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12.1 BACKGROUND

The concept of using light to manipulate ensembles of, or indeed individual, atoms,
goes back a long time. From Maxwell’s theory of electromagnetism, it became clear
that light carries a momentum that can be transferred to particles [1]. Classically, a
light beam will induce forces on a dipole. These forces depend upon the shape of
the light beam—both the intensity and the phase. With the advent of the laser in the
1960s, it became possible to address in an unprecedented way the mechanical forces
on atoms where the internal level structure of the atoms was exploited. This opened
a path toward laser cooling and trapping atoms, where, in particular, the quantum
mechanical nature of the atoms needed to be taken into account [2–4].

Optical manipulation of quantum objects has come a long way since the early
attempts a century ago to manipulate the dynamics of thermal gases. In this chapter,
we will first briefly review the mechanisms for trapping ensembles of ultracold atoms.
These techniques will then be applied to neutral atoms that form a Bose–Einstein
condensate. The optical trap will form the basis for manipulating the cold atoms where
we rely on the coherent nature of the ultracold sample of atoms and the intensity of
the light.

Subsequently, we will discuss a situation where the phase and the intensity of the
incident light both play a crucial role. Here, we will consider a different kind of op-
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tical manipulation where the laser fields are applied to induce vector and scalar po-
tentials acting on atoms. The induced potentials have a geometric nature and depend
exclusively upon the relative intensity and relative phase of the laser beams involved
rather than on their absolute intensity. The approach relies on the ability to prepare
the atoms in superpositions of the internal energy states of the atom. Interestingly,
this technique provides a way to optically induce an effective magnetic field acting
on electrically neutral atoms. This happens if the applied laser fields have a nontriv-
ial topology, e.g., if they carry an orbital angular momentum along the propagation
direction [5–7].

12.2 OPTICAL FORCES AND ATOM TRAPS

It was known since the time of Maxwell that light exerts a force on classical
dipoles. The resulting force does indeed depend on the gradient of the amplitude and
phase of the light [8],

mR̈ = d · (∇E) = d · (∇ξ + ξ∇θ)ei(ωt+θ), (1)

where m is the mass of the dipole, d is the dipole moment, and E(R, t) =
εξ(R)ei(ωt+θ(R)) is the electric field with the corresponding amplitude ξ , polariza-
tion ε, phase θ , and frequency ω.

An atom can be considered as a prototype dipole. For this purpose, let us restrict
ourselves to two energy levels, as shown in Figure 12.1. Our goal is to describe the
atom quantum mechanically, but allow the light field to be classical. The Hamiltonian
for the atom is then

H = P2

2m
+ Ĥ0 − d · E(R, t), (2)

where P2/2m is the kinetic energy associated with the center of mass motion of the
atom, Ĥ0 is the Hamiltonian for the unperturbed internal motion, and d · E(R, t) is
the interaction between the atom and the light field, which is based upon the dipole
approximation. With the Hamiltonian from equation (2) and the Ehrenfest theorem,
we obtain the expression for the force

F = mr̈ = 〈∇(d · E)
〉 = 〈d · ε〉∇ξ(r, t), (3)

where r = 〈R〉 and ξ(r, t) = ξ(r)ei(ωt+θ(r)). On the right side above, we have assumed
that the force is uniform across the atomic wave packet. For a thorough discussion, we
refer to references [9,10,2,8].

The two-level atom driven by a laser has been studied extensively [9–12,8]. In
order to obtain an expression for the force acting on the atom, we need to calculate
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Figure 12.1 The atom is described as a two level system with energy difference h̄ω0 between stat |1〉
and |2〉, and the frequency of the driving laser by ω. The decay rate of the excited state |2〉 is given
by Γ .

the response of the atom to the light, i.e., the susceptibility or polarization, 〈d · ε〉. For

this, we assume a monochromatic field of the form

ξ(r, t) = 1

2
E(r)ei(θ(r)+ωt), (4)

where E(r) is the amplitude, ω is the laser frequency, and θ is a space-dependent

phase factor. From the Schrödinger equation, we obtain the two coupled equations for

the probability amplitudes C1 and C2 for the atom to be in state |1〉 and |2〉, respec-

tively. By choosing a rotating frame according to

C1 = D1e
i 1

2 (δt+θ), (5)

C2 = D2e
−i 1

2 (δt+θ), (6)

we obtain the equations [9]

iḊ1 = 1

2
(δ + θ̇ )D1 − Ω

2
D2, (7)

iḊ2 = −1

2
(δ + θ̇ )D2 − Ω

2
D1. (8)

In deriving the equations for D1 and D2, we have introduced the detuning δ = ω −ω0

and used the rotating wave approximation where rapidly oscillating terms are ne-

glected [12]. The dipole moment d for the transition between state 1 and 2 is given by

d = 〈1|d · ε|2〉, and the Rabi frequency is defined by

Ω = dE(t)

h̄
. (9)
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It is convenient to introduce the density matrix at this stage, which is defined as
ρnm = CnC

∗
m or σnm = DnD

∗
m with

ρ11 = σ11, (10)

ρ22 = σ22, (11)

ρ12 = σ12e
i(θ+ωt), (12)

ρ21 = σ21e
−i(θ+ωt). (13)

From equations (7) and (8), we can see that the matrix elements of the density matrix
obey

σ̇11 = − i

2
Ω(σ12 − σ21) + Γ σ22, (14)

σ̇22 = i

2
Ω(σ12 − σ21) − Γ σ22, (15)

σ̇12 = −i(δ + θ̇ )σ12 + i

2
Ω(σ22 − σ11) − 1

2
Γ σ12, (16)

where we have introduced the spontaneous emission rate Γ to incorporate decay
processes [12].

The density matrix now allows us to calculate the expectation value for the dipole
moment, which is given by

〈d · ε〉 = d(ρ12 + ρ21) = d
(
σ12e

i(θ+ωt) + σ21e
−i(θ+ωt)

)
. (17)

With this expression and again utilizing the Rotating Wave Approximation, we get
from equations (3) and (4) the force

F = d

2

(
σ12 + σ21 − i(σ12 − σ21)

) = h̄

2
(U∇Ω + V Ω∇θ), (18)

where we have introduced the notation U = σ12 +σ21 and V = i(σ12 −σ21), and used
the fact that θ̇ = ∇θ(r) · ṙ. If the atomic motion is slow, such that the phase of the
atomic state, θ̇ , does not change much during the lifetime 1/Γ of the excited state,
we can restrict ourselves to the steady-state solution of the density matrix and put the
time derivatives of the left side equal to zero in equations (14)–(16). The solutions for
the corresponding U and V are then

U = δ

Ω

s

s + 1
(19)

V = Γ

2Ω

s

s + 1
, (20)



The Quantum Gas: Bose–Einstein Condensates 299

where s is the saturation parameter

s = Ω2/2

(δ + θ̇ )2 + Γ 2/4
. (21)

The force acting upon the atom now consists of two parts—the dipole force and the
radiation force, respectively,

F = Fdip + Fpr, (22)

with

Fdip = − h̄(δ + θ̇ )

2

∇s

s + 1
, (23)

Fpr = − h̄Γ

2

s

s + 1
∇θ. (24)

In the case of plane waves, the latter radiation force Fpr, often referred to as the
radiation pressure, is proportional to the wave vector k = ∇θ . For trapping purposes,
on the other hand, the former dipole force Fdip is more important. The force Fdip is
determined by the intensity of the laser field. If s � 1 and |δ| � Γ,Ω , we get the
corresponding potential using Fdip = ∇W

W = h̄Ω2

4δ
= d2E2

4δh̄
. (25)

From this expression, we can see that if the intensity of the light is inhomogeneous,
we obtain a nonzero force whose direction depends upon the sign of the detuning. For
a focused Gaussian beam, this means that the atoms are attracted to the high intensity
if the laser is red-detuned (δ < 0), i.e., the atoms are the high field seekers. On the
other hand, if the laser is blue-detuned (δ > 0), the atoms are the low field seekers and
are repelled from the center of the beam.

12.3 THE QUANTUM GAS: BOSE–EINSTEIN
CONDENSATES

During recent decades, experimental techniques for trapping and cooling atoms
have developed enormously. Experimentalist reached a major goal in 1995 when they
were able to trap and cool atomic gases of 87Rb [13], 23Na [14] and 7Li [15] to tem-
peratures low enough to see striking effects of the quantum nature of these gases. The
atomic Bose–Einstein condensate (BEC) was born. This literally opened the flood-
gates in terms of experimental and theoretical activity. One of the main advantages
with ultracold atomic quantum gases of either bosons or fermions is the unprece-
dented possibility to change and manipulate the physical parameters such as density
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of the cloud, geometry, or even the interaction strength between the atoms [16]. In
addition, the underlying theory describing these gases is remarkably accurate, which
have resulted in a very fruitful coexistence between theory and experiments. In this
brief introduction to quantum gases, we will give an overview of the basic concepts.
In particular, we will concentrate on the theoretical tools we possess and need in order
to describe these systems.

