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Explicit algebraic expressions are derived and analyzed for the common charge-bond order

matrix and for the related representation matrix of non-canonical molecular orbitals (NCMOs)

of substituted alternant hydrocarbons (AHs) in terms of entire blocks of the common Hückel

Hamiltonian matrix of parent AHs and thereby of adjacency matrices of graphs of their C-skele-

tons. Rules governing the effects of substituents upon electronic structures of hydrocarbons are

established and supplement the classical results describing the electronic structures of AHs and

of their perturbed analogues. In particular, two additive components are revealed within the ef-

fect of substituent upon an AH, namely the charge transfer between the above-mentioned sub-

systems and the intersubset polarization inside the AH [cf. the well-known partition of the ba-

sis set of 2pz AOs of carbon atoms of AHs into two subsets]. The principal rule governing the

first component involves division of the total transferred population equally between the two

subsets of AOs of the AH. The intersubset polarization is shown to be governed by the second

order analogue of the rule of alternating polarity. Finally, a single principal electron-accepting

(donating) orbital is revealed among NCMOs of the parent AH for systems containing an elec-

tron-donating (accepting) substituent, viz., the initially-vacant (occupied) NCMO attached to

the site of substitution is shown to play this role. The results obtained are illustrated by substi-

tuted benzenes as examples.
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INTRODUCTION

The well-known rules representing common properties

of electronic structures of conjugated alternant hydrocar-

bons (AHs) are among the principal classical results of

quantum chemistry.1–7 These rules describe constitutions

of the usual (canonical) molecular orbitals (MOs) along

with relative positions of their one-electron energies,7 as

well as the structures of the respective charge-bond or-

der (CBO) matrices5,8 in the framework of the simple

Hückel model. The Hamiltonian matrices of this model

have been related in addition to adjacency matrices of

molecular graphs describing the C-skeletons of AHs.8,9

As a result, a new interpretation of the same rules be-

came possible in terms of molecular topology. More-

over, validity of some of these results beyond the limits

of the simple Hückel model has been corroborated.7,10

Finally, establishment of common properties of non-ca-

nonical MOs (NCMOs) of AHs11 may be mentioned

here as a recent achievement in this field.

The so-called perturbed AHs (PAHs)12–14 form an-

other class of compounds whose electronic structures are

expressible in an analogous algebraic form. The famous

rule of alternating polarity1–4,6,13–16 for perturbations of a

single Coulomb parameter may be mentioned among the

most outstanding examples. This rule represents charge

redistributions in PAHs vs. those of the parent AHs and

also has a graph-theoretical interpretation.15 Furthermore,



the algebraic results for PAHs, concerning alterations in

total energies due to perturbation, form the basis of the

popular PMO theory of chemical reactivity.12 Rules gov-

erning the reshaping pattern of NCMOs of AHs under

the influence of various types of perturbation16 have also

been established recently along with those describing the

second order effects of perturbation.17

On the whole, rules of the above-mentioned type

serve as a tool for representing the most essential pecu-

liarities of electronic structures of a given class of mole-

cules, as well as for comparison of two types of com-

pounds (e.g., AHs and PAHs) with respect to both simi-

larity and dissimilarity of their electronic structures.

Moreover, a certain powerful and fruitful approach of

quantum chemistry is likely to underlie these rules,

which is able to yield new results. The non-trivial exam-

ples of similar electronic structures revealed recently

among compounds of seemingly different chemical

constitution17 serve to illustrate the above anticipation.

That is why extension of the same approach to other

types of molecules is an important task.

This paper addresses the derivatives of AHs con-

taining electron-donating and accepting substituents,

further referred to as substituted AHs (SAHs). Existence

of common rules governing the influence of substituents

upon AO populations inside the parent AHs may be

foreseen on the basis of both numerical quantum-chemi-

cal calculations of particular molecules6 and experimen-

tal facts. Among the latter, the structures of products of

the subsequent electrophilic substitution of SAHs18–21

may be mentioned in the first place. Indeed, an elec-

tron-donating substituent is known to favor the formation

of ortho- and para- disubstituted molecules as a result of

an electrophilic attack upon the respective substituted

benzene, whereas the electron-accepting substituents pro-

vide for meta orientation of the reagent. Thus, we will

look for rules governing the formation of CBO matrices

of SAHs.

The CBO matrices of molecules are known to be al-

ternatively obtainable directly without invoking the ca-

nonical MOs (CMOs).22 To this end, the commutation

equation for the respective one-electron density matrix

should be solved. Moreover, this equation was shown to

be closely related23 to another fundamental non-canoni-

cal one-electron problem, namely to the block-diagona-

lization problem for the Hamiltonian matrix resulting

from the Brillouin theorem and determining the relevant

NCMOs.23–29,31 Accordingly, interrelations have been es-

tablished between CBO matrices and the respective

NCMO representation matrices for various types of mol-

ecules.11,16,23,27,30 Charge redistributions then proved to

be interpretable in terms of specific reshapings of NCMOs

and/or in terms of changes in delocalization. Thus, rules

governing the formation of CBO matrices of SAHs (if

feasible) are also likely to be accompanied by certain

common properties of the relevant NCMOs. Establish-

ing these properties is also among the aims of the pres-

ent study.

