;(K, R), the pair rate can be expressed, as in Eqn 2.32, in terms of the
overlap integral between the donor and acceptor spectra:

Wpa = —,7—/ Fp(w)o (w)wzg(w,R)e'z"”“R/" dw, (2.73)
0

with # = n{w) and

n|Gir) G | i

1 P v o X , .,
- W {77§ WO R6 + 277%” SRS + [77§'n| - 27717]3(}1 2 )]

(,’4

R4

2

g(w,R) = [n]?

3

x
W R3

+ 23 n”lnl2

2
21,44 €

where the quantities

71'&)/131 l

w42
o4(w) = 3

2
2
(m) )y, () _ _
oy m}ﬁjp,, <<pA,[<pA >! Sles, — e, —hw)  (275)
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and

3 2
Fp(w) = & TbkDp "

T 3eome’

’72+22 n r INER
S (e oten —en - no). 26

n.r

can be identified (see Section 2.5.2), respectively, as the absorption cross-section
of the acceptor and the emission spectrum of donor, both quantities being
corrected for the electronic influence of the medium. The latter Fp(w) is again
normalized to unity in the sense

/h Fp(w)dw = 1. (2.77)

The normalization constant 75 — to be explicitly presented in Eqn 2.94 below -
represents the radiative lifetime of the donor in the absorbing medium, as will
be demonstrated in the following subsection. [n this way, dielectric influences of
the material medium feature in the pair rate, Eqn 2.73, through the refractive
modifications of the spectral functions Fp(w) and o4 (w), as well as through the
factors g(w, R) and e=2" “R/¢ The latter exponential factor represents the Beer’s
law losses in the absorbing medium. This factor will be demonstrated to play a
vital role at large separations between the transfer species, providing a physi-
cally sensible total rate of energy transfer to all the surrounding acceptors (see
Section 2.5.2).

The pair rate, Eqn 2.73, can be presented meaningfully as the following sum
of three terms:

Wpa = WH5™ + Wh  + wharzone, (2.78)
The first term,
Forst 96477% - 1 42" wR/ e
Wpi™ = 8ok J, Fp(w)os(w)ln|"wle 2Rl 4, (2.79)

represents the familiar Forster rate of energy transfer which is characterized by
an R™% distance dependence. Such a rate is the dominant contribution in the
near zone (KR < 1) where the exponential factor e~ 27"wR/c ig close to unity and
can therefore be disregarded. Consequently, the spectral integral of Eqn 2.79 is
weighted by the factor |n| ™ in the near zone, in agreement with the standard
theory of radiationless energy transfer [2, 25). Note that the local field-factors
featured in the coupling tensor, Eqgn 2.68, are now contained in the spectral
functions Fp(w) and o 4(w). The third term in Eqn. 2.78,

2
WFar zone __ 9771
DA

a— /0 Fp(w)o (w)e ¥"“Ric 4y, (2.80)
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behaving as R=2, dominates in the far zone (KR > 1). It is characterized by the
overlap integral between the donor emission and acceptor absorption spectra,
weighted by the Beer’s law factor. The rate, Eqgn 2.80, can be identified as the
rate of radiative (far-zone) energy transfer involving spontaneous emission by a
donor, propagation of the emitted photon through the absorbing medium,
followed by its absorption at the acceptor. The factors Fp(w). e 2"Ric and
04(w) characterize the corresponding processes.

Lastly, the middle term of the pair-rate equation 2.78, w} .. due to the
remaining terms in the function of Eqgn 2.74, becomes important at intermedi-
ate distances where KR ~ 1. In general, this intermediate contribution contains
not only the usual R~* term [4,8,10, 11,17, 26], but also additional terms in odd
powers of R (i.e. R™3 and R™9). However, in the case of a weakly absorbing
medium (n” < #') one can disregard the latter odd rank terms to arrive at the
following approximate expression:

u/l :M x[7 (CU‘)U (w};ni‘2(“;/:@”2'7'/\4;’?/(‘(1 \ (2 81)

DA 8TFTDR4 A D A4 | e .
For any such weakly absorbing medium, the function g(w, R) that enters the
pair rate, Eqn 2.73, can be written approximately as

g(w,R) = n*g"**(nfw. R), (2.82)

£"([n|w, R) being its vacuum counterpart defined by Eqn 2.33, but with the
argument w now scaled by the modulus of the complex refractive index [n].
Finally, one can readily extend Eqn 2.51, which characterizes the range-depend-
ence of fluorescence anisotropy in vacuum, for the depolarization that is taking
place in the medium. Specifically, in the case of a weakly absorbing medium,
one then has

r(R) =0 7nl*K*R* + n’K*R% + 3
1 =z = = )
25 |n|*K*R* + |n’K2R? + 3

(2.83)

L.e. the wave-vector K appears to be scaled by |n|, modifying to some extent the
characteristic scale of distances. As such, the position at which the onset of
significant retardation modifies the fluorescence anisotropy can be still closer
than the vacuum formula would suggest.

