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ABSTRACT The dynamics of ultracold neutral atoms subject
to a non-Abelian gauge field is investigated. In particular we
analyze in detail a simple experimental scheme to achieve a con-
stant, but non-Abelian gauge field, and discuss in the frame of
this gauge field the non-Abelian Aharanov–Bohm effect. In the
last part of this paper, we discuss intrinsic non-Abelian effects
in the dynamics of cold atomic wavepackets.

PACS 03.75.Hh

1 Introduction

Gauge potentials, and gauge theories in general,
are crucial for the understanding of the fundamental forces
between subatomic particles. The simplest example of gauge
potentials is the vector potential in the theory of electromag-
netism [1], which is an example of an Abelian gauge field.
Non-Abelian situations, where the gauge potential is a matrix
whose vector components do not commute, are surprisingly
scarce in nature. Candidates so far have mainly been restricted
to molecular systems [2], which are largely approachable only
through spectroscopic means. Other systems are liquid crys-
tals, which show the required non-Abelian symmetries [3, 4].

An elegant derivation and description of the emergence of
non-Abelian gauge potentials has been presented by Wilczek
and Zee [5], who showed that in the presence of a general
adiabatic motion of a quantum system with degenerate states,
gauge potentials will appear that are traditionally only en-
countered in high-energy physics to describe the interactions
between elementary particles. Ultracold atomic clouds are
particularly promising candidates for realizing such scenar-
ios, since the access to physical parameters is, from an ex-
perimental point of view, unprecedented. Extending the ideas
of Wilczek and Zee, it was recently proposed that properly
tailored laser beams coupled to degenerated internal elec-
tronic states can be employed to induce non-Abelian gauge
fields in cold-atom experiments [6]. Alternatively, a non-
Abelian gauge potential can be constructed in an optical lat-
tice using laser-assisted state sensitive tunnelling [7]. With
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the implementation of these proposals, ultracold atoms would
offer a unique testbed for the analysis of non-trivial non-
Abelian effects on the quantum dynamics of multicomponent
wavepackets.

In this paper, we investigate the wave packet dynam-
ics of a cloud of ultracold atoms in the presence of a non-
Abelian gauge potential. In Sect. 2 we discuss how this un-
doubtedly rather exotic scenario can be envisaged in a sam-
ple of cold atoms where the internal electronic energy levels
are addressed by laser fields with a nontrivial spatial phase
and intensity distribution. This setup opens up a number of
new scenarios for ultracold gases, allowing for the study of
non-Abelian atom optics, which naturally ties together opti-
cal and magnetic effects. Remarkably, as shown in Sect. 2,
even very simple laser arrangements may induce non-trivial
cold-atom dynamics. As a first example of this non-trivial
dynamics, we discuss in Sect. 3 a possible optical tweezer
experiment including a non-Abelian flux, for which the pop-
ulation transfer between internal states crucially depends on
the path taken (non-Abelian Aharonov–Bohm effect). This
effect resembles indeed what one would expect from scat-
tering protons onto a non-Abelian flux line where the proton
can be transferred into a neutron [8]. The tweezer experiment
discussed in Sect. 3 just involves the internal-state dynamics,
without exploring the rich dynamics resulting from the in-
terplay between external and internal degrees of freedom in
non-Abelian gauge fields. Section 4 is devoted to the analy-
sis of this interplay. In particular, we show that the dynamics
of cold-atom wavepackets can be significantly affected by in-
trinsically non-Abelian effects, which are crucially dependent
on the initial momentum distribution of the wavepacket. We
consider in particular the relevant examples of wavepacket
propagation and wavepacket reflection at an atomic mirror.
Finally, we conclude in Sect. 5.