Both the commutation equation and the block-dia-

gonalization problem were shown to be solvable in terms

of entire blocks (submatrices) of the initial Hamiltonian

matrix.11,16,23,27–29,31 On this basis, we expect to derive

the expressions for the common CBO matrix and for the

NCMO representation matrix of SAHs in terms of entire

blocks of the common adjacency matrix of molecular

graphs referring to C-skeletons of the parent AHs. Inas-

much as the very concept of the substituent implies a

sufficiently weak influence of the latter upon the parent

hydrocarbon,6 we are about to confine ourselves to a

perturbative treatment of the electron-donating and ac-

cepting effects in SAHs. In this connection, we will look

for CBO matrices of SAHs and for the relevant matrices

of NCMOs in the form of power series. Derivation of

the series is based on the application of the so-called non-

commutative Rayleigh-Schrödinger perturbation theory

(NCRSPT).23,31,32

The paper starts with a methodological section de-

voted to constructing initial Hamiltonian matrices of

SAHs and to the principal scheme of the approach ap-

plied. Thereupon, general expressions for CBO matrices

and for NCMO representation matrices of SAHs are ex-

hibited and analyzed. A certain approximation is then

suggested that allows the above-mentioned expressions

to be considerably simplified. Finally, the results are il-

lustrated by considering substituted benzenes as exam-

ples.

METHODOLOGY

Let us start with initial Hamiltonian matrices of AHs and

of their derivatives. In the simple Hückel model, the ba-

sis set {c} of any AH consisting of 2pz AOs of carbon

atoms is known to be divisible into two subsets {c*}

and {c°}, so that the intrasubset resonance parameters

take zero values.5,7–9,33 Given that the Coulomb parame-

ters (a) are additionally assumed to be uniform and the

equality a = 0 is accepted for convenience, the model

Hamiltonian matrices of AHs acquire a common form

containing zero submatrices (blocks) in diagonal posi-

tions and non-zero blocks in off-diagonal positions, the

latter containing the intersubset resonance parameters as

exhibited below in Eqs. (1) and (2).

An electron-donating substituent will be represented

by a single initially-occupied orbital j(+)d described by a

certain one-electron energy g. For reasons discussed be-

low, the site of the substituent will be assumed to coin-

cide with an orbital of the subset ��°� e.g., with c1°. The

resonance parameter d representing the interaction be-

tween orbitals j(+)d and c1° is supposed to take a suffi-

ciently small value (vs. the remaining parameters) so
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that it may be included into the first order Hamiltonian

matrix. As a result, the total Hamiltonian matrix of the

relevant SAHs takes the form:

Hd = Hd(0) + Hd(1) =

g 0 0

0 0 B

0 B 0+

+

0 0 d

0 0 0

d 0 0+

. (1)

The subscript d here and below refers to systems

containing an electron-donating substituent, whilst (0)

and (1) are subscripts representing the zero and first or-

der matrices, respectively. The relative order of basis

orbitals is chosen to coincide with j(+)d, {c*} and {c°}

when constructing the Hamiltonian matrix Hd. Accord-

ingly, the submatrices B and B+ contain the intersubset

resonance parameters inside the parent AH [The super-

script + here and below represents the Hermitian-conju-

gate (transposed) matrix]. Non-zero elements Bij coincide

with resonance parameters referring to the neighboring

pairs of AOs. The mean value of these parameters (b)

will serve as a (negative) energy unit in our study, i.e.,

the equality b = 1 will be accepted. Under this condition,

the submatrices B and B+ coincide with those of adja-

cency matrices (AMs) of graphs describing the C-skele-

ton of the parent AH.8,9 The one-electron energy g will

be assumed to take a positive value in the above-speci-

fied negative energy units. Finally, d is a row-matrix

containing a single non-zero element in its first position,

i.e., dd1 = d.

For the acceptor-containing SAHs, the substituent

will be accordingly represented by a single initially-va-

cant orbital j(–)a characterized by the one-electron en-

ergy –m where m > 0. As opposed to the above-discussed

case, the site of the substituent will be assumed to coin-

cide with the orbital c1* belonging to the subset {c*}.

The resonance parameter representing the interaction be-

tween orbitals j(–)a and c1* will be denoted by n. Instead

of Eq. (1), we then obtain:

Ha = Ha(0) + Ha(1) =

0 B 0

B 0 0

0 0 –

+

m

+

0 0 a

0 0 0

a 0+ 0

, (2)

where the subscript a refers to the acceptor-containing

SAHs. The order of basis orbitals is chosen now to coin-

cide with {c*}, {c°} and j(–)a, and a is a column-matrix

containing a single non-zero element a1a = n.