2.5.2 Spontaneous emission as far-zone energy transfer

Consider the decay of an excited state of donor D through energy transfer to the
surrounding species X. By summing up all appropriate pair rates, the full decay
rate 1s
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I'p = Z Woy, (2.84)
X£D

where Wy is the rate of excitation transfer between a pair of molecules D and
X, as explicitly presented in the previous subsection (with X = A4). Using Eqn
2.78 for the pair rates, the decay rate of Eqn 2.84 can be cast as

FD — fll;érs(+ FI[—;ar zone, (285)
with
=3 (WES™ + Wpy). (2:86)
X#D
and
Fgar zone _ Z ngXr zone (287)
X#D

The former decay rate I'}5°™ contains contributions due to the Férster pair
rates modified by the intermediate terms WI’JX, the tilde over I” reflecting such a
modification. The constituent pair rates have been explicitly presented in Eqns
2.79 and 2.81 of the previous subsection.

In what follows, we shall concentrate on the latter decay rate [Ear zone
associated with far-zone (radiative) energy transfer. The far-zone transfer
may be viewed [4, 10, 11, 35, 36] as spontaneous emission of a photon followed
by its subsequent recapture by a distant acceptor. Adopting such a concept, we
shall regard the contribution I'j ™ a5 the rate of spontaneous emission in the
absorbing medium. The approach is in a certain sense related to absorber
theory [20,45, 56] in which spontaneous emission is seen to be the result of
direct interaction between the emitting atom and “the Universe,” the latter
acting as a perfect absorber at all emitted frequencies. In our situation, the
surrounding medium does indeed act as a perfect absorber, even at extremely
low concentrations of the absorbing species (or, alternatively, for an almost
transparent condensed medium), as long as the system dimensions are large
enough to insure eventual recapture of the emitted photon. For such a weakly
absorbing medium, the rate I'1%2°™ will be demonstrated to reproduce exactly
the familiar rate {31, 33, 34, 40, 43] for the spontaneous emission in a transpar-
ent dielectric.

To obtain the proper decay rate 'y °™ using Eqn 2.87, the pair transfer
rates W% *™ should not only reflect effects due to retardation, but also
incorporate influences of the surrounding medium, as in the previous section.
Following [35, 36], we shall demonstrate that 1'% 2" does indeed represent the
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rate of spontaneous emission in the absorbing medium. For this purpose, we
shall substitute Eqn 2.80 for the pair rate wharzone (with 4 = X) into Eqn 2.87,
to yield

5 9 x 22 —2n"wR/¢
Fl-dr zone _ / Frnlw § R “noylw)e e /‘dw. (288)
87TTD 0 D( ) 53 l /‘( )

with R = Ryp. The decay rate I';?"2°™ s built up of a large number of the pair
rates operating predominantly in the far zone. Hence the summation over the
molecules X can be changed to an integral over the radius vector R. giving

[Faczone - % /  dw Fp(w)a(w) /0 ©d ReWRN (2.89)
0
c X
= 5;;/ dw Fp(w)o(w)/wn"”, (2.90)
27p Jo

where in Eqn 289 orientational averaging has been carried out
(ni — (n}) =2/9). and the cross-section of the molecular absorption oy (w)
has been replaced by its ensemble average, as given by

n+2
3

&

% (2.91)

- X

olw) = 7 (w) = fni’

’z

m

The relationship of Eqn 2.91 has been written exploiting Eqn 2.75 for o 4(w)
(with 4 = X), with constraints due to the energy-conserving delta functions
expressed in terms of the imaginary part of the molecular polarizability
&y = «” using Eqn 2.70 for ay. The imaginary part o” is in turn related to
the complex refractive index n, given by Eqn 2.69, as

2 2
I =+ 2"a"p
= — = 2.92
20| 3 g0 ( )
so that Eqn 2.91 reduces to
o(w) = dc(w) = n"2w/ep. (2.93)

In writing Eqn 2.92, use has been made of the generalized definition, Eqn 2.72,
for the molecular polarizability a.