12.3.1 Bose–Einstein Condensation in a Cloud of Atoms

There are two types of particles in Nature: Bosons which have an integer spin, and
fermions which have a half integer spin associated with them. Bosons are governed by
a symmetric multiparticle wave function and are allowed to all occupy the same quan-
tum state. Fermions, on the other hand, obey the Pauli exclusion principle, which tells
us that there cannot be two or more fermions in the same quantum state. The original
idea of Bose–Einstein condensation dates back to 1924, when S.N. Bose and A. Ein-
stein were working on a statistical description of light [17,18]. They were able to
show that there is a phase transition in a gas of noninteracting particles, where a “con-
densation” of particles into the lowest state takes place as a consequence of quantum
statistical effects. Much later, this phenomenon drew renewed interest in the context
of superfluidity when in 1938 F. London predicted that the origin of superfluidity was
in Bose–Einstein condensation [19].

Experimental techniques to trap and cool atoms where developed much later. Ex-
perimentalists made big advances in the late 1970s when they developed new tech-
niques that used laser cooling and magnetic trapping. The obvious candidate had so
far been hydrogen, since it is a light atom with consequently a relatively high critical
temperature [20]

Tc ∼ h̄2ρ2/3

mkB

, (26)

where kB is the Boltzmann constant, m is the mass of the atom, and ρ is the density.
Highly sophisticated methods were developed for cooling hydrogen [21], which fortu-
nately paved the way for future experiments. However, it turned out to be surprisingly
difficult to reach the quantum regime, which requires high densities in combination
with low temperatures. In the 1980s, another candidate(s) entered the scene. Neutral
alkali atoms turned out to be well suited for laser cooling and trapping. This is because
alkali atoms have suitable level structures and optical transitions that can be addressed
with available lasers. Eventually, using a combination of laser cooling and trapping,
weak magnetic trapping based upon the Zeeman shift, and evaporative cooling, the
experimental groups of Cornell and Wieman at Boulder, Colorado, and Wolfgang Ket-
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terle at MIT succeeded in reaching the required high densities and low temperatures
for Bose–Einstein condensation. In these two experiments, 87Rb and 23Na were used.

With these experiments, a completely new physical system had been created and
now had to be understood. The atomic cloud was trapped, which meant that the con-
densation did not only take place in momentum space, as it had been traditionally
looked at in homogeneous systems, but also in coordinate space. This was new and
has resulted in numerous remarkable experiments by groups all over the world where
the Bose–Einstein condensate phenomenon is observed in a direct way simply by
looking at the density of the cloud and its dynamics.

12.3.2 The Condensate and Its Description

A Bose–Einstein condensate can be understood as a macroscopically occupied sin-
gle quantum state. We will now look at the weakly interacting gas. The phase transi-
tion describing the onset of BEC can be considered using an ideal gas, where the
critical temperature is readily derived (see any undergraduate textbook on statistical
mechanics [20]). In the following, we will assume zero temperature. This is indeed
a legitimate approximation. Present cooling techniques allow the experimentalist to
go far below the critical temperature. This is typically in the micro Kelvin regime,
where any contribution from the remaining thermal component can be neglected in
most cases, as shown in Figure 12.2.

For a dilute gas, only two-body collisions take place. In addition, we obviously
have a cold gas, hence we consider only s-wave scattering as the mechanism for the
interaction. The interaction potential is therefore of the form [20]

Vint(r − r′) = 4πh̄2a

m
δ(r − r′), (27)

where the interaction is described by the single parameter a, called the s-wave scat-
tering length. This is a result of the cold collisions in the gas. For a derivation of
equation (27), we have to solve the two-body scattering problem in the limit of zero
momentum.

With these assumptions, we get a Hamiltonian of the form

Ĥ =
∫

dr
{
Ψ̂ †(r)

[
− h̄2

2m
∇2 + Vext

]
Ψ̂ (r) + g

2
Ψ̂ †(r)Ψ̂ †(r)Ψ̂ (r)Ψ̂ (r)

}
, (28)

where g = 4πh̄2a/m. As such, this is rather intractable and we have to succumb to
approximations. The field operators Ψ (r, t) and Ψ †(r, t) destroy and creates, respec-
tively, a particle at r at time t , and obey the usual bosonic commutation rules

[
Ψ̂ (r), Ψ̂ †(r′)

] = δ(r − r′) (29)
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Figure 12.2 The onset of BEC is seen as a sharp peak in the density in the center of the trap. In the
figures, the temperature is lowered from left to right. To the far right, we see a pure condensate with a
negligible thermal component. The pictures are from the BEC experiment at University of Strathclyde,
Glasgow, UK [22]. See color insert.

and
[
Ψ̂ (r, t), Ψ̂ (r′, t)

] = [
Ψ̂ †(r, t), Ψ̂ †(r′, t)

] = 0. (30)

Using these commutation rules, we obtain the Heisenberg equation of motion for the
field operator

ih̄
∂

∂t
Ψ̂ = [Ĥ , Ψ̂ ] = − h̄2

2m
∇2Ψ̂ + Vext(r)Ψ̂ + gΨ̂ †Ψ̂ Ψ̂ . (31)

We now split the field operator into the operator for a lowest mode and a part repre-
senting the fluctuations and thermal excitations,

Ψ̂ (r) = Ψ̂0(r) + ˆδΨ (r). (32)

At zero temperature, we can as a first approximation neglect the term standing for the
fluctuations δΨ̂ (r). In the presence of a condensate, the lowest mode is macroscopi-
cally populated, so we can write

Ψ̂ (r) = Ψ (r)â0 ≈ Ψ (r)
√

N. (33)
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Here we have replaced the annihilation operator â0 by
√

N , which is often referred to
the Bogoliubov approximation (see, for instance, [4]). This is a legitimate approxima-
tion provided the number of atoms N in the condensate is sufficiently large. In other
words, we have replaced the field operator by its average

Ψ̂ (r) ≈ 〈
Ψ̂ (r)

〉 = Ψ (r)
√

N. (34)

The resulting equation of motion for the condensate “wavefunction” Ψ (r) then be-
comes

ih̄
∂

∂t
Ψ (r, t) =

[
− h̄2

2m
∇2 + Vext(r) + g

∣∣Ψ (r, t)
∣∣2

]
Ψ (r, t). (35)

This is the celebrated Gross–Pitaevskii equation [4,3]. It is the true workhorse when
describing the dynamics of a Bose–Einstein condensate. The Gross–Pitaevskii equa-
tion is based on mean field theory, in which each atom feels the presence of all the
other atoms through the effective potential. The potential is proportional to the density
of the cloud, providing the nonlinear behavior of the condensate. The Gross–Pitaevskii
equation is a very useful tool and has been used extensively to describe the properties
of Bose–Einstein condensates.

The time-independent version of equation (35) is readily achieved by taking the
Ansatz Ψ (r, t) = ϕ(r)e−iμth̄, where μ is the chemical potential

μϕ(r) =
[
− h̄2

2m
∇2 + Vext(r) + g

∣∣ϕ(r)
∣∣2

]
ϕ(r). (36)

A typical density distribution is shown in Figure 12.4, where the atoms are trapped in
a harmonic external potential. Due to the interactions between the atoms, the density
is not Gaussian, but is closer to an inverse parabola. This can be understood in terms
of the Thomas–Fermi approximation [23] which neglects the kinetic energy term in
the time-independent Gross–Pitaevskii equation (36) and gives

∣∣ϕ(r)
∣∣2 = [

μ − Vext(r)
]
/g. (37)

For harmonic traps, the Thomas–Fermi approximation does indeed give the shape of
an inverse parabola for the atomic density shown in Figure 12.4. The approximation
works well for trapping frequencies ωz � μ/h̄, and only at the edge of the cloud it
inevitably breaks down.

12.3.3 Phase Imprinting the Quantum Gas

The trapping of a quantum gas can be achieved by a far detuned laser beam, as
shown in the previous section, where the absorption of the light is avoided. With this
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technique, it is possible to shape the density of the Bose–Einstein condensate if we

can shape the intensity of the light beam. The optical trap does not, however, affect

the phase of the quantum gas, which is well defined for every atom in the coherent

Bose–Einstein condensate. In order to be able to shape not only the density but also

the phase of the Bose–Einstein condensate, we can use the so-called phase imprinting

technique, which relies on a dynamic process, in contrast to the static optical trap.