Let us dwell now on the principal requirements un-

derlying the NCRSPT.23,31,32 The non-canonical one-elec-

tron problems are usually formulated in terms of two

subsets of basis orbitals.24–29 Thus, let us confine oursel-

ves to an analogous particular case of the NCRSPT. The

initial basis set of the system(s) under study is then as-

sumed to be divided into two subsets so that the inter-

subset interactions (resonance parameters) take up small

values compared to the intersubset energy gap. More-

over, these subsets are supposed to consist of the initial-

ly-occupied basis orbitals (IOBOs) and of the initially-

vacant ones (IVBOs). This implies the total Hamiltonian

matrix H
v

to contain a block-diagonal zero order member

H
v

(0) and the first order member H
v

(1) as follows:

H
v

= H
v

(0) + H
v

(1) =
E 0

0 E
1

2− +
S V

V X
(1) (1)

(1)
+

(1)
, (3)

where submatrices E1 + S(1) and –E2 + X(1) correspond

to IOBOs and IVBOs, respectively, and V(1) represents

the intersubset interaction. The minus sign in front of E2

is introduced for convenience. For Hamiltonian matrices

of this particular constitution, both the block-diagonali-

zation problem determining the NCMO representation

matrix T and the commutation equation for the relevant

CBO matrix P
v

have been solved in the form of interre-

lated power series.23 Members of these series, in turn,

are expressed in terms of certain principal matrices G(k)

determined by the matrix equations:

E1G(k) + G(k)E2 + V(k) = 0 , (4)

where k here and below stands for the order parameter.

Matrix V(1) coincides with the respective submatrix of the

Hamiltonian matrix of Eq. (3), whilst other members of

the series of matrices V(k) corresponding to k > 1 can be

represented in terms of submatrices of lower orders, e.g.:

V(2) = S(1)G(1) – G(1)X(1) . (5)

It is evident that our initial Hamiltonian matrices for

SAHs shown in Eqs. (1) and (2) do not comply with the

requirements of the NCRSPT. Nevertheless, the matrices

Hd and Ha may be transformed into the form shown in

Eq. (3) using the following unitary matrices:

Cd =
1 0

0 C
, Ca =

C 0

0 1
(6)

containing a common unitary submatrix C. The latter

represents the block-diagonalization transformation for

the common Hamiltonian matrix of the parent AHs and

determines their non-canonical MOs.11 Matrix C has

been alternatively expressed as follows:

C =
1

2

I RB

B R –I+ , C =
1

2

I BQ

QB –I+ . (7)

The expressions for submatrices R and Q of Eq. (7) take

the form:

R = (BB+)–1/2 , Q = (B+B)–1/2 , (8)

I here and below stands for unit matrices and

RB = BQ. (9)

Moreover, the unitarity condition for the matrix yields

the relations:

RBB+R = QB+BQ = BQQB+ = B+RRB = I. (10)
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In terms of designations of Eq. (3), submatrices of

the total transformed Hamiltonian matrix C d
+ Hd Cd take

the form:

Ed1 =
g 0

0 E( )+
, Ed2 = E(–) ,

Sd(1) =
1

2

0 dQB

BQd 0

+

+ , (11)

Vd(1) =
1

2

−d

0
, Xd(1) = 0 ,

where E(+) and E(–) are the following submatrices:

E(+) = R–1 = (BB+)1/2 , E(–) = Q–1 = (B+B)1/2 , (12)

coinciding with the so-called eigenblocks of the Hamil-

tonian matrix of the parent AHs.11

For the acceptor-containing systems, we accordingly

obtain:

Ea1 = E(+) , Ea2 =
E 0

0
( )−

m
, Sa(1) = 0 ,

Va(1) =
1

2
0 a , Xa(1) =

1

2

0 QB a

a BQ+

+

0
. (13)

Transformability of our initial Hamiltonian matrices

of Eqs. (1) and (2) into the form shown in Eq. (3) im-

plies a straightforward applicability to SAHs of the

power series of the NCRSPT in the basis of NCMOs of

the parent AHs. Thus, the problem actually resolves it-

self into analysis and solution of the relevant matrix

equations for matrices Gd(k) and Ga(k) following from Eq.

(4) after substituting Eqs. (11) and (13), respectively.

Thereupon, we have to construct the respective CBO

matrices P
v

d and P
v

a as well as the NCMO representation

matrices Td and Ta as described previously23,31,32 and,

subsequently, go back to the basis of 2pz AOs {c} again.

To the latter end, we invoke the respective inverse trans-

formations for CBO matrices, viz.,

Pd = CdP
v

dCd
+ , Pa = CaP

v

aCa
+ , (14)

as well as products of respective two transformation ma-

trices for the final NCMO representation matrices Ud

and Ua as follows:

Ud = CdTd , Ua = CaTa . (15)

It is evident that relations of Eqs. (14) and (15) are valid

also for separate corrections of matrices involved there.