Equation 2.93 can be identified as the usual relationship between the ima-
ginary part of the complex refractive index and the absorption cross-section. In
this way, the quantity o(w) defined by Eqn 2.75 is indeed seen to represent the
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cross-section of molecular absorption in the lossy medium. Substituting Eqn
2.93 into Eqn 2.90, using Eqn 2.76 for Fp(w) and the normalization condition
Eqn 2.77, one finds

Farzone _ T[;l — Z(Tgi)*‘pg")‘ (294)
nr
with
3 2 ) 2
-l wup 42 , CINONE
(73) "= 37§Eom'3n 3 ‘ o leo)] - (253)

The rate [Tarzone 75" as given by Eqns 2.94 and 2.95 represents the full rate
of spontaneous emission by the donor, and so involves summation over the
final levels and averaging over the initial levels of the donor, labeled respect-
ively by r and n, pg) being the population distribution of the vibrational levels
of donor in the initially excited electronic state. The constituent terms (73) "
represent the partial rates of spontaneous emission associated with downward
transitions of the donor between the specific levels # and r, where in each of
these terms the refractive index is to be calculated at the appropriate frequency
(ep; — ep,)/h.

The emission rates, Eqn 2.95, manifestly accommodate contributions due to
the absorbing dielectric medium, including the local field factor. It is note-
worthy that the present analysis is based on a microscopic QED theory [35, 37],
the relationship Eqn 2.95 supporting previous phenomenological methods
(12,13] used to introduce local field corrections to the rates of spontaneous
emission in an absorbing medium. In the limit where o — 0, n” — 0, the far-
zone rate given in Eqns 2.94 and 2.95 reduces smoothly to the usual result for
spontaneous emission in a transparent medium [31,33,34,40, 43), there being a
vanishing contribution due to the decay in the near and intermediate zones:
fgﬁm — 0. In other words, the present analysis reproduces in full the rate of
spontaneous emission in transparent dielectrics n” = 0, including inter alia the
case of free space: n” = 0, n’ = 1. Here, free space is be to viewed as a fimit in
which the density of the absorbing species goes to zero, while the size of the
system goes to infinity, so that the emitted photon is eventually recaptured
somewhere in the system. It is noteworthy that in order to arrive at a sensible
result for ["Farzone — 75", such as that given by Eqns 2.94 and 2.95, the influ-
ences of the absorbing medium are necessarily to be reflected in the pair transfer
rates comprising the decay rate equation 2.87. In fact, it is the exponential
factor exp(—2n"wR/c), which represents absorption losses at the intervening
medium, that helps avoid the potentially infinite decay rate I'E37 207 (given by
Eqn 2.87) due to the R™? factor featured in the constituent pair rates, Eqn 2.80.
Note also that the same result, Eqns 2.94 and 2.95, can be reproduced for the
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rate of spontaneous emission 75, in terms of another microscopic method that
involves calculation of the quantum flow from the emitting molecule D in the
absorbing medium [36].

2.6 DYNAMICS OF ENERGY TRANSFER BETWEEN A
PAIR OF MOLECULES IN A DIELECTRIC MEDIUM

In previous sections, the transfer dynamics has been described in terms of well-
defined rates for intermolecular energy transfer. It is the purpose of the current
section to pursue in more detail temporal aspects of the energy transfer between
a pair of species in a dielectric medium, through explicit consideration of the
QED time evolution. A distinctive aspect of the approach developed in [38] is
that it affords a combined analysis of rate and nonrate regimes, in the context
of examining the influence of the dielectric medium on a microscopic basis. The
theory is built on the foundation established in the previous section. Again, the
approach exploits the concept of energy transfer mediated by bath polaritons.
The theory also makes use of the microscopically derived tensor, Eqn 2.68, for
the retarded and medium-dressed dipole-dipole coupling, now with regard to
the dynamical behavior. The present section not only extends consideration
beyond the rate description, but also re-examines conditions for that regime
tself. That leads to incorporation of an energy renormalization for both of the
ground and excited states of the transfer species, due to the interaction of these
species with the molecules that belong to the medium, and also with each other.
That is a feature not reflected in direct application of the ordinary Fermi
Golden Rule.

The section is organized as follows. In the next subsection the Heitler-Ma
method [1, 28-30] for describing the quantum time evolution is first outlined,
and subsequently reformulated to suit our current purposes, technical details of
the derivation being placed in two appendices. Consequently, the basic equa-
tions for time evolution acquire a form that is more symmetric with respect to
the initial and final states. Subsection 2.6.2 concentrates on the transfer
dynamics between a pair of molecules in the molecular medium, starting from
general considerations and leading to an analysis of both the rate regime and
beyond. Note that the nonrate regime features in situations that lack an
intrinsic density of molecular states for the participating species.