2 Laser-induced non-Abelian gauge fields

In a recent paper [6] it was shown that a non-
Abelian gauge potential can be constructed in the presence of
nontrivial light fields coupled to degenerate electronic states
of cold atoms. For this we consider atoms with multiple in-
ternal states, see Fig. 1. For a fixed position r the internal
Hamiltonian Ĥ0(r) including the laser interaction can be diag-
onalized to give a set of 4 dressed states |χn(r) 〉 with eigen-
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values εn(r), where n = 1, 2, 3, 4. The full quantum state of
the atom describing both internal and motional degrees of
freedom can then be expanded in terms of the dressed states
according to |Φ〉 = ∑4

n=1 Ψn(r) |χn(r) 〉. If there are two de-
generate dressed states and we can neglect the transitions to
the other states we obtain a coupled two level system of the
form

ih
∂

∂t
Ψ̃ =

[
1

2m
(−ih∇ − A)2 + V +Φ

]

Ψ̃ , (1)

where the 2 ×2 potentials are given by

Vn,m = εn(r) δn,m +〈χn(r)|V(r)|χm(r)〉 , (2)

An,m = ih〈χn(r) |∇χm(r) 〉 . (3)

Φn,m = h2

2m

(

〈∇χn |∇χm 〉+
2∑

k=1

〈χn |∇χk 〉〈χk|∇χm〉
)

. (4)

The reduced 2 ×2 matrix A is sometimes referred to as the
Berry connection and is related to a curvature (an effective
“magnetic” field) B as

Bi = 1

2
εikl Fkl, Fkl = ∂k Al − ∂l Ak − i

h
[Ak, Al] . (5)

Note that the term 1
2εikl [Ak, Al] = (A× A)i does not vanish in

general, since the vector components of A do not necessarily
commute. In fact, this term reflects the non-Abelian character
of the gauge potentials.

To construct a scheme of laser–atom interactions that leads
to a U(2) gauge potential we need degenerate (or nearly de-
generate) dressed states. Such a condition is fulfilled e.g.,
for the tripod system shown in Fig. 1. A truly non-Abelian
situation emerges if the matrices {Ax , Ay, Az,Φ} do not com-
mute. For this it is necessary that the off-diagonal element
ih〈χ1(r) |∇χ2(r) 〉 is non-zero. The Hamiltonian of the tripod
system reads in interaction representation as [6, 9, 10]

Ĥ0 = −h (Ω1 |0〉〈1|+Ω2 |0〉〈2|+Ω3 |0〉〈3|)+ H.c. (6)

Parameterizing the Rabi-frequencies Ωµ with angle and
phase variables according to Ω1 = Ω sin θ cos ϕ eiS1 ,

FIGURE 1 The tripod coupling scheme forms two degenerate dark states
with a non-adiabatic coupling. The three laser beams Ωi i = 1, 2, 3 are ar-
ranged as two counter propagating beams (Ω1 and Ω2) and one beam (Ω3)

(of double intensity) in the perpendicular direction

Ω2 = Ω sin θ sin ϕ eiS2 , Ω3 = Ω cos θ eiS3 , where Ω =√
|Ω1|2 +|Ω2|2 +|Ω3|2, the adiabatic dark states read

|D1〉 = sin ϕ eiS31 |1〉− cosϕ eiS32|2〉 , (7)

|D2〉 = cos θ cos ϕ eiS31 |1〉+ cos θ sin ϕ eiS32 |2〉− sin θ|3〉 ,

(8)

with Sij = Si − Sj .
The gauge potential depends on the gradient of the dark

states:

A11 = h
(
cos2 ϕ∇S23 + sin2 ϕ∇S13

)
,

A12 = h cos θ

(
1

2
sin(2ϕ)∇S12 − i∇ϕ

)

,

A22 = h cos2 θ
(
cos2 ϕ∇S13 + sin2 ϕ∇S23

)
(9)

and

Φ11 = h2

2m
sin2 θ

(
1

4
sin2(2ϕ)(∇S12)

2 + (∇ϕ)2

)

Φ12 = h2

2 m
sin θ

(
1

2
sin(2ϕ)∇S12 − i∇ϕ

)

×
(

1

2
sin(2θ)(cos2 ϕ∇S13 + sin2 ϕ∇S23)− i∇θ

)

Φ22 = h2

2 m

×
(

1

4
sin2(2θ)

(
cos2 ϕ∇S13 + sin2 ϕ∇S23

)2 + (∇θ)2

)

.