The method of phase imprinting consists of passing a short off-resonant laser pulse

through an appropriately designed absorption plate or spatial light modulator, which

alters the intensity profile of the light beam [24,25]. The shaped light pulse is then

allowed to propagate through the Bose–Einstein condensate. In the following, we will

illustrate the mechanism by looking at a one-dimensional cloud.

The trapped Bose–Einstein condensate can be considered dynamically one-

dimensional if the radial trapping frequency is larger than the corresponding chemical

potential, ωr � μ/h̄, and the longitudinal confinement of atoms in the trapping po-

tential is much weaker than that in the transverse direction. The Gross–Pitaevskii

equation then takes the form

ih̄
∂

∂t
Ψ (z, t) =

[
− h̄2

2m

∂2

∂z2
+ V (z) + W(z, t) + g1D

∣∣Ψ (z, t)
∣∣2

]
Ψ (z, t), (38)

where W(z, t) describes the interaction with the external laser, i.e., the dipole potential

generated by the far-detuned laser pulse. The static trapping potential is given by the

potential V (z) which is typically harmonic in z. The one-dimensional dynamics is

ensured with a renormalized mean field strength,

g1D = g
mωr

2πh̄
, (39)

where ωr is the transverse trapping frequency. It is important to remember that the

dynamics can indeed be one-dimensional, but the collisions are three-dimensional.

A true one-dimensional scenario can be achieved by a combination of strong transver-

sal confinement and a low density of the bosonic gas. This phenomenon has been

studied extensively both theoretically and experimentally, and is related to a phenom-

enon where the bosonic gas gets fermionic properties [26].

If the duration of the far off-resonant laser pulse is short compared to the correlation

time,

tcorr = h̄

μ
, (40)

the condensate does not have time to react, so the dominating term in the right side of

equation (38) is given by W(z, t). Consequently, we can write the solution of equation



The Quantum Gas: Bose–Einstein Condensates 305

(38) after the pulse has passed through the condensate as

Ψ (z) = e−i
∫

dt ′ W(z,t ′)Ψ0(z, t = 0), (41)

where Ψ0(z, t = 0) is the initial state of the condensate. If the incident pulse is suffi-

ciently short, we can extend the integration over time to infinity, hence the acquired

phase is given by

φ(z) = �tW(z), (42)

where �t is a measure of the width of the pulse in the time domain. The potential

W(z) is, as in the case of the optical trap, given by equation (25), so the acquired

phase φ(z) depends on the intensity of the pulse and its duration. In other words, the

phase imprinting relies on the timing and shaping of the light beam intensity.

The phase imprinting technique offers a versatile tool for preparing a Bose–

Einstein condensate in some chosen state. Generally the prepared state is not an

eigenstate of the trapped quantum gas. Consequently, the phase imprinting can be ex-

ploited to induce coherent dynamics of the Bose–Einstein condensate. This effect was

used when creating dark solitons in Bose–Einstein condensates [24,25]. A soliton is

a topological excitation, or kink in the wave function, which propagates in the atomic

cloud without losing its shape. The soliton is also a particular solution of the nonlinear

Gross–Pitaevskii equation. Admittedly, the imprinted state is not the exact soliton so-

lution. But it is close. The phase imprinting procedure therefore does indeed produce

dark solitons, i.e., a density notch, in the case of repulsive interactions between the

atoms. We are, of course, not restricted to only soliton dynamics. By choosing, for

instance, a phase that has a quadratic dependence on position, we can induce focus-

ing or defocusing. Similarly, a linear dependence in position will induce a momentum

kick to the gas, which can be used as a method to coherently split a condensate. This

is shown in Figures 12.3 and 12.5.

Interestingly, there is a close analogy between optics and the phase imprinting on

a Bose–Einstein condensate that acts as a phase plate for the atoms. This is most

clearly seen in the focusing dynamics of the cloud of atoms when a parabolically

shaped phase is imprinted onto the atoms. Such a phase acts as a lens for the atoms.

The focused matter wave, i.e., the condensate, does not, however, focus to a single

point later in time due to the interactions between the atoms, but the overall dynamics

closely resemble the focusing of light [27,28].
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Figure 12.3 The phase imprinting technique can for instance be used for engineering a Bose–Einstein
condensate with a sharp phase slip. The resulting dynamics will give rise to dark solitons in the case
of repulsive interaction between the atoms.

Figure 12.4 The density of the Bose–Einstein condensate has a parabolic shape for h̄ωz � μ. The
dashed curve indicates the harmonic external trap, 1

2 mω2
z z2.
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(a) (b)

(c) (d)

Figure 12.5 The condensate is situated in a harmonic trap. (a) and (b) An imprinted phase that is
quadratic in z induces defocusing or focusing, depending upon the sign of the phase gradient. (c) If
the phase is chosen such that it is zero for z > 0 and linear in z for z < 0, the result is a splitting of the
cloud where part of the cloud is separated and the remaining part stays stationary during a time much
smaller than 1/ωz . (d) With a sharp phase slip imprinted, the result is a dark soliton that oscillates in
the cloud (see Figure 12.3). See color insert.
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12.4 LIGHT-INDUCED GAUGE POTENTIALS
FOR COLD ATOMS

12.4.1 Background

Up to now we have shown that the shaped intensity of the light beam can be used

for trapping and phase imprinting a Bose–Einstein condensate. The phase of the light

has not played a significant role so far. In this section, we will consider a situation

where both the intensity and the phase of the incident laser fields are important in

the optical manipulation of atoms. Specifically, we will show how two or more laser

fields can induce effective vector and trapping potentials for the atomic center of mass

motion. This will give us a new tool for manipulating the neutral atoms because of an

induced effective magnetic field. For this, the laser beams should act on the atoms in an

Electromagnetically Induced Transparency (EIT) [29–33] configuration. The induced

gauge potential has a geometric nature and depends upon the relative intensity and

the relative phase of the incident laser fields rather than on their absolute intensities

and phases. The technique provides a way to optically induce an effective magnetic

field acting on electrically neutral atoms. This happens if the applied laser fields have

a nontrivial topology, e.g., if they carry an orbital angular momentum along the prop-

agation direction [5–7,34,35]. The appearance of the effective vector potential is a

manifestation of the Mead–Berry connection [36,37] which is encountered in many

different areas of physics [38–43].

In passing, we note that the usual way to produce an effective magnetic field in a

cloud of electrically neutral atoms is to rotate the system such that the vector potential

will appear in the rotating frame of references [44–46]. This would correspond to

a situation where the atoms feel a uniform magnetic field. Yet stirring an ultracold

cloud of atoms in a controlled manner is a rather demanding task. There have also

been suggestions to take advantage of a discrete periodic structure of an optical lattice

to introduce asymmetric atomic transitions between the lattice sites [47–50]. Using

this approach, one can induce a nonvanishing phase for the atoms moving along a

closed path on the lattice, i.e., one can simulate a magnetic flux [51,47–50]. However,

such a way of creating the effective magnetic field is inapplicable to an atomic gas

that does not constitute a lattice. The light-induced gauge potentials are free from all

these drawbacks [5–7,34,52,53]. Furthermore, using these techniques it is possible to

induce not only the usual (Abelian) gauge potentials [5–7,34,42,43,53], but also non-

Abelian gauge potentials [52,54], whose Cartesian components do not commute. This

will be considered in detail in subsequent sections.
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12.4.2 General Formalism for the Adiabatic Motion
of Atoms in Light Fields

We will start by adapting the general theory of the adiabatic dynamics [36–40] to
the center of mass motion of atoms in stationary laser fields. For this we consider
atoms with multiple internal states. The full atomic Hamiltonian is

Ĥ = p̂2

2m
+ Ĥ0(r) + V̂ (r), (43)

where p̂ ≡ −ih̄∇ is the momentum operator for an atom positioned at r, and m is the
atomic mass. Here the Hamiltonian Ĥ0(r) describes the electronic degrees of freedom
of the atom, and V̂ (r) represents an external trapping potential. Note that the atomic
Hamiltonian Ĥ0(r) accommodates effects due to external light fields in addition to the
internal dynamics.