2.6.1 General description of time evolution

Consider the quantum dynamics of a system with a time-independent Hamil-
tonian that is separable as the sum of a zero-order Hamiltonian H° and an
interaction term ¥ (such as that defined by Eqn 2.57 in the previous section),

.
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where the eigenvectors of Hy include, inter alia, both the initial state |Z) and the
final state | F) for the process. For reasons which will become apparent later, we
shall commence work in the Schrddinger representation rather than the more
common interaction representation. The state vector of the system then evolves
at positive times from the state |7) at r = +0 as

S(ol1) = e(ne™ 1) (2.96)
1 +o

= ~ a—ist/h S|
= 5= - de et/ (e—-H+in) ' |IY (n— +0). (2.97)

O(7) being the unit step (Heaviside) function. Strictly, the quantity 7 is a
positive infinitesimal, yet for finite times it may be considered to be a finite
quantity that obeys the following: ni/h < 1 (i.e.  should be kept much less
than the inverse lifetime for the excited states). Under this condition. introduc-
tion of a finite i does not influence the quantum dynamics governed by Eqn
2.97. Retention of a finite value for 7 plays an important role in smoothing
spectral lines. This makes the refractive index given by Eqns 2.69 and 2.70 a
complex quantity in absorbing areas of the spectrum, comprising contributions
due to densely spaced molecular sublevels of vibrational or other origin for each
electronic transition. Note that the smoothing parameter » was labeled s in the
previous sections.

The Heitler-Ma method {1, 28-30] may now be employed, giving (see Appen-
dix A)

. .| _ UI:[(S)
VFlle = H i) 1) (e — Ep +in)(e — Ey + Linly(e) +in) (2.98)

Here Up(c) = (FIU(¢)|I) and I'y(c) = (I|T(e)|I) are, respectively, the matrix
elements of the off-diagonal transition operator U (¢) and the diagonal damp-
ing operator I'(¢), both determined by the following recurrence relation:

Ule) — %hF(s) =V+V(e-H +in) 'Ue). (2.99)

For present purposes it is more convenient to represent the above in a non-
recursive format, as

i _
[U(e) = 3T ()) = {V + VP (e~ H® ~ PrVP +in) "' P, V] ). (2.100)
where the projection (idempotent) operator,

Pr=1-|1){], (2.101)
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identifies the exclusion of contributions by the initial state in the perturbation
expansion of Eqn 2.100. Recasting the transition matrix element in a form in
which the perturbational contribution by the final state also no longer explicitly
features, one arrives at (see Appendix B)

c¢—Ep+i
L (2.102)
€~ Er —3hlp + 1y

Upiz) =

where the newly defined quantities on the right, Uy, and Iy, both have implicit
e-dependence and are given by

Ul = (F| {V + VP PRz — HY — PiPrVPPr + i)' P, Py V} 1), (2.103)

- %hr; = (F| [V + VP Pr(e~ H' — PP VP Py + 1)) ' Py Py V} |F),
(2.104)
with
Prp=1—|F){F| (2.105)
Finally, calling on Eqns 2.97, 2.98 and 2.102, one finds the following prob-
ability amplitude for the transition ) — |F):

o . i o
(FISOIT) =~ 5 / AU e e~ Ep 4 2 hry i)
(e - E,+%h[’1+in)”1, (2.106)

which is an exact result. Here, the presence of both I'; and Iy in the energy
denominators explicitly accommodates the damping corrections and energy
renormalization of the initial and final states. Consequently, the transfer ampli-
tude as presented above has a form that is obviously more symmetric with
respect to the initial and final states than would result from direct substitution
of Eqn 2.98 into Eqn 2.97. Still, there is some dissymmetry with respect to these
states, reflected by the prime on I'i.. The retention of this dissymmetry will be of
vital importance in the case of sharp energy levels for the donor and acceptor,
Le. where the participating transfer species lack an intrinsic density of molecu-
lar states; this aspect is to be considered in subsection 2.6.2.2.

2.6.2 Transfer dynamics

The dynamical system of interest has been defined by the Hamiltonian, Eqns
2.57-2.60. For the representation of energy transfer between the donor and

e e
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acceptor molecules in the dielectric medium, the initial and final state vectors
and their energies are again (as in the previous section) considered to have the
form of Eqns 2.8 and 2.9, which characterize the energy transfer in vacuo, where
the state vector |0) is again to be understood as the ground state of the polariton
bath (the combined system of the radiation field and the molecular medium),
evac being the corresponding zero-point energy of such a bath. Because of the
two-center character of the interaction operator, Eqn 2.59, it is convenient to
carry out the corresponding partitioning in Eqns 2.100 and 2.104, writing

- %hF,(s) = Aep + Aey — %rm). —Shlpey, (2.107)

i i i |
-572F1(5) = Aé’l) + AeA’ —'Z‘h’}/,g- -§ﬁ[DA" (2108)