(10)

This provides a remarkable versatility. Recent advances in
shaping both the phase and the intensity of light beams make
it possible to choose practically any shape of the gauge po-
tential provided the corresponding light field obeys Maxwell’s
equations. This is certainly the case in a two-dimensional
geometry, but light beams can also be tailored [11, 12] in three
dimensions. In the Abelian case, a non-zero effective mag-
netic field is obtained if there is a relative angular momentum
between the two light beams and the intensity ratio is spatially
dependent [13–15].

Surprisingly, the generation of a non-Abelian gauge field
does not require any elaborate shaping of the three laser beams
employed. This is indeed the case if we choose the configura-
tion shown in Fig. 1. Three plane-wave laser beams are used.
Two lasers of equal intensity are counter-propagating in the
x-direction with wave vector κ while the third one (of dou-
ble intensity) propagates in the y-direction also with a wave
vector κ. With this arrangement, ϕ = π/4, and θ = π/4 in
the expressions above. The resulting vector potential is of the
form:

A = hκ

( −ey ex/
√

2
ex/

√
2 −ey/2

)

, (11)

whereas

V +Φ =
(

V1 + h2κ2

4m 0

0 (V1 + V3)/2 + h2κ2

8m

)

. (12)
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By choosing the laser detuning such that V3 − V1 = h2κ2/4m
we obtain a scalar potential proportional to the unit matrix,
V +Φ = V1I. Therefore the scalar potential can be safely neg-
lected as far as the wavepacket dynamics is concerned.

3 Non-Abelian Aharonov–Bohm effect

In [7], it was proposed that non-Abelian gauge
fields created in lattices can be employed to construct non-
Abelian atom interferometers. However, the read-out of any
non-Abelian atom interferometer may be crucially handi-
capped by the non-trivial interplay between external and in-
ternal degrees of freedom in the wavepacket dynamics of
atoms in non-Abelian gauge fields (see Sect. 4). However, this
coupling between external and internal dynamics may be pre-
vented by considering atoms trapped in mobile optical tweez-
ers. If the tweezer potential is strong enough, the system may
be investigated in the so-called single-mode approximation,
in which both components share exactly the same center-of-
mass wavepacket. As a consequence, the non-Abelian gauge
field will just affect the internal dynamics of the atoms. In
the following we envisage an experiment in which a cloud
of ultracold atoms is trapped by an optical tweezer under the
conditions discussed above. When moving in the xy plane,
the atoms experience the gauge potential given by (11). We
consider the case where the atoms are moved in the x and y
direction (Fig. 2) along two different paths: (clock-wise, L)
from (0, 0) to (0, s) and then from (0, s) to (s, s); (anti clock-
wise, R) from (0, 0) to (s, 0) and then from (s, 0) to (s, s). The
initial state of the atom is assumed to be a linear superposition
of both dark states:

|Ψ(0) 〉 = cos(η)
∣
∣D1〉+ eiϕ sin(η)

∣
∣ D2〉 (13)

where η is the mixing angle, and ϕ is a relative phase. The
dynamics of the two level system obviously depends on the
initial state, but more importantly, the final populations of the
two dark states depend on which path is taken. After perform-
ing the clockwise path the atoms are in the state

|ΨL 〉 = ei Âx s/h ei Ây s/h |Ψ(0) 〉 = cL
1 |D1 〉+ cL

2 |D2〉 (14)

whereas after performing the anti clockwise path we have:

|ΨR 〉 = ei Âys/h ei Âx s/h |Ψ(0)〉 = cR
1 |D1〉+ cR

2 |D2 〉 . (15)

FIGURE 2 The envisaged experiment. An optical tweezer moves the cloud
of atoms along the left (L) path or the right (R) path. The final dark state
population will depend on which path is taken

Using the vector potential given by (11), a straight forward
calculation yields

cL
1 = e−iκs cos

(
κs√

2

)

cos(η)+ iei(ϕ−κs/2) sin
(

κs√
2

)

sin(η)

(16)

cL
2 = i e−iκs sin

(
κs√

2

)

cos(η)+ ei(ϕ−κs/2) cos

(
κs√

2

)

sin(η)

(17)

cR
1 = e−iκs

(

cos

(
κs√

2

)

cos(η)+ ieiϕ sin

(
κs√

2

)

sin(η)

)

(18)

cR
2 = e−iκs/2

(

i sin
(

κs√
2

)

cos(η)+ eiϕ cos(
κs√

2
) sin(η)

)

.