Expressions for Charge-Bond Order Matrices and

for NCMOs

Let us start with the matrix equations of Eq. (4) deter-

mining the principal matrices G(k). Inasmuch as E1 and

E2 are square matrices, constitution of the matrix G(k)

coincides with that of V(k). For donor-containing sys-

tems, the matrix Vd(1) is shown in Eq. (11) and contains

the row-matrix – (1/ 2)d and a square zero matrix.

Thus, let us look for the matrix Gd(1) of the form:

Gd(1) =
g

G
d(1)

d(1)'
, (16)

where gd(1) is a row-matrix of respective dimensions co-

inciding with that of the submatrix d and Gd( )' 1 is a cer-

tain square matrix. Substituting Eqs. (11), (12) and (16)

into Eq. (4) yields the following equation for the

row-matrix gd(1):

ggd(1) + gd(1)Q–1 –
1

2
d = 0 , (17)

and a zero square matrix for Gd( )' 1 (Note that matrix

equations like that of Eq. (4) yield zero solutions if the

respective G(k) – free term, i.e., V(k), turns to zero.)23,29,31

After multiplying the above-obtained equation by Q
from the right-hand side, we obtain an algebraic solution

of the form:

gd(1) =
1

2
dQ(I + g Q)–1 . (18)

To determine the second order matrix Gd(2), the form

analogous to that shown in Eq. (16) should be used. Fur-

thermore, Eqs. (11) and (16) should be invoked for con-

structing the matrix Vd(2) in accordance with Eq. (5). As

a result, the row-matrix gd(2) coincides with a zero

row-matrix, whilst the square submatrix Gd( )' 2 of the ma-

trix Gd(2) is determined by the matrix equation:

Gd( )' 2 Q + RGd( )' 2 +
1

2
RBQd+ gd(1)Q = 0 . (19)

For the acceptor-containing systems, the matrices

Ga(k) of the form:

Ga(k) = G ga a( ) ( )' k k (20)

are sought, where ga(k) is a column-matrix referring to

the column (1/ 2)a of the matrix Va(1) of Eq. (13). In-

stead of Eqs. (18) and (19), we then obtain:

ga(1) = –
1

2
(I + mR)–1Ra (21)

and

Gd( )' 2 Q + RGd( )' 2 –
1

2
Rga(1)a+BQ2 = 0 (22)

respectively, whilst Ga( )' 1 and ga(2) turn to zero.

To write down the NCMOs of SAHs in terms of those

of parent AHs, let us define the row-matrices (Y ( )

( )

+
0

) and

(Y ( )

( )

−
0

) containing the occupied and vacant NCMOs of
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the parent AHs denoted by Y ( )

( )

+
0

i and Y ( )

( )

−
0

j respectively.

Accordingly, the row-matrices (Y ( )

( )

+
d

), (Y ( )

( )

+
a

), (Y ( )

( )

−
d

)

and (Y ( )

( )

−
a

) will consist of NCMOs of the respective

SAHs attached to occupied and vacant NCMOs of the

parent AHs. The NCMOs of the substituted systems

originating from the orbitals of substituents j(+)d and

j(–)a will be correspondingly denoted by F(+)d and F(–)a.

Finally, the above-introduced row-matrices will be used

to construct total row-matrices of NCMOs of SAHs. We

then obtain:

(F(+)d,(Y ( )

( )

+
d

),(Y ( )

( )

−
d

)) = (j(+)d, (Y ( )

( )

+
0

),(Y ( )

( )

−
0

))Td ,

((Y ( )

( )

+
a

),(Y ( )

( )

−
a

),F(–)a) = ((Y ( )

( )

+
0

),(Y ( )

( )

−
0

),j(–)a)Ta .(23)

The relevant explicit expressions take the form:

F(+)d = j(+)d [1 –
1

2
gd(1)g d( )1

+
] – (Y ( )

( )

−
0

)g d( )1
+ ,

(Y ( )

( )

+
d

) = (Y ( )

( )

+
0

) – (Y ( )

( )

−
0

)Gd( )
'

2
+

,

(24)

(Y ( )

( )

−
d

) = j(+)d gd(1) + (Y ( )

( )

+
0

)Gd( )' 2 +

(Y ( )

( )

−
0

)[I –
1

2
g d( )1
+ gd(1)] ,

and

(Y ( )

(a)

+ ) = (Y ( )

(0)

+ ) [I –
1

2
ga(1) g a( )1

+
] – (Y ( )

( )

−
0

)Ga ( )
'

2
+

–

j(–)ag a( )1
+ ,

(Y ( )

( )

−
a

) = (Y ( )

( )

+
0

)Ga ( )' 2 + (Y ( )

( )

−
0

) ,

F(–)a = (Y ( )

( )

+
0

)ga(1) + j(–)a(1 –
1

2
g a( )1
+ ga(1)). (25)

Accordingly, diagonal elements of matrices P
v

d and

P
v

a yield populations of basis functions, i.e., of NCMOs

of the parent AHs along with orbitals of substituents

(j(+)d and j(–)a) in the relevant SAHs. In particular, the

actual occupation numbers of orbitals j(+)d and Y ( )