Here, one center contributions, denoted by a single index D (or A), are due to
the terms that contain only one operator Fp (or V4) in the perturbation
expansions of Eqns 2.100 and 2.104. Such contributions have already been
separated into real energy shifts and imaginary damping terms in the above
equations. For instance, Aep. and 7p- represent, respectively, the bath-induced
level shift (energy renormalization) and the damping factor for the excited
molecular state |D*), there being no imaginary (damping) contributions for
the ground molecular states {D) and |A4). Each such energy renormalization
(Aep-, Aey. Aep, and Aey.) embodies not only the radiative (Lamb) shift
[16,28,42], but the also the contribution due to the dispersion interaction
between the donor D (or acceptor 4) and the molecular medium. Note that
the dispersion energy appears now in the second order of perturbation, rather
than the usual fourth order [16,48,49], as the coupling of the radiation field
with the medium has already been included in the zero-order Hamiltonian H°,
given by Eqns 2.58 and 2.60. Here, we shall not consider the explicit structure of
these energy shifts, which are to be treated as the parameters of the theory. The
remaining (complex) quantities I'p.4 and I”D 4+ are two-center contributions
resulting from cross-terms (containing both V), and V4) that emerge in the
perturbation expansions of Eqns 2.100 and 2.104.

By making use of Eqns 2.107 and 2.108, the probability amplitude for the
energy transfer, Eqn 2.106, becomes

FIS(OI) = ‘%m/ " dw

B U}/r[(w)e—i(w~wm)t
(W= wa + (/2014 + (/2) T +17) (w0 - wpr + (/270 + (i/2)I'p 4 +iny)
(" — +0),

(2.109)
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where

w=(c—ep—eyg— dep— Aeqg—ey)/h (2.110)
18 a new variable, and

wp = (ep- + Aep — ep — Aep)/h. wa = (e + Aey —eq — Aey)/h
(2.111, 2.112)

are the excitation frequencies of the donor and acceptor. The frequencies wp-
and wy- incorporate level shifts for both the ground and excited molecular
states. Finally, in Eqn 2.109 transformation has been carried out to 2 modified
interaction representation, as

(FIS(0)IT) = (FIS(O|)exp(—i(Er + AE)t/h). (2.113)

the term “modified” referring to renormalization by the medium of the final
state energy Er = ep + e4- by the amount AEr = Aep + Aey-.

Now, we turn our attention to the transition matrix element Uj,(w), which in
the present study will be represented through an effective second-order con-
tribution, as

Up(w) = U (&) = pfi (w] e, R)p". (2.114)
with

(0ld (R4)]o){old (Rp)[0) N (0ld;* (Rp){o){oldi" (R4)|0)
w—1T], +i w—wp —wy — [, +if

1
OlfeR) =55
(R = RA - RD)7
(2.115)

where implied summation over the repeated Cartesian indices (/ and j) is
assumed, p3" and pfi" being the transition dipoles given by Egn 2.20. As in
the previous section, here /i [, = e, — evac is the excitation energy of the bath,
the index o denoting excited (single polariton) states of the bath accessible from
the ground state [0) by single action of the local displacement operator
d*(Ry)(X = D, A). Within the range of frequencies w close to molecular transi-
tion frequencies wp- and wy-, the energy denominator (w—wp —wy — [, +in

may be replaced by (—w — [], +in) in the nonresonant term of Eqn 2.115.

t It follows from the time-energy Uncertainty Principle that retention of the original form (Eqn
2.115) is important only for times which are less than the inverse molecular transition frequency,
wp!, generally on the femtosecond timescale.
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Consequently, the above tensor of Egn 2.115 reduces to that relating to
retarded dipole—dipole coupling in the medium:

0 (w/c.R) = 6 j(w/e,R), (2.116)

the latter tensor, 6, j(w/c, R), being defined by Eqn 2.66. Using Eqns 2.68 and
2.26, the tensor 6; ;(w/c, R) reads explicitly

’12 2 zw:‘eile/(‘ o 3 -2
HI_A,’(LU/C, R) =n <m> A ’:(5,, - 3R,R/)< ¢ « )

3 PR WA R2

(2.117)

where n = n(w) is the complex relative index given by Eqns 2.69 and
2.70.