For a fixed position r, the atomic Hamiltonian Ĥ0(r) can be diagonalized to give
a set of, say, N dressed states |χn(r)〉 of the atom coupled with the light fields. The
dressed states are characterized by eigenvalues εn(r), with n = 1,2, . . . ,N . The full
quantum state of the atom describing both internal and motional degrees of freedom
can then be expanded in terms of the dressed states as

|Φ〉 =
N∑

n=1

Ψn(r)
∣∣χn(r)

〉
, (44)

where Ψn(r) ≡ Ψn is a wave-function for the center of mass motion of the atom in the
internal state n. Substituting equation (44) into the Schrödinger equation ih̄∂|Φ〉/∂t =
Ĥ |Φ〉, one arrives at a set of coupled equations for the components Ψn. Introducing the
N -dimensional column vector Ψ = (Ψ1,Ψ2, . . . ,ΨN)T , it is convenient to represent
these equations in a matrix form,

ih̄
∂

∂t
Ψ =

[
1

2m
(−ih̄∇ − A)2 + U

]
Ψ, (45)

where A and U are N × N matrices with the following elements

An,m = ih̄
〈
χn(r)

∣∣∇χm(r)
〉
, (46)

Un,m = εn(r)δn,m + 〈
χn(r)

∣∣V̂ (r)
∣∣χm(r)

〉
. (47)

The latter matrix U includes contributions from both the internal atomic energies and
also the external trapping potential. The former matrix A is the gauge potential that
appears due to the position dependence of the atomic dressed states. If the off-diagonal
elements of the matrices A and U are much smaller than the difference in the atomic
energies Unn − Umm, the adiabatic approximation can be applied by neglecting the
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off-diagonal contributions. This leads to a separation of the dynamics in different
dressed states. Atoms in any one of the dressed states evolve according to a separate
Hamiltonian in which the gauge potential A reduces to the 1×1 matrix, i.e., the gauge
potential becomes Abelian. The adiabatic approximation fails if there are degenerate
(or nearly degenerate) dressed states, so that the off-diagonal (nonadiabatic) couplings
between the degenerate dressed states can no longer be ignored. In that case, the gauge
potentials no longer reduce to the 1×1 matrices. They are non-Abelian provided their
Cartesian components do not commute.

Let us assume that the first q atomic dressed states are degenerate (or nearly de-
generate) and that these levels are well separated from the remaining N − q levels.
Neglecting transitions to the remaining states, one can project the full Hamiltonian
onto this subspace. As a result, one arrives at the closed Schrödinger equation for the
reduced column vector Ψ̃ = (Ψ1, . . . ,Ψq)

ih̄
∂

∂t
Ψ̃ =

[
1

2m
(−ih̄∇ − A)2 + U + Φ

]
Ψ̃ , (48)

where A and U are the truncated q × q matrices. The projection of the term A2 to the
q-dimensional subspace cannot entirely be expressed in terms of a truncated matrix A.
This gives rise to a geometric scalar potential Φ , which is again a q × q matrix,

Φn,m = 1

2m

N∑

l=q+1

An,l · Al,m

= h̄2

2m

(
〈∇χn|∇χm〉 +

q∑

k=1

〈χn|∇χk〉〈χk|∇χm〉
)

, (49)

with n,m ∈ (1, . . . , q). The reduced q × q matrix A is the Mead–Berry connection
[36,37], also known as the effective vector potential. It is related to a curvature (an
effective “magnetic” field) B as

Bi = 1

2
εiklFkl, Fkl = ∂kAl − ∂lAk − i

h̄
[Ak,Al]. (50)

Note that the term 1
2εikl[Ak,Al] = (A × A)i does not vanish in general because the

vector components of A do not necessarily commute. In fact this term reflects the
non-Abelian character of the gauge potentials.

In the next section, we will consider a situation where two laser beams are cou-
pled to the atoms in the so-called Λ configuration. In this scheme, there is a single
nondegenerate electronic state (known as a dark state). Thus, the atomic center of
mass undergoes the adiabatic motion influenced by the (Abelian) vector and trapping
potentials. Later in the chapter, we will analyze a tripod scheme of laser–atom inter-
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actions that provides two degenerate dark states. In that case, one has non-Abelian
light-induced gauge potentials.

12.5 LIGHT-INDUCED GAUGE POTENTIALS
FOR THE Λ SCHEME

12.5.1 General

We will now consider an ensemble of cold three-level atoms in the Λ configuration
with two ground states |1〉 and |2〉 and an electronically excited state |0〉, as shown in
Figure 12.6. For example, the states |1〉 and |2〉 can be different hyperfine ground states
of an atom. The atoms interact with two resonant laser beams in the EIT configuration,
as shown in Figure 12.6. The first beam has a frequency of ω1 and a wave-vector of k1,
and it induces the atomic transitions |1〉 → |0〉 with Rabi frequency Ω1 ≡ μ01E1/2,
where E1 is the electric field strength and μ01 is the dipole moment for the transition
from the ground state |1〉 to the excited state |0〉. The second beam is characterized by
the frequency ω2 and wave-vector k2. It causes the transition |2〉 → |0〉 with a Rabi
frequency Ω2 ≡ μ02E2/2.

When adopting the rotating wave approximation, the Hamiltonian for the electronic
degrees of freedom of an atom interacting with the two beams becomes

Ĥ0(r) = ε21|2〉〈2| + ε01|0〉〈0| − h̄
(
Ω1|0〉〈1| + Ω2|0〉〈2| + H.c.

)
, (51)

where ε21 and ε01 are, respectively, the energies of the detuning from the two- and
single-photon resonances. Note that the spatial dependence of the Hamiltonian Ĥ0(r)
emerges through the spatial dependence of the Rabi frequencies Ω1 ≡ Ω1(r) and
Ω2 ≡ Ω2(r).

Figure 12.6 The EIT Λ configuration with two laser beams Ω1 and Ω2 coupling the levels.
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Neglecting the two-photon detuning (ε21 = 0), the Hamiltonian (51) has the eigen-

state

|D〉 = 1
√

1 + |ζ |2
(|1〉 − ζ |2〉), (52)

representing a coherent superposition of both ground states, where

ζ = Ω1

Ω2
(53)

is the ratio of the amplitudes of the laser fields. It is characterized by a zero eigenen-

ergy: Ĥ0(r)|D〉 = 0. Since the state |D〉 has no contribution from the excited elec-

tronic state |0〉 and is not coupled to that state, it is immune to absorption and spon-

taneous emission. Therefore, the state |D〉 is called the dark state [29–33]. We are

interested in a situation where the atoms are kept in their dark state |D〉 ≡ |D(r)〉, so

that the full atomic state-vector is

|Φ〉 = ΨD(r)
∣∣D(r)

〉
, (54)

where ΨD is the wave-function for the center of mass motion of the dark-state atoms.

If an atom is in the dark state |D〉, the laser beams induce the absorption paths

|2〉 → |0〉 and |1〉 → |0〉, which interfere destructively, resulting in the Electromagnet-

ically Induced Transparency [29–33]. In such a situation, the transitions to the upper

atomic level |0〉 are suppressed. That is why the dark state has no contribution by the

excited electronic state |0〉.
Suppose once again that the laser fields are tuned to the two-photon resonance:

ε21 = 0. The remaining two photon mismatch (if any) can be accommodated within

the trapping potential

V̂ (r) = V1(r)|1〉〈1| + V2(r)|2〉〈2| + V0(r)|0〉〈0|, (55)

where Vj (r) is the trapping potential for an atom in the electronic state j , with j =
0,1,2. Applying the treatment presented in the previous section, the center of mass

dynamics of the dark-state atoms is described by the equation of motion

ih̄
∂

∂t
ΨD =

[
1

2m
(−ih̄∇ − A)2 + Veff

]
ΨD, (56)

where A and Veff are the effective vector and trapping potentials, respectively,

A = ih̄〈D|∇D〉, (57)

Veff = V + φ, (58)
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with

V = V1(r) + |ζ |2V2(r)
1 + |ζ |2 , (59)

φ = h̄2

2M

(〈D|∇D〉2 + 〈∇D|∇D〉). (60)

Since V1(r) and V2(r) are the trapping potentials for an atom in the electronic states
1 and 2, the potential V represents the external trapping potential for an atom in the
dark state.

In this way, the effective trapping potential Veff is composed of the external trap-
ping potential V and the geometric scalar potential φ. The former V is determined by
the shape of the trapping potentials V1(r) and V2(r), as well as the intensity ratio |ζ |2.
The latter geometric potential φ is determined exclusively by the spatial dependence
of the dark state |D〉 emerging through the spatial dependence of the ratio of the Rabi
frequencies ζ = Ω1/Ω2. Note that the effective vector potential A has a geometric
nature as well because it also originates from the spatial dependence of the dark state.