(19)

Figure 3 shows the final population difference between the
two dark states for both paths as a function of the path length
κs. It becomes clear that the outcome of choosing the L or R
path can be very different. We stress that this effect is not di-
rectly linked to the appearance of off-diagonal terms in the

FIGURE 3 The difference in the populations in the two dark states depends
on which path is taken. (a) shows the total difference

∣
∣cL

1

∣
∣2 − ∣

∣cL
2

∣
∣2

as a func-

tion of the path length κσ , whereas in (b) we depict
∣
∣cR

1

∣
∣2 − ∣

∣cR
2

∣
∣2. We assume

as initial condition η = π/4, and ϕ = π/2
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corresponding matrices of the vector potential, but rather it is
inherently due to the non-Abelian character of the matrices Âx

and Ây. This effect is remarkably similar to the scattering of
protons onto a non-Abelian flux line, where a conversion of
the proton into a neutron is anticipated [8]. A more complete
picture is obtained by defining the pseudo spin S(cL,R

1 , cL,R
2 )

as

Sx = 1

2i

(
c1c2

∗ − c1
∗c2

)
(20)

Sy = 1

2

(
c1c2

∗ + c1
∗c2

)
(21)

Sz = 1

2

(|c1|2 −|c2|2
)

. (22)

With the pseudo spin representation we can follow the rotation
of the spin vector as a function of the position along the dif-
ferent paths. This is shown in Fig. 4 where the spin vector is
seen to follow circular paths whose orientation changes when
the direction of the atoms in real space changes. The role of the
initial state is now immediately clear. Only a superposition be-
tween |D1 〉 and |D2 〉 will result in a different final state of S
as a function of taking either the L or R path. Note in contrast
to the previously considered laser-driven population transfer
for tripod atoms [9, 10] here the non-Abelian dynamics is due

FIGURE 4 The pseudo spin trajec-
tories depend on the initial state and
which path is taken: (a) Left path
with η = π/8, ϕ = 0, (b) Right path
with η = π/8, ϕ = 0, (c) Left path
with η = π/4, ϕ = π/4, (d) Right
path with η = π/4, ϕ = π/4. The
spheres in each figure indicate the
initial state (I) and the final state
(F). The black circle is always the
path first embarked on. In all cases
we have chosen κs = 34.5. This will
cause the spin vector to traverse the
circular paths several times in each
plane

to the time-dependence of the phases of light fields “seen” by
moving atoms rather than due to the time-dependence of the
intensities of laser pulses.

4 Wavepackets in free space

The non-Abelian Aharonov–Bohm effect is a strik-
ing example where the internal dynamics of a two-level sys-
tem is highly nontrivial. A question not often addressed in
the context of non-Abelian systems is the dynamics of a wave
packet. This situation is clearly more complex compared to
the previous non-Abelian Aharonov–Bohm scenario where an
adiabatic motion with respect to center-of-mass excitations
and shape oscillations was assumed. We now have to fully
take into account the coupled internal and external degrees of
freedom.