It is noteworthy that one can relate the matrix element Uﬁ(u) (given by
Eqns 2.114 and 2.117) to the transition matrix element considered in the
previous section (see Eqn 2.65), as

(FIT?|1) = U (wp-). (2.118)

where Ug) {w) is to be taken at the emission frequency w = wp- = cK ~ w,..
In the context of time evolution, it is important to retain the w-dependence
featured in the exponential phase factor exp(inwR/c) of the matrix
element U(Fi)(w). This leads to appearance of a time lag in the initial arrival
of the excitation at the acceptor 4, due to the finite si;))eed of signal pro-
pagation. The remainder of the transition element U}, w), together with
other w-dependent parameters that enter Eqn 2.109, will at this stage be
evaluated at the resonant frequency, w=wy ~ wp.. Linearizing the
exponent,

n(wwR/c = [n(wg Jws R/c] + [(w - wa )R/ vg), (2.119)
with

ke (2120

and re-defining the origin of time 7 = (1 — R/v,), the transfer amplitude, Eqn
2.109, takes the form
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+00
C 2 —i(w—wy )T
FSOIN = 50 [ dwtf wager e
- _ o (2a21)
. 1 .
<q; — Wy + %'yA- + 177) (w —wp- + 570 + 17/>
1 .
L l:’ 5’7[)- + l(u},r — wWp )J T
= U pem it 1 (2.122

(war —wp-) + 5190 —7-)
which takes account of damping for both species D and 4. Here the two-center
contributions I'p- 4 and I, ,. are, for the present, omitted; the physical basis of
this approximation will be clarified in due course.

It is worth noting that the radiative group velocity v, featured in Eqn 2.122,
via the shift of the origin of time, describes the delay of the initial arrival of the
excitation at acceptor 4, whereas the phase velocity v, = ¢/n, which enters the
exponential factor exp(inwR/c) of the transition matrix element U};) (wa4-) (with
1 = n(wy-)), characterizes the changes of optical phase with distance. Note also
that incorporation of the time lag in the above manner implies that the refrac-
tive index, and hence also the group velocity, takes real values. Nonetheless. the
general result to follow (Eqn 2.123) for the transfer rates holds both for lossless
and absorbing media.

2.6.2.1 Transfer rates

Let us consider first the case in which the spectral widths of the species
participating in the transfer exceed the magnitude of the corresponding transi-
tion matrix elements. The overall migration is then incoherent, described as a
multistep process involving uncorrelated events of excitation transfer between
the molecules of the system. With regard to the selected pair D-A, by omitting
the relaxation terms ~p- and ~v4 in Eqn 2.122, and for times in excess of the
transit time R/vg, the resultant rate of the excitation transfer reads

d < 2
Wer = G IFISOIF = 5 1UR (wp ) Pélwp — o), (2.123)

This provides the Fermi Golden Rule exploited previously, subject to the
replacement of Uy (wp-) by (F|T@|I), using the relationship of Eqn 2.118.
The full pair transfer rate Wp, is subsequently obtained by means of the
standard procedure involving averaging over initial and summing over final
molecular sublevels, as in the previous sections.

A new feature that arises in the present dynamical context is that the excita-
tion frequencies wp. and w4 have now been modified (renormalized) through
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interaction of the transfer species D and A with the molecules of the surrounding
medium. The mutual interaction of D with A may also be taken into account by
retaining the omitted terms I'p- 4 and I”}, . in Eqn 2.121. That alters the mole-
cular excitation frequencies wp. and wy- featured in the energy conservation
6-function of Eqn 2.123, by the amounts —ImIl'p 4/2 and —ImI, . /2, respect-
ively: these represent changes in the excitation energy of each transfer species due
to 1ts interaction with the other. The effects of such corrections decrease with
distance, and over the separations of interest where R is greater than typical
intermolecular distances within the medium, they contribute negligibly.

At this juncture, a remark should be made concerning some asymmetry of
the formalism with regard to the initial and final states. as reflected by the prime
on Iy ,.. The rate regime generally implies the presence of a dense structure of
(usually vibrational) molecular energy levels within the electronic manifolds of
D and A. Hence the apparent asymmetry in question vanishes, as either inclu-
sion or exclusion of the individual states (such as lI) or |F)) in the intermediate-
state summation does not significantly alter the quantities I'p-qand I', . Itisa
different story in the case where there is no intrinsic density of molecular states
for the participating species. as is to be considered next.