( )

−
0

j of

the donor-containing system are:

q(+)d = 2(1 – gd(1)g d( )1
+ );

q(–)j = 2g d( )1
+

, j ⋅ gd(1), j

(26)

whilst those of orbitals Y ( )

( )

+
0

i and j(–)a of acceptor-con-

taining SAHs take the form:

q(+)i = 2(1 – ga(1),i ⋅ g a( ),1 i
+ );

q(–)a = 2g a( )1
+ ga(1) ,

(27)

where gd(1),j and ga(1),i are elements of the row-matrix

gd(1) and of the column-matrix ga(1), respectively. Occu-

pation numbers of the remaining orbitals (viz., of Y ( )+ i

(d)

and of Y ( )+ j

(a)
) coincide with their initial values (equal to

2 and 0, respectively) to within the second order terms

inclusive. The above expressions indicate that the elec-

tron-donating orbital of the substituent j(+)d becomes

primarily delocalized over the vacant NCMOs of the

parent AH Y ( )

( )

− j

0
in accordance with the expectation.

Analogously, the initially-vacant orbital j(–)a acquires

first order tails over the occupied NCMOs Y ( )
( )
+ i
0

. More-

over, populations transferred between the same orbitals

are in agreement with the above-specified trends in

delocalization. This fact may be traced back to the simi-

larity between the CBO matrix P
v

and the NCMO repre-

sentation matrix T in the NCRSPT.23

Let us turn finally to CBO matrices of SAHs and

their NCMOs in the basis of 2pz AOs. Like with matri-

ces Cd and Ca of Eq. (6), the zero order contributions

Pd(0) and Pa(0) to the total CBO matrices of SAHs (Pd

and Pa) contain the CBO matrix of the parent AHs (P) as

a common submatrix, viz.,

Pd(0) =
2 0

0 P
, Pa(0) =

P 0

0 0
(28)

where P is alternatively expressible as:

P =
I RB

B R I+ , P =
I BQ

QB I+ . (29)

Matrix P has been originally derived by G. G. Hall5

and is probably the first example of CBO matrices in

terms of entire submatrices B and B+ of the AMs of mo-

lecular graphs of C-skeletons of parent AHs. The first

and the second order corrections to the CBO matrix Pd(0)

of Eqs. (28) and (29) take the form:

Pd(1) = 2

0 −
−

+

+

+

g QB g

BQg 0 0

g 0 0

d(1) d(1)

d(1)

d(1)

(30)

and
Pd(2) =

−
+ −

+

+ +

2g g 0 0

0 X BQg g QB N BQg
d(1) d(1)

d(2) d(1) d(1) d(2) d(1) d(1)

d(2) d(1) d(1) d(2) d(1) d(1)

+

+ + + +− +
g

0 N g g QB Z g g

(31)

where submatrices of the second order correction Pd(2)

are expressible as:

Xd(2) = –BQGd( )
'

2
+

– Gd( )' 2 QB+ ;

Zd(2) = Gd( )
'

2
+ BQ + QB+Gd( )' 2

(32)

Nd(2) = –BQDd(2) = –Gd(2)BQ , (33)

and

Dd(2) = Gd( )
'

2
+ BQ – QB+Gd( )' 2 ;

Gd(2) = BQGd( )
'

2
+

– Gd( )' 2 QB+
(34)
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The close resemblance between definitions of Eqs.

(32) to (34) and those of submatrices of the first order

corrections P(1) for PAHs16 deserves mentioning. More-

over, the interrelations:

Xd(2) = – BQZd(2)QB+ ;

Gd(2) = BQDd(2)QB+
(35)

established previously for PAHs16 refer to the SAHs as

well. These relations along with Eq. (10) indicate that

matrices Xd(2) and Zd(2) as well as Gd(2) and Dd(2), are

connected by unitary transformations. The procedure of

deriving matrix equations determining the matrices of

Eqs. (32) to (34) directly also resembles the relevant

procedure for PAHs. To this end, the matrix equation of

Eq. (19) determining the matrix Gd( )' 2 should be used.

The procedure starts with eliminating the matrix R from

this equation by multiplying it by B+ from its left-hand

side and invoking the complex-conjugate counterpart of

Eq. (9). After subsequent employment of Eq. (10), we

obtain:

B+Gd( )' 2 Q + QB+Gd( )' 2 +
1

2
d+gd(1)Q = 0 . (36)

This relation should be then multiplied by Q from

its left-hand side, whilst its complex-conjugate counter-

part will be multiplied by Q from its right-hand side. Af-

ter summing up the relations obtained, the matrix equa-

tion for the submatrix Zd(2) results:

QZd(2) + Zd(2)Q +
1

2
Q(d+gd(1) + g d( )1

+ d)Q = 0 . (37)

Subtracting the same intermediate relations yields the

equation for the matrix Dd(2), viz.,

QDd(2) + Dd(2)Q +
1

2
Q(g d( )1

+ d – d+gd(1))Q = 0. (38)