12.5.2 Adiabatic Condition

The separation between the energies of the dark state and the remaining dressed
atomic states of the Λ system is characterized by the total Rabi frequency Ω =√

Ω2
1 + Ω2

2 . Assuming that the laser fields are tuned to the one- and two-photon res-
onances (ε01, ε21 � h̄Ω), the adiabatic approach holds if the off-diagonal matrix ele-
ments in equation (45) are much smaller than the total Rabi frequency Ω . This leads
to the following condition

F � Ω, (61)

where the velocity-dependent term

F = 1

1 + |ζ |2 |∇ζ · v| (62)

reflects the two-photon Doppler detuning. Note that the condition (61) does not ac-
commodate effects due to the decay of the excited atoms. The dissipative effects can
be included by replacing the energy of the one-photon detuning ε01 by ε01 − ih̄γ0,
where γ0 is the excited-state decay rate. In such a situation, the dark state can be
shown to acquire a finite lifetime

τD ∼ γ −1
0 Ω2/F 2, (63)

which should be large compared to other characteristic times of the system.
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The condition (61) implies that the inverse Rabi frequency Ω−1 should be smaller

than the time an atom travels a characteristic length over which the amplitude or the
phase of the ratio ζ = Ω1/Ω2 changes considerably. The latter length exceeds the

optical wavelength, and the Rabi frequency can be of the order of 107 to 108 s−1

[55]. Consequently, the adiabatic condition (61) should hold for atomic velocities up

to the order of tens of meters per second, i.e., up to extremely large velocities in
the context of ultra-cold atomic gases. The allowed atomic velocities become lower

if the spontaneous decay of the excited atoms is taken into account. According to
equation (63), the atomic dark state acquires then a finite lifetime τD , which is equal to

γ −1
0 times the ratio Ω2/F 2. The atomic decay rate γ3 is typically of the order 107 s−1.

Therefore, in order to achieve long-lived dark states, the atomic velocity should not

be too large. For instance, if the atomic velocities are of the order of a centimeter per
second (a typical speed of sound in an atomic BEC), the atoms should survive in their

dark states up to a few seconds. This is comparable to the typical lifetime of an atomic
BEC.

12.5.3 Effective Vector and Trapping Potentials

Let us express the ratio of Rabi frequencies ζ in terms of amplitude and phase as

ζ = Ω1

Ω2
= |ζ |eiS . (64)

Using expression (52) for the dark state, the effective vector potential takes the form

A = −h̄
|ζ |2

1 + |ζ |2 ∇S. (65)

The effective magnetic field is consequently

B = h̄
∇S × ∇|ζ |2
(1 + |ζ |2)2

, (66)

and the geometric scalar potential reads

φ = h̄2

2M

(∇|ζ |)2 + |ζ |2(∇S)2

(1 + |ζ |2)2
. (67)

One can easily recognize that the gauge potential A yields a nonvanishing effective
magnetic field B = ∇ ×A only if the gradients of the relative intensity and the relative

phase are both nonzero and not parallel to each other. Therefore the effective magnetic
field cannot be induced using the plane waves for the Λ scheme [42,43]. However,
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plane waves can indeed be used in a more complicated tripod setup [52,54], which we

will consider in the next section.

Equation (66) has a very intuitive interpretation. Here ∇[|ζ |2/(1 + |ζ |2)] is a vec-

tor that connects the “center of mass” of the two light beams, and ∇S is proportional

to the vector of the relative momentum of the two light beams. Thus, a nonvanishing

B requires a relative orbital angular momentum of the two light beams. We will see

that this is the case for light beams with a vortex [5–7,34] or if one uses two counter-

propagating light beams of finite diameter with an axis offset [53].

12.5.4 Co-Propagating Beams with Orbital
Angular Momentum

Let us suppose that the incident laser beams can carry an orbital angular momen-

tum along the propagation axis z, as shown in Figure 12.7. In this case, the spatial

distribution of the beams is [56,57]

Ω1 = Ω
(0)
1 ei(k1z+l1φ) (68)

and

Ω2 = Ω
(0)
2 ei(k2z+l2φ), (69)

where Ω
(0)
1 and Ω

(0)
2 are slowly varying amplitudes, h̄l1 and h̄l2 are the correspond-

ing orbital angular momenta per photon along the propagation axis z, and φ is the

azimuthal angle. The phase of the ratio ζ = Ω1/Ω2 then reads S = lφ. Therefore, the

effective vector potential and the magnetic field take the form

A = − h̄l

ρ

|ζ |2
1 + |ζ |2 êφ, (70)

B = h̄l

ρ

1

(1 + |ζ |2)2
êφ × ∇|ζ |2, (71)

where l = l1 − l2 is the difference in the winding numbers of the laser beams, eφ

is the unit vector in the azimuthal direction, and ρ is the cylindrical radius. Note that

although both beams are generally allowed to have nonzero orbital angular momentum

by equations (68) and (69), it is desirable for the angular momentum to be zero for

one of these beams. In fact, if both l1 and l2 were nonzero, the amplitudes Ω1 and

Ω2 would simultaneously go to zero at the origin where ρ = 0. In that situation, the
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Figure 12.7 At least one of the two coupling beams in the EIT configuration should have an orbital
angular momentum. See color insert.

total Rabi frequency Ω =
√

Ω2
1 + Ω2

2 would also vanish, leading to the violation of

the adiabatic condition (61) at ρ = 0.

If the beams are cylindrically symmetric, the intensity ratio |ζ |2 depends upon the

cylindrical radius ρ only. In that case, the effective magnetic field is directed along the

z-axis:

B = −êz

h̄l

ρ

1

(1 + |ζ |2)2

∂

∂ρ
|ζ |2. (72)

It is evident that the effective magnetic field is nonzero only if the ratio ζ = Ω1/Ω2

contains a nonzero phase (l = l1 − l2 �= 0) and the amplitude |ζ | has a radial depen-

dence (∂|ζ |/∂ρ �= 0).

The light-induced magnetic field affects the atomic motion in the xy-plane.

This might lead to a number of phenomena, such as the de Haas–van Alphen ef-

fect in the cloud of atomic fermions [5], or the light-induced Meissner effect [34]

in the atomic Bose–Einstein condensates. Furthermore, the light-induced potentials

alter the expansion dynamics of the atomic cloud [35]. A more detailed analy-

sis of the light-induced gauge potentials for this geometry is presented in refer-

ences [5–7,34].
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12.5.5 Counterpropagating Beams with Shifted
Transverse Profiles

We will now consider a different scenario [53], where we will use two counterprop-
agating light beams of finite diameter with an axis offset for which Ω1 = Ω

(0)
1 eik1y

and Ω2 = Ω
(0)
2 e−ik2y , where Ω

(0)
1 and Ω

(0)
2 are real amplitudes with shifted trans-

verse profiles, as shown in Figure 12.8. The beams possess a required relative orbital
angular momentum similarly to two point particles with constant momenta passing
each other at some finite distance, hence, an effective magnetic field will be gener-
ated.

The phase of the ratio ζ = Ω1/Ω2 is now given by

S = ky, k = k1 + k2, (73)

so that ∇S = kêy where êy is a unit Cartesian vector. The spatial dependence of the
intensity ratio |ζ |2 = |Ω1/Ω2|2 is determined by the spatial profiles of both |Ω1|2
and |Ω2|2. Since the light beams counterpropagate along the y-axis, their intensities
depend weakly on the propagation distance y. Furthermore, we shall disregard the
z-dependence of the intensity ratio |ζ |2. This is legitimate, for instance, if the atomic
motion is confined to the xy-plane due to a strong trapping potential in the z-direction.
Using equation (66), one arrives at the following strength of the light-induced effective
magnetic field

B = −êz h̄k
∂

∂x

|ζ |2
(1 + |ζ |2) . (74)

The effective magnetic field B is oriented along the z-axis. Its magnitude B depends
generally upon the x-coordinate, yet it has a weak y-dependence as long as the parax-
ial approximation holds.

One possible application of this technique is to study quantum Hall phenomena
and thus the possibility to enter the lowest Landau level (LLL) regime for the trapped
atoms. In doing so, we have to estimate the maximum strength of the magnetic field.

Figure 12.8 Two counterpropagating and overlapping laser beams interact with a cloud of cold atoms.
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For this we determine the minimum area needed for a magnetic flux to correspond to

a single flux quantum 2πh̄. From equation (74), we recognize that this area is given

by the product λxeff, where xeff is the effective separation between the two beam

centers and λ = 4π/k. To reach the LLL in a two-dimensional gas, the atomic density

therefore has to be smaller than one atom per λxeff.