2.6.2.2  Nonrate regime

Suppose now that each of the ground and exited state manifolds of D and 4 is
characterized by only one molecular sublevel, so that the subsystem D-A4 may
be treated as a pair of two-level species. lgnoring contributions from states with
two or more mediating bath excitations (polaritons), the exchange of energy
between D and A4 now occurs exclusively through intermediate states in which
both transfer species are either in their ground or excited states, the bath being
in a one-polariton excited state. Under these conditions, the quantities I'p. ,
and I ,. introduced in Eqns 2.107 and 2.108 are as follows:

i S i o
~5 T4 = {[Ug (w)] /rr}(w-—m. T i) (2124)
Iy, =0, (2.125)

where use has been made of Eqns 2.100 and 2.104. Substituting these results for
I'ps and I'p.y into the general dynamical equation 2.109, the probability
amplitude becomes

i

c Y 2 R .,
(FISOIN =~ 5 [ dot e - {(o-wr+ e+

. —1
1

(w* wp + 570+ in') - [Uﬁi)(w)/h]z}
(2.126)



100 Unified theory of energy transfer

To illustrate the precise form of the time evolution for one specific applica-
tion, one finds for the case of identical species (wp- = wy4-,vp- = v4+), and
without regard to the delay time R/v,, the following:t

{EIS(IN = L[cosh(vpar) — cos(202p41)]e 0", (2.127)

where the transfer frequency f2p, and the inverse time Yp4, respectively,
represent the real and imaginary parts of the transition matrix element:

WU (o) = 204 = 5704 (2.128)
Equation 2.127 has a form that is familiar from the case of energy transfer
between molecules in vacuo [22,32,41], although the parameters yp4, v4-, and
{2p4 here display the influence of the medium. Note that although in writing
Eqns 2.124-2.128 the transfer species D and A have been modeled as two-level
systems, the formulation still allows each of the surrounding molecules to
possess an arbitrary number of energy levels, thus accommodating the cases
of both absorbing and lossless media.

The result given by Eqn 2.127 represents an oscillatory, to- and-fro exchange
of excitation, accompanied by damping. That type of dynamical behavior is a
direct consequence of the absence of a density of final states, a feature which
obviously makes the rate description inadequate. Nonetheless, a distinction
should be drawn between the short-range reversible Rabi-type oscillatory beha-
vior, which does not represent any real flow of energy from D to 4, and the long-
range behavior. In the latter case, the excitation energy of the donor
is irreversibly passed to the acceptor. Under such circumstances it is appropriate
to introduce transfer probabilities (rather than rates), as will be shown below.

In the long-range limit, the contribution [U }i’ ]2, associated with the coupling
between D and A, may legitimately be omitted in the denominator of the
integrand in Eqn 2.126. The system then follows the same time evolution as
described through the earlier Eqn 2.122, where in the current consideration D
and A are not necessarily identical two-level species. The transfer dynamics
given by Eqn 2.122 reflects both the initial arrival of excitation at the acceptor,
commencing from time t = R/v,, and subsequent decay of the resulting excited
state of A. The rate of the latter decay may be considered to be the same as that
for an individual acceptor in the dielectric medium (i.e. y4-), since at large
distances the remaining influence of the donor is minimal. Accordingly, the
total transfer probability P may be defined as the probability for irreversible
trapping of the excitation by the acceptor. Integrating the population-weighted
rate of decay of the excited state of A, we obtain, for P,

T Such a time delay leading to the effects of multiple delay in to- and-fro exchange of excitation, has
been investigated by Milonni and Knight [44], who analysed the transfer dynamics between a pair of
species in vacuo.
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P= /R/ HEISO|D Py di (2.129)
(o + Var)

= (D4 + 75475 3 3
(wa = wp- )"+ (b + 74.)7 /4

, (2.130)

which is in agreement with the previous far-zone result for the transfer of
energy between a pair of molecules i vacuo [54]. In passing, we note that the
individual rates of the excited-state decay yp = I'p and v, = I' 4, featured in
the above equations, have been explicitly analysed in Section 2.5.2. Calling on
Eqns 2.114, 2.116, 2.117 and 2.128, the long-range result of Eqn 2.130 assumes
the following form in the case of a nonabsorbing medium:

9 . .12
P =g lon) [ ) = (o R)G - R)) /R (2.131)
with
L2V R (o +74)/2 ~
(04) = _( ) 4 3 3 132
4 n 3 3eghe (wy — wp ) +(vp- + 4 )2 /4 (2.132)

Here, in addition to the appearance of the refractive pre-factors, the influence
of the medium extends to the excitation frequencies wp-. and wgy-, as well as to
the decay parameters v, and ~g. The above (04) may be identified as the
isotropic absorption section of the acceptor, o4(w), averaged over the normal-
ized emission spectrum of the donor, Ip. (w):

<JA>:[ OCaA(u.))Ily(w)dw, (2.133)

oc

with o 4(w) and 7). (w) given by

g w _ I " +2 2“31“44‘ Ya-/2
alw) = n < 3 > 3ephc Lw_WA‘)Z'F(’)’At/Z)z} (2.134)
and
1 70‘/2
I (W) == —
rlw)=2 [(w“wu*)zﬂwﬁ)z} (2.135)

Finally, one obtains, for the orientationally averaged probability,
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P = (04)/4nR°, (2.136)

which is the ratio of the spectrally averaged isotropic absorption cross-section
to the spherical surface at distance R, 4nR2. In the case of an absorbing
medium, an exponential decay factor of the form exp(—2n"wR/¢) would also
feature in the above expression.