For the acceptor-containing systems, the analogues

of Eqs. (30) and (31) take the form:

Pa(1) = – 2

0 0 g

0 0 QB g

g g BQ

a(1)

a(1)

a(1) a(1) 0

+

+ +
(39)

and
Pa(2) =

X g g N g g BQ 0

N QB g
a(2) a(1) a(1) a(2) a(1) a(1)

a(2) a(

− −
−

+ +

+ +
1) a(1) d(2) a(1) a(1)

a(1) a(1)

g Z QB g g BQ 0

0 0 2g g

+ + +

+
−

(40)

where the submatrices of the second order correction

Pa(2) are related to the matrix Ga( )' 2 as shown in Eqs. (32)

to (35). Accordingly, the analogues of Eqs. (37) and (38)

take the form:

QZa(2) + Za(2)Q –
1

2
Q2B+(ga(1)a+ + ag a(1)

+ )BQ2 = 0

(41)

and

QDa(2) + Da(2)Q –
1

2
Q2B+ (ag a(1)

+ – ga(1)a+)BQ2 = 0 .

(42)

To write down the expressions for NCMOs of SAHs

in the basis of 2pz AOs, it is only required to construct

the row-matrices (Y ( )

( )

+
0

) and (Y ( )

( )

−
0

) containing the

NCMOs of the parent hydrocarbons on the basis of the

matrix C of Eq. (7) and to substitute them into Eqs. (24)

and (25). As for instance, the orbitals F(+)d and F(–)a at-

tached to the substituents take the form

F(+)d = j(+)d [1 –
1

2
gd(1)g d( )1

+
] –

1

2
[(c*)BQ – (c°)]g d(1)

+ ,

(43)

F(–)a =
1

2
[(c*) + (c°)QB+] ga(1) + j(–)a(1 –

1

2
g a( )1
+ ga(1)).

(44)

Analysis of General Results

It is seen from Eqs. (30) and (39) that intersubsystem

bond orders arise within the first order approximation

(i.e., bond orders between the orbital of the substituent

and AOs of the parent AH). In particular, bond orders

between the electron-donating orbital j(+)d and AOs c i
*

and c j
° of the parent AH are:

Pid = – 2 (BQg d(1)
+ )id; Pjd = 2 (g d(1)

+ )jd (45)

whilst those between the orbital j(–)a and the same AOs

of the acceptor-containing system take the form:

Pia = – 2 (ga(1))ia; Pja = – 2(QB+ga(1))ja . (46)

Again, the tails of NCMOs F(+)d and F(–)a over AOs

c i
* and c j

° follow from Eqs. (43) and (44). These coin-

cide with relevant elements of the final NCMO repre-

sentation matrices Ud and Ua of Eq. (15), i.e.,

Ud,id = –
1

2
(BQg d( )1

+ )id; Ud,jd =
1

2
(g d( )1

+ )jd;

Ua,ia =
1

2
(ga(1))ia; Ua,ja =

1

2
(QB+ga(1))ja . (47)

Thus, proportionality between newly-formed bond

orders and tails of NCMOs F(+)d and F(–)a over the re-

spective AOs is evident. Let us define now the partial

delocalization coefficients of these NCMOs as squares

of respective tails, e.g.,
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Ddi = (Ud,id)
2; Ddj = (Ud,jd)

2, etc . (48)

We then obtain:

Ddi =
1

4
(Pid)

2; Ddj =
1

4
(Pjd)

2;

Dai =
1

4
(Pia)

2; Daj =
1

4
(Pja)

2 . (49)

Let us now turn to second order corrections Pd(2)

and Pa(2) defined by Eqs. (31) and (40). Non-zero

submatrices arise both in the diagonal positions of these

corrections and in the off-diagonal ones referring to the

interaction between subsets {c*} and {c°} inside the

AH in contrast to the above-considered first order cor-

rections. Let us start with submatrices taking diagonal

positions, diagonal elements of which determine the ac-

tual populations of AOs in SAHs. The unitarity condi-

tion for the matrix BQ shown in Eq. (10) along with Eq.

(35) yields the relations:

tr Xd(2) + tr Zd(2) = 0, tr Xa(2) + tr Za(2) = 0 (50)

indicating that the involved submatrices do not contrib-

ute to the total population of the parent AH. Thus, these

submatrices describe a certain polarization inside the

parent AH due to the very presence of the substituent.

[Note that submatrices X(2) and Z(2) may be considered

as a direct generalization to the case of two subsets {c*}

and {c°} of the secondary polarization (p(2)I) of a single

(Ith) bond under the influence of an external orbital.34].

The overall effect represented by submatrices Xd(2), Zd(2),

Xa(2) and Za(2) may be then referred to as the intersubset

polarization of the parent AH.