The above analysis holds as long as the atoms move sufficiently slow to remain

in their dark states. This is the case if the adiabatic condition given by equation (62)

holds. In the present situation, the adiabatic condition takes the form

F 2 = 1

(1 + |ζ |2)2

[(
vx

∂

∂x
|ζ |

)2

+ (|ζ |kvy

)2
]

� Ω2. (75)

Let us assume that both beams are characterized by Gaussian profiles with the same

amplitude Ω0 and width σ

|Ωj | = Ω0 exp

(
− (x − xj )

2

σ 2

)
, j = 1,2. (76)

In the paraxial approximation, the Gaussian beams have the width σ ≡ σ(y) = σ0[1+
(λy/πσ 2

0 )]1/2, where σ0 ≡ σ(0) is the beam waist and λ is the wavelength. Since k1 ≈
k2 ≈ k/2, we have λ ≈ 4π/k for both beams. We are interested mostly in distances |y|
much less than the confocal parameter of the beams b = 2πσ 2

0 /λ ≈ kσ 2
0 /2. For such

distances, |y| � b, the width σ(y) is close to the beam waist: σ(y) ≈ σ0.

Suppose the beams are centered at x1 = x0 + �x/2 and x2 = x0 − �x/2. The

intensity ratio then reads: |ζ |2 ≡ |Ω1/Ω2|2 = exp[(x − x0)/a], where a ≡ a(y) =
σ 2/4�x is the relative width of the two beams. Thus we have

B = −h̄k
1

4a cosh2((x − x0)/2a)
ez, (77)

Veff(r) = V (r) + h̄2k2

2m

(1 + 1/4a2k2)

4 cosh2((x − x0)/2a)
, (78)

where V (r) is the external trapping potential. It is evident that both B and Veff(r) are

maximum at the central point x = x0 and decrease quadratically for |x − x0| � a.

The term quadratic in the displacement x − x0 can be cancelled out in the effective

trapping potential (78) by taking an external potential V (r) containing the appropri-

ate quadratic term. The frequency of the external potential fulfilling such a condition

is

ωext = h̄k

4am

√
1 + 1/4a2k2. (79)
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Figure 12.9 Effective trapping potential Veff and effective magnetic field Beff produced by counter-
propagating Gaussian beams. The external harmonic potential Vext cancels the quadratic term in the
overall potential Veff. The effective magnetic field is plotted in the units of B(0) ≡ h̄k/4a, whereas
the effective trapping potential is plotted in the units of h̄ωrec(1 + 1/4a2k2), with ωrec = h̄k2/2m.

With this, the overall effective trapping potential becomes constant up to terms of

the fourth order in x − x0. In the vicinity of the central point (|x − x0| � a), the

magnetic field strength is B ≈ h̄k/4a. The corresponding magnetic length and cy-

clotron frequency are �B ≈ √
h̄/B = 2

√
a/k and ωc = B/m ≈ h̄k/4am. The mag-

netic length �B is much smaller than the relative width of the two beams, �B � a,

provided the latter is much larger than the optical wave length, ak � 1. In that

case, many magnetic lengths fit within the interval |x − x0| < a across the beams.

Furthermore, the cyclotron frequency is then approximately equal to the frequency

of the external trap: ωc ≈ ωext, both of them being much less than the recoil fre-

quency.

Figure 12.9 shows the effective trapping potential and effective magnetic field cal-

culated using equations (77) and (78), where the external harmonic potential Vext with

frequency ωext (equation (79)) is added to cancel the quadratic term in the overall po-

tential V (r). The magnetic field is seen to be close to its maximum value in the area

of constant potential, where |x − x0| � a. For larger distances, the effective trapping

potential forms a barrier, so the atoms can be trapped in the region of large magnetic

field.
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12.6 LIGHT-INDUCED GAUGE FIELDS FOR
A TRIPOD SCHEME

12.6.1 General

Let us now consider a more complex tripod scheme [52,58] of the atom-light cou-
pling shown in Figure 12.10, in which there is an additional third laser driving the
transitions between an extra ground state 3 and the excited state 0. Assuming exact
single- and two-photon resonances, the Hamiltonian of the tripod system reads in in-
teraction representation

Ĥ0 = −h̄
(
Ω1|0〉〈1| + Ω2|0〉〈2| + Ω3|0〉〈3|) + H.c. (80)

The Hamiltonian Ĥ0 has two eigen-states |Dj 〉 (j = 1,2) characterized by zero eigen-
energies Ĥ0|Dj 〉 = 0. The eigen-states |Dj 〉 are the dark states containing no excited-
state contribution, as one can see in equations (82) and (83).

Parameterizing the Rabi-frequencies Ωμ with angle and phase variables according
to

Ω1 = Ω sin θ cosφ eiS1 ,

Ω2 = Ω sin θ sinφ eiS2 ,

Ω3 = Ω cos θeiS3 , (81)

where Ω = √|Ω1|2 + |Ω2|2 + |Ω3|2, the adiabatic dark states read

|D1〉 = sinφeiS31 |1〉 − cosφeiS32 |2〉, (82)

|D2〉 = cos θ cosφeiS31 |1〉 + cos θ sinφeiS32 |2〉 − sin θ |3〉, (83)

with Sij = Si − Sj being the relative phases. As in the Λ scheme, the dark states are
eigen-states of the Hamiltonian Ĥ0 with zero eigen-energy: Ĥ0|Dj 〉 = 0. The dark

Figure 12.10 The tripod configuration.



Light-Induced Gauge Fields for a Tripod Scheme 321

states depend upon the atomic position through the spatial dependence of the Rabi-

frequencies Ωj . This leads to the appearance of the gauge potentials A and Φ consid-

ered below.

We are interested in a situation where the atoms are kept in their dark states.

This can be done neglecting transitions from the dark states to the bright state

|B〉 ∼ Ω∗
1 |1〉 + Ω∗

2 |2〉 + Ω∗
3 |3〉. The latter is coupled to the excited state |0〉 with the

Rabi frequency Ω , so the two states |B〉 and |0〉 split into a doublet separated from the

dark states by the energies ±Ω . The adiabatic approximation is justified if Ω is suf-

ficiently large compared to the two-photon detuning due to the laser mismatch and/or

Doppler shift. In that case, the internal state of an atom does indeed evolve within the

dark state manifold. The atomic state-vector |Φ〉 can then be expanded in terms of the

dark states according to |Φ〉 = ∑2
j=1 Ψj (r)|Dj(r)〉, where Ψj (r) is the wave-function

for the center of mass motion of the atom in the j th dark state. Adapting the general

treatment used is the section on light-induced gauge potentials for cold atoms, the

atomic center of mass motion is described by a two-component wave-function

Ψ =
(

Ψ1

Ψ2

)
, (84)

which obeys the Schrödinger equation

ih̄
∂

∂t
Ψ =

[
1

2m
(−ih̄∇ − A)2 + V + Φ

]
Ψ, (85)

where the potentials A, Φ , and V are 2 × 2 matrices. The former A and Φ are light-

induced gauge potentials emerging due to the spatial dependence of the atomic dark

states [52]

A11 = h̄
(
cos2 φ∇S23 + sin2 φ∇S13

)
,

A12 = h̄ cos θ

(
1

2
sin(2φ)∇S12 − i∇φ

)
,

A22 = h̄ cos2 θ
(
cos2 φ∇S13 + sin2 φ∇S23

)
, (86)

and

Φ11 = h̄2

2m
sin2 θ

(
1

4
sin2(2φ)(∇S12)

2 + (∇φ)2
)

,
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Φ12 = h̄2

2m
sin θ

(
1

2
sin(2φ)∇S12 − i∇φ

)

(
1

2
sin(2θ)

(
cos2 φ∇S13 + sin2 φ∇S23

) − i∇θ

)
,

Φ22 = h̄2

2m

(
1

4
sin2(2θ)

(
cos2 φ∇S13 + sin2 φ∇S23

)2 + (∇θ)2
)

. (87)

Since the level scheme considered in Figure 12.10 corresponds to that of Alkali atoms
where |1〉, |2〉, and |3〉 are Zeeman components of hyperfine levels, it is natural to
assume that the external trapping potential is diagonal in these states and has the form
V = V1(r)|1〉〈1|+V2(r)|2〉〈2|+V3(r)|3〉〈3|. This still takes into account the fact that
magnetic, magneto-optical, or optical dipole forces can be different or various Zeeman
states. According to equation (47), the external potential in the adiabatic basis is then
given by a 2 × 2 matrix with elements Vjk = 〈Dj |V |Dk〉. Using the expressions for
the dark states (82) and (83), we arrive at the following matrix elements of the external
potential [52]

V11 = V2 cos2 φ + V1 sin2 φ,

V12 = 1

2
(V1 − V2) cos θ sin(2φ),

V22 = (
V1 cos2 φ + V2 sin2 φ

)
cos2 θ + V3 sin2 θ. (88)

At this point, it is instructive to consider some specific examples.