In the following we discuss the evolution of a cold atomic
wavepacket in the presence of a non-Abelian gauge field
Â = { Âx, Ây, 0}. We consider that the atomic gas is suffi-
ciently dilute, and hence in this paper we neglect the ef-
fects of the interatomic interactions. We restrict ourselves
to the case in which both matrices Âx and Ây are space-
independent. In order to simplify the discussion below, we
consider Âj = hκM̂j , with j = x, y, where κ has units of
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FIGURE 5 Evolution of the center-of-mass coordinate 〈x〉 in units of√
2∆p/h, as a function of τ = ∆pκt/

√
2m, for Âx = hκσ̂x , and Ây = hκσ̂z ,

η = π/4, ϕ = 0. The dashed line is the function f(τ) = τ . For short times, the
nonlinear evolution of the center-of-mass becomes clear

wavenumber, and M̂2
j = 1̂. We assume as well that the scalar

potential may be considered as a multiple of the identity ma-
trix (as discussed above). Removing unimportant global en-
ergy shifts, the Hamiltonian for a free particle becomes

Ĥ = − h2

2m
∇21̂− i

h2κ

m

(

M̂x
∂

∂x
+ M̂y

∂

∂y

)

. (23)

The atomic wavepacket can be represented by a spinorial
wavefunction of the form

Ψ (r, t) =
∫

dpeip·r/hΦ(p, t) . (24)

Thus, we have

ĤΨ(r, t) =
∫

dpĤp(p)Φ(p, t)eip·r/h , (25)

where

Ĥp(p) ≡ p2

2m
1̂+ hκ

m

(
M̂x px + M̂y py

)
. (26)

Hence, for any given p the equation of motion ihΦ̇(p, t) =
Ĥp(p)Φ(p, t) yields Φ(p, t) = exp

[
iĤp(p)t/h

]
Φ(p, t = 0).

This evolution can be analytically obtained after diagonaliz-
ing the matrix Ĥp(p) for every p.

We are interested in comparing the wavepacket evolution
in the presence of Abelian and non-Abelian fields. If the fields
are Abelian, i.e.,

[
M̂x , M̂y

]
= 0, then we may find a common

eigenbasis for both operators, in which M̂j = diag{λ+
j , λ−

j }.
As a consequence, the eigenvectors ξ± of Ĥp(p) are indepen-
dent of p, and the total wavefunction is at any time a linear
combination of the form Φ(r, t) = Φ+(r, t)ξ+ +Φ−(r, t)ξ−,
where

Φ± (r, t) = e−iϕ±
∫

dpe−i p2t
2mh ei p·r/hΨ±

(
p −η±, t = 0

)
,

(27)

with η± = hκ(λ±
x , λ±

y ), and ϕ± = (η±)
2t

2mh +η± · r/h. Hence, the
wavepacket evolution can be considered as an independent
scalar evolution for the wavepackets in each component. In
particular, it may be easily shown that the center-of-mass pos-
ition of the wavepacket Φ±(r, t) grows linearly in time with
a velocity

(〈p〉+η±)
/m. Hence, the two wavepackets tend to

separate during the time evolution.
The picture changes completely if

[
M̂x , M̂y

]
�= 0. In

this case the eigenvectors of Ĥp(p) do depend on the mo-
mentum p considered, and hence the time-evolution of
the wavepacket depends in a non-trivial way on the mo-
mentum distribution of the original wavepacket. We ana-
lyze in particular the center-of-mass (CM) motion of the
wavepacket. The x-coordinate of the CM after a given time t
is better calculated in the momentum representation: 〈x〉t =
〈ih∂/∂px〉t = 〈eiĤt/h ih∂/∂px e−iĤt/h〉0, where we have em-
ployed the Heisenberg picture. One can then easily obtain
that:

〈x〉t = 〈x〉0 + t

m
〈px〉0 +

〈

eiÔ ih
∂

∂px

[
e−iÔ

]〉

0
, (28)

where Ô = (κt/m)(M̂x px + M̂y py). The last term in the pre-
vious equation leads to non-trivial effects, which are easily
illustrated by considering the particular example M̂x = σ̂x ,
M̂y = σ̂z:

〈x〉t = 〈x〉0 + t

m
〈px〉0 + hκt

m

{〈c2σ̂x + scσ̂z〉0

+
〈

sin 2q

2q
s2σ̂x − sin 2q

2q
scσ̂z − sin2 q

q
sσ̂y

〉

0

}

, (29)

where c = px/p, s = py/p, q = κt p/m, and p2 = p2
x + p2

y. Let
us consider an initial Gaussian wavepacket

Ψ (r) = Ψ(r)
(

cos ηeiϕ/2

sin ηe−iϕ/2

)