The remaining submatrices taking the diagonal posi-

tions within corrections Pd(2) and Pa(2) meet the relations:

tr (BQg d( )1
+ gd(1)QB+) + tr (g d( )1

+ gd(1)) = 2gd(1)g d( )1
+ ,

tr (QB+ga(1)g a( )1
+ BQ) + tr (ga(1)g a( )1

+ ) = 2g a( )1
+ ga(1) .

(51)

based on Eq. (10). These relations indicate that the rele-

vant submatrices describe the populations transferred

between the substituent and the parent AH and may be

interpreted as conservation conditions for total trans-

ferred populations. Positive signs of all partial popula-

tions acquired by separate AOs of the parent AH from

the electron-donating substituent, as well as of all popu-

lations donated by individual AOs of the AH to the ac-

ceptor, follow from the positive-definite nature of matri-

ces inside the tr signs of Eq. (51) [These matrices can be

represented as products AA+ and A+A and thereby are

positive-definite matrices35]. Moreover, the total popula-

tion donated to the parent AH by the electron-donating

substituent (2gd(1)g d(1)
+ ) becomes divided into two equal

parts between subsets {c*} and {c°}. Similarly, the total

population withdrawn from the same subsets of the par-

ent AH by the acceptor are also of coinciding values.

Intrasubset distributions of these divided populations, in

turn, are interrelated by an unitary matrix BQ.

Let us now dwell in more detail on partial popula-

tions donated to separate AOs of the AH and on those

withdrawn from these AOs. Thus, the partial populations

Dqdi and Dqdj donated to AOs c i
* and c j

° equal:

Dqdi = (BQg d(1)
+ gd(1)QB+)ii = (BQg d( )1

+ )id(gd(1)QB+)di ,

Dqdj = (g d( )1
+ gd(1))jj = g d d( ),1 j

+ ⋅ gd(1),dj . (52)

Comparison of these expressions to those of Eqs.

(45) and (49) yields the relations:

Dqdi =
1

2
(Pid)

2 = 2Ddi ;

Dqdj =
1

2
(Pdj)

2 = 2Ddj . (53)

For the case of an acceptor-containing system, we

accordingly obtain:

Dqai = –
1

2
(Pia)

2 = –2 Dai ;

Dqaj = –
1

2
(Pja)

2 = –2 Daj . (54)

Thus, partial populations acquired (lost) by individ-

ual AOs of the parent AH are proportional to the squares

of bond orders that are formed between these particular

AOs and the orbital of the substituent, as well as to the

relevant partial delocalization coefficients of NCMOs

F(+)d and F(–)d. In other words, a local relation is ob-

tained between any intersubsystem bond order and the

respective partial transferred population and/or partial

delocalization coefficient.

Submatrices taking the off-diagonal positions in the

corrections Pd(2) and Pa(2) are also of interest. Indeed, ele-

ments of these submatrices referring to neighboring

pairs of AOs inside the parent AH represent the actual

bond orders of the hydrocarbon fragment in the substi-

tuted system. Relations like those shown in Eqs. (53)

and (54) easily result also for elements of submatrices

Md(2) and Ma(2) defined as:

Md(2) = –BQg d( )1
+ gd(1) ;

Ma(2) = –ga(1)g a( )1
+ BQ

(55)

(see Eqs. (31) and (40)). The above-anticipated relations

take the form:

Md(2),ij =
1

2
Pid Pjd ;

Ma(2),ij = –
1

2
PiaPja . (56)
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It is seen that any alteration in the neighboring bond

order originating from the matrix Md(2) or Ma(2) is deter-

mined by the product of two intersubsystem bond orders

that are formed between the orbital of the substituent

and the AOs of the two carbon atoms involved in the

given bond. Thus, a local relation is predicted between

intra- and intersubsystem bond orders. In the next sec-

tion, matrices Md(2) and Ma(2) will be shown to play a

decisive role in the formation of the actual bond orders

of the chemically bound pairs of atoms in the SAHs.

An Approximate Model for Electronic Structures of

SAHs

In this section, we are about to suggest a certain approxi-

mation to the above-derived general expressions, which

yields a simple and illustrative model for electronic

structures of SAHs. To this end, we will invoke the

power series for matrices R and Q of Eq. (8) suggested

by G. G. Hall,5 viz.,

R = m–1/2 (I +
1

2
L +

3

8
L2 + ...) ,

Q = n–1/2 (I +
1

2
K +

3

8
K2 + ...) ,

(57)

where the matrices L and K along with positive numeri-

cal coefficients m and n were determined by the matrix

equations:

BB+ = m(I – L); B+B = n(I – K) . (58)

Choice of parameters m and n was made by impos-

ing an additional condition that eigenvalues of matrices

L and K lie within the interval [–1; +1]. [Just this re-

quirement served to ensure the convergence of the se -

ries]. Let us define now the matrices:

Fd = Q(I + g Q)–1; Fa = (I + m R)–1 R (59)

and obtain their inverse counterparts. These are:

(Fd)
–1 = g I + Q–1; (Fa)

–1 = m I + R–1 . (60)

Using the expressions of Eq. (57), we then obtain:

(Fd)
–1 = (g + n1/2) I –

1

2
n1/2 K + ...