12.6.2 The Case where S12 = 0

Let us first assume that the laser fields that couple the levels |1〉 and |2〉 are coprop-
agating and have the same frequency and the same orbital angular momentum (if any).
In this case, their relative phase is fixed and can be put to zero S12 = 0. This leads to
S13 = S23 ≡ S, and the expressions for the vector potential simplify to

A = h̄

( ∇S −i cos θ∇φ

i cos θ∇φ cos2 θ∇S

)
. (89)

The components of the 2 × 2 matrix of the effective magnetic field can be easily
evaluated to be

B11 = 0,

B12 = ih̄ sin θe−iS∇θ × ∇φ − h̄ cos θe−iS∇S × ∇φ
(
1 + cos2 θ

)
,

B22 = −2h̄ cos θ sin θ∇θ × ∇S. (90)
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One recognizes that a large magnetic field requires large gradients of the relative in-
tensities of the fields, parametrized by the angles φ and θ and a large gradient of
the relative phase S. Gradients of φ and θ on the order of the wavenumber k can be
achieved by using standing-wave fields. Large gradients of S can be obtained from a
running wave Ω3 orthogonal to the other two or by a vortex beam with large orbital
angular momentum. In this case, magnetic fluxes as large as 1 Dirac flux quantum per
atom can be reached.

We now construct a specific field configuration that leads to a magnetic monopole.
For this we will consider two copropagating and circularly polarized fields Ω1,2 with
opposite orbital angular momenta ±h̄ along the propagation axis z, whereas the third
field Ω3 propagates in x direction and is linearly polarized along the y-axis [52]:

Ω1,2 = Ω0
ρ

R
ei(kz∓ϕ), Ω3 = Ω0

z

R
eik′x . (91)

Here ρ is the cylindrical radius, and ϕ is the azimuthal angle. It should be noted that
these fields have a vanishing divergence and obey the Helmholtz equation. The total
intensity of the laser fields (91) vanishes at the origin which is a singular point.

The vector potential associated with the fields can be calculated using equation
(86):

A = −h̄
cosϑ

r sinϑ
êϕ

(
0 1
1 0

)
+ h̄

2

(
kêz − k′êx

)

[(
1 + cos2 ϑ

)(1 0
0 1

)
+ (

1 − cos2 ϑ
)(1 0

0 −1

)]
. (92)

The first term proportional to σx corresponds to a magnetic monopole of the unit
strength at the origin. This is easily seen by calculating the magnetic field

B = h̄

r2
êr

(
0 1
1 0

)
+ · · · . (93)

The dots indicate nonmonopole field contributions proportional to the Pauli matrices
σz and σy , and to the unity matrix.

12.7 ULTRA-RELATIVISTIC BEHAVIOR OF COLD
ATOMS IN LIGHT-INDUCED GAUGE POTENTIALS

12.7.1 Introduction

In this section, we will show how cold atoms can acquire properties of ultra-
relativistic fermions [54] if they are manipulated properly by light fields acting upon
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the atoms in the tripod configuration (see also references [51,59] for similar effects
with atoms in optical lattices). Specifically, we demonstrate that by choosing certain
light fields the vector potential can be made proportional to an operator of spin 1/2.
For small momenta, the atomic motion becomes then equivalent to the ultra-relativistic
motion of two-component Dirac fermions, as is the case also for electrons in graphene
near the Fermi surface [60–68]. In this section, we will discuss an experimental setup
for observing such a quasi-relativistic behavior for the cold atoms. Furthermore, we
will show that the atoms can experience negative refraction and focusing by Veselago-
type lenses [69,70].

It is important to realize that the velocity of the quasi-relativistic atoms is of the
order of a centimeter per second. This is ten orders of magnitude smaller than the
speed of light in a vacuum c ≈ 3 × 108 m/s. For comparison, the velocity of the
Dirac-type electrons in graphene is only two orders of magnitude smaller than c [63].
Thus, the ultra-relativistic behavior of cold atoms manifests itself at extremely small
velocities.

12.7.2 Formulation

To demonstrate the ultra-relativistic behavior of cold atoms [54], we will consider
the tripod scheme where the first two lasers have the same intensities and coun-
terpropagate in the x-direction, while the third one propagates in the negative y-
direction, as shown in Figure 12.11. Specifically, we have Ω1 = Ω sin θe−iκx/

√
2,

Ω2 = Ω sin θeiκx/
√

2, and Ω3 = Ω cos θe−iκy , where Ω = √|Ω1|2 + |Ω2|2 + |Ω3|2
is the total Rabi frequency and θ is the mixing angle defining the relative intensity of
the third laser field.

The potentials A, Φ , and V have been considered in the previous section for ar-
bitrary light fields acting upon tripod atoms. In the present configuration of the light
fields, the potentials take the form [54]

A = h̄κ

(
ey −ex cos θ

−ex cos θ ey cos2 θ

)
, (94)

Φ =
(

h̄2κ2 sin2 θ/2m 0
0 h̄2κ2 sin2(2θ)/8m

)
, (95)

V =
(

V1 0
0 V1 cos2 θ + V3 sin2 θ

)
, (96)

with ex and ey being unit Cartesian vectors. Here the external trapping potential is
assumed to be the same for the first two atomic states, V1 = V2.
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Figure 12.11 The three laser beams incident on the cloud of atoms in the tripod configuration.

In what follows, we take V3 − V1 = h̄2κ2 sin2(θ)/2m. This can be achieved by
detuning the third laser from the two-photon resonance by the frequency �ω3 =
h̄κ2 sin2 θ/2m. Thus, the overall trapping potential simplifies to V + Φ = V1I (up
to a constant), where I is the unit matrix. In other words, both dark states are affected
by the same trapping potential V1 ≡ V1(r).

Furthermore, we take the mixing angle θ = θ0 to be such that sin2 θ0 = 2 cos θ0,
giving cos θ0 = √

2 − 1. In that case, the vector potential can be represented in a
symmetric way in terms of the Pauli matrices σx and σz,

A = h̄κ ′(−exσx + eyσz) + h̄κ0eyI, (97)

where κ ′ = κ cos θ0 ≈ 0.414κ and κ0 = κ(1 − cos θ0). Although the vector potential
is constant, it cannot be eliminated via a gauge transformation, because the Cartesian
components Ax and Ay do not commute. Thus, the light-induced potential A is non-
Abelian. Such a non-Abelian gauge potential can also be induced in optical lattices
using other techniques [50].

12.7.3 Quasi-Relativistic Behavior of Cold Atoms

It is convenient to introduce the new dark states:

|D′
1〉 = 1√

2

(|D1〉 + i|D2〉
)
eiκ0y, (98)

|D′
2〉 = i√

2

(|D1〉 − i|D2〉
)
eiκ0y . (99)

The transformed two component wave-function is related to the original one according
to Ψ ′ = exp(−iκ0y) exp(−i π

4 σx)Ψ , where σx is the Pauli spin matrix. The exponen-
tial factor exp(−iκ0y) induces a shift in the origin of the momentum k → k − κ0ey .
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With the new set of dark states, we get the vector potential A′ = −h̄κ ′σ⊥, where
σ⊥ = exσx + eyσy is the spin 1

2 operator in the xy-plane. The transformed equation
of the atomic motion takes the form

ih̄
∂

∂t
Ψ ′ =

[
1

2m
(−ih̄∇ + h̄κ ′σ⊥)2 + V1

]
Ψ ′. (100)

In this way, the vector potential governing the atomic motion is proportional to the
spin operator σ⊥.

If the trapping potential V1 is constant, we can consider plane-wave solutions,

Ψ ′(r, t) = Ψkeik·r−iωkt , Ψk =
(

Ψ1k

Ψ2k

)
, (101)

where ωk is the eigen-frequency. The k-dependent spinor Ψk obeys the stationary
Schrödinger equation HkΨk = h̄ωkΨk, with the following k-dependent Hamiltonian

Hk = h̄2

2m
(k + κ ′σ⊥)2 + V1. (102)

For small wave-vectors (k � κ ′), the atomic Hamiltonian reduces to the Hamiltonian
for the 2D relativistic motion of a two-component massless particle of the Dirac type,

Hk = h̄v0k · σ⊥ + V1 + mv2
0, (103)

where v0 = h̄κ ′/m is the velocity of such a quasi-relativistic particle. The velocity v0

represents the recoil velocity corresponding to the wave-vector κ ′ and is typically of
the order of a centimeter per second.