,

where Ψ(r) is a Gaussian centered in x = y = 0 and with the
Fourier transform Φ(p) ∼ exp(−p2/∆p2). Then:

〈x〉τ = h√
2∆p

τ

[

1 +
√

π

2

e−τ2

τ
erfi(τ)

]

sin 2η cos ϕ , (30)

where erfi is the imaginary error function, and τ = ∆pκ√
2m

t.
Note, that contrary to the Abelian case, we have two in-
herently non-Abelian effects. On one hand, the evolution of
the center-of-mass motion is in general a non-trivial non-
linear function of time. However, for τ 	 1, a linear behav-
ior 〈x〉τ 
 h√

2∆p
τ is recovered, i.e., there is a characteristical

transient stage where an inherently non-Abelian-induced non-
linear CM evolution occurs (see Fig. 5). On the other hand,
contrary to the Abelian (or scalar) evolution, the evolution of
the CM motion depends on the initial width ∆p of the mo-
mentum distribution. This effect can be traced back to the
dependence of the eigenstates ξ± on p.

A third effect can be observed if we consider a Gaussian
wavepacket with an initial 〈py〉0 �= 0. In this case, if 〈px〉0 = 0,
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one obtains:

〈x〉t = hκ

t

[

1 −〈
(

sin 2q

2q
−1

)
p2

y

p2
〉0

]

sin 2η cos ϕ . (31)

Hence the x-dynamics depends on the momentum distribution
in the y-direction, contrary to the case of Abelian evolution.

Note that the details of the momentum distribution play
a very important role in the wavepacket evolution in non-
Abelian gauge fields. Obviously, if |〈p〉| 	 κ the non-Abelian
effects become negligible. But even if |〈p〉|� κ, an Abelian
evolution is recovered if ∆p � κ, i.e., the non-Abelian ef-
fects are clearer for wavepackets which at t = 0 are localized
in space with uncertainties � 1/κ. The latter effect may be
explained, because if ∆p � hκ then Ĥp may be (to a good
approximation) simultaneously diagonalized for all relevant
values of p in the distribution, and hence again two separated
wavepackets as those for the Abelian evolution are recovered.
In addition, it is important to realize that the particular evo-
lution also depends on the initial spinor configuration of the
wavepacket (although this dependence is not inherently non-
Abelian since it also occurs in the Abelian evolution).

Figure 6 shows the results of our numerical simulations
of the wavepacket evolution for the gauge field discussed

FIGURE 6 Total density after t = 10(2m/hκ2), for (a) ∆p = 0.2hκ and
(b) ∆p = 0.6hκ. At t = 0, η = 0, ϕ = 0 and 〈p〉 = 0. In the strong non-
Abelian case, the wave packet expands asymmetrically. In an Abelian situ-
ation with a radially symmetric effective magnetic field, the expansion would
be symmetric

above. Note that (contrary to the usual Abelian (or scalar)
evolution), there is a stark difference in the evolution of the
shape of the wavepacket for different values of the momentum
spreading ∆p/κ.

The non-Abelian character of the gauge field also leads
to interesting effects in the reflection of atomic wavepackets.
Ultracold atomic wavepackets can be reflected at laser or
magnetic mirrors [16–18]. For typical situations, the re-
flection of the center-of-mass of the wavepacket can be
considered as specular, i.e., the angle of reflection of the
wavepacket with the normal vector of the mirror is exactly
minus the angle of incidence of the original wavepacket.
Mathematically, the reflection can be considered as the su-
perposition (in absence of mirror) of the original wavepacket
and an image wavepacket travelling with opposite momen-
tum and with a dephase π. For the case of wavepackets in
non-Abelian gauge fields, the effect of the mirror cannot
be mimicked by this image picture (since contrary to the
scalar case, a sinusoidal solution is not an eigenstate of Ĥp).
As a consequence, the intuitive specular-reflection picture
must be revised in the case of wavepackets in non-Abelian
gauge fields, even for the cases discussed below in which
both internal components experience exactly the same mirror
potential.