2.7 CONCLUSION

The unified theory of resonance energy transfer described in this chapter
represents a seamless union of mechanisms that were previously considered to
be entirely separate. It has resolved a number of thorny issues that were
obscured or skirted by earlier theories and, in fully fledged form, it naturally
accommodates all of the optical, dynamical and electronic influences of the host
medium on the characteristics of donor-acceptor transfer. In particular, this
theory has established the following:

¢ There is no competition between “radiationless” and “‘radiative” mechan-
isms for energy transfer. Both are manifestations of a single interaction
which operates over the full range of distances beyond wavefunction over-
lap. This interaction additionally includes other, previously hidden, forms of
interaction, whose distance dependence is characterized by intermediate
power laws. With this theory, there is no longer any need to model systems
in which energy migrates across both short- and long-range distances in
terms of distinct mechanisms.

e The shift in the inverse power which is apparent as distance increases reflects
a powerful interplay between the governing principles of relativistic retarda-
tion and quantum uncertainty, as they relate to the propagation of the signal
mediating the energy transfer. At short distances the overwhelming quantum
uncertainty is reflected in the completely virtual nature of the mediating
photons; over long distances the uncertainty is small and the photons
acquire unequivocally real character. The polarization of acceptor fluores-
cence has been shown to display a distance dependence which dramatically
exhibits this behavior.

o The pair transfer rates provided by the unified theory have been integrated
into the context of an ensemble treatment that is directly amenable to
experimental application. The effect of spontaneous emission by donor
species within an absorbing ensemble in all respects properly corresponds
to the far-zone limit of unified energy transfer. Finally, the apparent rate
divergence associated with transfer from a single donor within an infinite
ensemble of acceptor species has been resolved by proper accommodation
of the effect of the ensemble on the characteristics of (virtual) medium-
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dressed photons that mediate the resonance energy transfer between the
molecules.

Appendix A: Heitler—Ma method for analysis of the transition
operator

Consider the following Green’s operator:

(e—H)=(e—~H+in) ", (A1)

where the full Hamiltonian # is divided into the zero-order Hamiltonian A"
and the interaction operator I as in Eqn 2.57. Let N(e) be the diagonal part of
((e — H) (in the representation of the eigenvectors of H%). Then the operator
((e — H) may written as

(e = H) = [l +((e = Hy)U(£)|N(e), (A2)

where U(z) is an off-diagonal operator. Multiplying Eqn A.2 by £ — H. one
finds that

NNe)y=c~H+Ule) - V(s — Hy)U(e). (A3)

The diagonal operator N(z) may be represented as

: -1
N(e) = [5— Hy +%ﬁr(s)J : (A4)

I'(e) being another diagonal matrix, so that one has

i

Ule) = 5hI(e) = V + V((e'~ Ho)U(e). (A.5)

Calling on Eqns A.2, A4, and A.5, one arrives at

_ [L+¢(e = Ho)U(e)li1)

N A T Y. in

(A.6)

The last two equations, together with the definition in Eqn A.1, provide the
required results, Eqns 2.98 and 2.99 of the main text. Finally, the relationship
A.6 can be represented in a nonrecursive format using Eqn 2.100, as

_ _ 1+ Pil(e — Ho — PVP)PV|I)
(e - M = E—E,+ihr,(a)/2’+i7[,

(A7)
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Appendix B: Modified approach to the transition operator

Using Eqn 2.100 of the main text, one finds for the transition operator that one
has

(FlU) = (X|P VI, (B.1)
with
(X = (F] {1 + PyVPI(e — Hy — PyVP; +in) ! } (B.2)
The above ket vector may be rewritten as
(X1 = (Fl(e = Ho +in)(= ~ Hy — P, VP, +in) ",
giving
X| = (e — Ep +in)(FIC(e — Hy — P VP;) (B.3)

Next, in complete analogy to Eqn A.7 for the bra vectors, the above ket vector
<FIC(E - H() — P[ VP[) is

e — Hy— PpP, VP, Py )]
(FIg(e = Ho ~ pyvpy) = FILE VPIPEC(e = Hy — PrP VP Pr )]

B.4
e—Ep +ihl": /2 + 1y (B4)

with F'F and Pr as in Eqns 2.104 and 2.105. Lastly, calling on Egns B.1, B.?,
and B.4, one arrives at the required result, Eqn 2.102, presented in the main
text.
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