The Hamiltonian Hk commutes with the 2D chirality operator σk = k · σ⊥/k. The
latter is characterized by the eigenstates

Ψ ±
k = 1√

2

(
1

± kx+iky

k

)
, (104)

for which σkΨ ±
k = ±Ψ ±

k . The eigenstates (104) are also eigenstates of the Hamil-
tonian Hk with eigen-frequencies ωk ≡ ω±

k . In the following, the atomic motion is
assumed to be confined in the xy-plane. The dispersion is then given by

h̄ω±
k = h̄v0

(
k2/2κ ′ ± k

) + V1 + mv2
0, (105)

where the upper (lower) sign corresponds to the upper (lower) dispersion branch. The
atomic motion in different dispersion branches is characterized by opposite chirality if
the direction k/k is fixed. For small wave-vectors (k � κ ′), the dispersion simplifies
to h̄ω±

k = ±h̄v0k + V1 + mv2
0 , where the upper (lower) sign corresponds to a linear

cone with a positive (negative) group velocity, v±
g = ±v0. Exactly the same dispersion

is featured for electrons near the Fermi level in graphene [60–64].
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12.7.4 Proposed Experiment

To observe the quasi-relativistic behavior of cold atoms, the following experimen-
tal situation has been proposed [54]. Suppose that initially an atom (or a dilute atomic
cloud) is in the internal state |3〉 with a translational motion described by a wave-
packet with a central wave-vector kin and a wave-vector spread �k � kin. The full
initial state-vector is then given by |Ψin〉 = ψ(r)eikin·r|3〉, where the envelope func-
tion ψ(r) varies slowly within the wavelength λin = 2π/kin. The cold atoms can be
set in motion using various techniques, e.g., by means of the two-photon scattering
that induces a recoil momentum h̄kin = h̄k2phot to the atoms, where k2phot is a wave-
vector of the two-photon mismatch.

Initially, all three lasers are off. Subsequently, the lasers are switched on in a coun-
terintuitive manner, switching the lasers 1 and 2 on first, followed by the laser 3. At
the beginning of this stage, the internal state |3〉 coincides with the dark state |D2〉,
so the full initial state-vector can be rewritten as |Ψin〉 = ψ(r)eikin·r|D2〉. If the laser
3 is switched on sufficiently slowly, the atom remains in the dark state |D2〉 during
the whole switch-on stage. Yet the duration of the switching on should be sufficiently
short to prevent the dynamics of the atomic center of mass at this stage. Immediately
after the lasers reach their steady state, the multicomponent wave-function reads:

Ψ =
(

0
1

)
ψ(r)eikin·r. (106)

Expressing |D2〉 as a function of |D′
1,2〉, the transformed multicomponent wave-

function takes the form

Ψ ′ = 1√
2

(−i

1

)
ψ(r)eikc ·r, (107)

where k = kin − κ0ey is the central wave-vector.
Let us now consider the subsequent atomic dynamics in the laser fields. As men-

tioned earlier in this section, to have ultra-relativistically behaving atoms, the wave-
number k should be small (k � κ) so that k is a small addition to kin = κ0ey + k. Fur-
thermore, the wave-vector spread �k � k, i.e., the width of the atomic wave-packet,
is much larger than the central wavelength. Hence, the dynamics is sensitive to the
direction of the central wave-vector k. To illustrate this we will consider two specific
cases.

(i) If k = ±key , the wave-function (107) can be represented as:

Ψ ′ = −iΨ ±
k ψ(r)e±iky , Ψ ±

k = 1√
2

(
1
i

)
. (108)
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The upper (lower) sign in k = ±key corresponds to a situation where the atom is
characterized by a positive (negative) chirality, hence being in the upper (lower) dis-
persion branch. In both cases, the atomic wave-packet propagates along the y axis
with the velocity v0 = ey h̄κ ′/m.

(ii) If the wave-vector is along the x-axis (k = kex ), the multicomponent wave-
function (107) takes the form

Ψ ′ = (
c+Ψ +

k + c−Ψ −
k

)
ψ(r)eik·r, Ψ ±

k = 1√
2

(
1

±1

)
, (109)

where c± = (−i ± 1)/2. In this case, the initial wave-packet splits into two with equal
weights (|c2±| = 1/2) and the same wave-vector k. The two wave-packets are char-
acterized by the different chiralities and thus move in opposite directions. The wave-
packet with a positive chirality (plus sign in Ψ ±

k ) belongs to the upper dispersion
branch and moves along the x-axis with a velocity v0 = ex h̄κ ′/m. On the other hand,
the wave-packet characterized by a negative chirality (minus sign in Ψ ±

k ) moves with
a velocity v0 = −ex h̄κ ′/m.

Suppose the time is sufficiently small (v0t < d) so the wave-packets of the width
d are not yet spatially separated. The internal atomic state will then undergo tem-
poral oscillations between the dark states |D2〉 and |D1〉, with a frequency equal to
ω+

k − ω−
k = 2v0k. Such an internal dynamics can be detected by switching the laser

3 off at a certain time. This transforms the dark state |D2〉 to the physical state |3〉.
Subsequently, one can measure the population of the state |3〉 for various delay times
and various wave-vectors k. The chiral nature of the atomic motion will manifest itself
in the oscillations of the population of the atomic state |3〉 if k is along the x-axis, and
the absence of such oscillations if k is along the y-axis.

Furthermore, as a consequence of the constructed Hamiltonian (103), the quasi-
relativistic atoms can show negative refraction at a potential barrier and thus exhibit
focusing by Veselago-type lenses [69,70]. Consider incident atoms that are in the up-
per dispersion branch and propagate along the y-axis with a wave-vector k = key . Let
us place a potential barrier of a height 2h̄v0k at an angle of incidence α, as shown
in Figure 12.12. Inside the barrier, the atoms are transferred to the lower dispersion
branch with kt = −k[cos(2α)ey + sin(2α)ex]. This would lead to the negative refrac-
tion of cold atoms at the barrier as shown in Figure 12.12. Thus, the potential barrier
can act as a flat lens that refocuses the atomic wave-packet.

In this way, we have shown how the atomic motion can be equivalent to the dy-
namics of ultra-relativistic (massless) two-component Dirac fermions. As a result,
the ultracold atoms can experience negative refraction and focusing by Veselago-type
lenses. In addition, the chiral nature of the atomic motion is manifested through dy-
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Figure 12.12 Negative refraction of cold atoms at a potential barrier. The incoming and outgoing
atoms are in the upper dispersion branch with a wave-vector k (solid line), whereas the atoms inside
the barrier are in a lower dispersion branch with a wave-vector kt (dashed line).

namics of the population of the internal atomic states, which is highly sensitive to the
direction of the center of mass motion.

12.8 FINAL REMARKS

In this chapter, we have considered different types of manipulation of cold atoms
by light fields. We have reviewed the mechanisms for trapping ensembles of ultracold
atoms. The optical trap formed the basis for manipulating the cold atoms where we
relied upon on the coherent nature of the ultracold sample of atoms and the intensity
of the light.

Subsequently, we have discussed a situation where the phase and the intensity of
the incident light both play a crucial role, i.e., we have considered a different kind
of optical manipulation where the laser fields are applied to induce vector and scalar
potentials for the atoms. The induced potentials have a geometric nature and depend
exclusively upon the relative intensity and relative phase of the laser beams involved
rather on their absolute intensity. The approach relies on the ability to prepare the
atoms in superpositions of the internal energy states of the atom.

The technique provides a way to optically produce an effective magnetic field act-
ing upon electrically neutral atoms. This happens if the applied laser fields have a non-
trivial topology (e.g., if they carry an orbital angular momentum along the propagation
direction [5–7,34,35]) or if the atom-light system contains more than one degenerate
dark state. The latter situation appears in the tripod configuration of the light-atom
system exhibiting two degenerate dark states. Consequently, the light-induced poten-
tials are 2 × 2 matrices, whose Cartesian components generally do not commute [52,
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54], i.e., the potentials are non-Abelian. In such a situation, nontrivial light-induced
gauge potentials can be produced, even using plane waves.

Finally, we noted that the tripod scheme of the light-matter coupling can have other
important applications, e.g., it can be used to produce solitons in atomic Bose–Einstein
condensates [71]. Using this method, it is possible to circumvent the restriction set by
the diffraction limit inherent to conventional methods, such as the phase imprinting
[24,25].
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