FIGURE 7 The reflection dynamics of a non-Abelian wave packet com-
pared to a zero gauge field situation. The reflection takes place at x = −7
where a steep potential is envisaged (gray area). The parameters were cho-
sen to be κ = 1, ∆p = 1 and initial momentum p0 = − 8√

2
(x̂+ ŷ). (a) The

initial density distribution of the atomic cloud. The initial momentum kick
is indicated by the arrow. (b) The non-Abelian path of the center-of-mass,
the inner (green) path, for the reflection is clearly different from the stan-
dard wave packet reflection with κ = 0 (red outer path). (c) A snapshot of
the wave packet at the time corresponding to the mirror image with respect to
the x-axis. For κ = 0, the reflected angle is the same as the incident angle. (d)
A snapshot of the wave packet at the same time as in (c). For the non-Abelian
case, the reflection dynamics is highly non-trivial where the center-of-mass
path no longer is described by an incident angle equal to the reflected angle
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FIGURE 8 The reflected angle plus the incident angle, θr + θi , as a function
of the incident angle θi . The deviation from the standard case, θr + θi = 0 for
a non-Abelian system is clearly seen. The parameters were chosen to be κ =
1, ∆p = 1 and initial momentum |p0| = 8

Figure 7 shows the reflection of the wavepacket for
∆p = hκ (i.e., for momentum spreadings for which, as dis-
cussed above, the non-Abelian effects are significant). It is
clear from the figures that the non-Abelian dynamics after the
reflection is certainly not trivial. Remarkably, the center-of-
mass position does not show in general a specular reflection.
Figure 8 shows the sum of the angle of incidence and that
of reflection for different incident angles in the non-Abelian
regime. For usual scalar (or Abelian) evolution, this sum
equals zero. However, due to inherently non-Abelian effects,
this sum is significantly different from zero. Moreover, con-
trary to the usual scalar (or Abelian) evolution, the angle of
reflection crucially depends on the absolute value of the in-
coming momentum, and on the momentum spreading of the
wavepacket.

5 Conclusions

Summarizing, gauge fields may be generated using
appropriate laser arrangements with atoms with degenerate
internal states. Using a very simple laser configuration, spa-
tially homogeneous but non-Abelian vector potentials can
be generated. In spite of this spatial homogeneity, the non-
Abelian character of the vector potentials can lead to a sur-
prisingly rich physics for the wavepacket dynamics of ul-
tracold gases. On one hand, the free expansion dynamics of
wavepackets crucially differs from what would be expected in
scalar (or Abelian) cases. In the latter, the wavepacket center-
of-mass follows a linear dependence in time. In the presence
of non-Abelian fields, the wavepacket presents a non-linear

time dependence during a transient time. In addition, and
again contrary to the scalar or Abelian case, the center-of-
mass dynamics crucially depends on the momentum spread-
ing of the wavepacket. Moreover, in spite of the apparent sep-
arability of the corresponding Hamiltonian, the non-Abelian
gauge fields introduce a dependence of the dynamics in differ-
ent spatial directions. The wavepacket reflection off an atomic
mirror is also significantly distorted by the non-Abelian gauge
field. In particular, the reflection of the center-of-mass ceases
in general to be specular, and the angle of reflection depends
on the incoming velocity and the initial momentum spreading,
which is different from the standard scalar case. The com-
plex interplay between external and internal dynamics should
make the read-out of non-Abelian interferometers difficult.
However, an experiment performed with optical tweezers may
allow for the analysis of non-Abelian effects in the internal dy-
namics of the atoms. In particular, we have shown that such an
arrangement can be employed for the analysis of the equiva-
lent of the non-Abelian Aharanov–Bohm effect, where the
final internal state of the atoms crucially depends on the par-
ticular path chosen.
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