(Fa)
–1 = (m + m1/2) I –

1

2
m1/2 L + ... (61)

It is seen that the larger are the (positive) Coulomb

parameters g and m describing our substituents, the more

significant are the zero order terms (g + n1/2) I and (m +

m1/2) I vs. the remaining terms in the series of Eq. (61).

Let us assume our substituents to be described by pa-

rameters g and m of sufficiently large values so that we

may confine ourselves to taking into account the zero or-

der terms of the series of Eq. (61). After returning to ma-

trices Fd and Fa, we obtain:

Fd ≈ Fd = r(g)I, Fa ≈ Fa = t(m)I, (62)

where

r(g) = (g + n1/2)–1 > 0,

t(m) = (m + m1/2)–1 > 0
(63)

are positive g- and m- dependent parameters. Thus, our

approximation consists of replacing the matrices Fd and

Fa of Eq. (59) by Fd and Fa, respectively, the latter being

proportional to unit matrices. Verification of accuracy of

such an approximation is undertaken in the last section.

From Eqs. (18) and (21), we obtain the approximate

versions of the principal matrices gd(1) and ga(1) denoted

by gd(1) and ga(1) respectively, viz.,

gd(1) =
1

2
r(g)d; ga(1) = –

1

2
t(m)a . (64)

[Note that overlined characteristics here and below cor-

respond just to the above-described approximation]. It

follows from Eq. (64) that the row-matrix gd(1) and the

column-matrix ga(1) actually contain non-zero elements

in their first positions only. These are equal to
1

2
r(g)d

and –
1

2
t(m)n, respectively.

Let us now turn to NCMOs of SAHs F(+)d and F(–)a

originating from the orbitals of substituents. After sub-

stituting gd(1) for gd(1) into the first expression of Eq.

(24), it follows that the electron-donating orbital j(+)d in-

teracts only with a single vacant NCMO of the parent

AH when making up the NCMO F(+)d, namely with the

NCMO Y (–)

( )

1

0
of the following constitution:

Y (–)

( )

1

0
=

1

2
[–c1

° +
i

(*)

∑ c i
* (BQ)i1] , (65)

the latter resulting from Eq. (7). Inasmuch as elements

of the matrix BQ do not exceed 1,5,11 the NCMO Y ( )

( )

− 1

0

is primarily localized on the site of substitution. It is also

seen that the NCMO of Eq. (65) contains no contribu-

tions of AOs c j
° , j ≠ 1. [This NCMO has been conve-

niently referred to Ref. 11 as that attached to the AO c1
°].

Similarly, the electron-accepting orbital j(–)a interacts only

with a single occupied NCMO of the parent AH Y ( )

( )

+ 1

0

attached to the AO c1
* when making up the NCMO F(–)a.

This result may be referred to as the two-orbital model

for SAHs. It is worth mentioning that this simple model

becomes easily constructable just owing to the choice of

the sites of the donating and accepting substituents coin-

ciding with the first AOs of subsets {c°} and {c*} re-

spectively. Indeed, the above-mentioned positions of

substituents are compatible with the choice of NCMOs

of the parent AHs underlying Eq. (7),11 in which the oc-

cupied and vacant NCMOs are attached to subsets {c*}

and {c°} respectively.
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Let us now turn to bond orders defined by Eqs. (45)

and (46). After substituting gd(1) and ga(1) for gd(1) and

ga(1) respectively, we obtain:

Pid = –r(g)d(BQ)i1, Pjd |j=1 = r(g)d, Pjd |j≠1 = 0 , (66)

Pia = t(m)n(QB+)j1, Pia |i=1 = t(m)n, Pia |i≠1 = 0 . (67)

These results indicate that the largest bond orders

arise between the orbital of the electron-donating substi-

tuent (j(+)d) and the AO attached to the site of substitu-

tion (c1
°), whereas the remaining bond orders Pjd take

zero values. As far as bond orders between orbitals j(+)d

and c i
* are concerned, these prove to be proportional to

bond orders between AOs c i
° and c i

* inside the parent

hydrocarbon (the latter are determined by matrix ele-

ments (BQ)i1. An analogous result follows from Eq. (67)

for the case of an acceptor-containing SAH.

Consequences of the approximation of Eqs. (66)

and (67) upon partial populations transferred between

the substituent and individual AOs of the parent AH

may be easily revealed by invoking the expressions for

Dqdi, Dqdj, Dqai and Dqaj in terms of bond orders shown

in Eqs. (53) and (54). Thus, charge proves to be trans-

ferred from the orbital j(+)d to orbitals c1
° and c i

* , as

well as from AOs c1
* and c j

° to the orbital j(–)a. This

result is in line with constitutions of NCMOs Y ( )

( )

− 1

0

(see Eq. (65)) and Y ( )

( )

+ 1

0
of the parent AHs playing the

role of accepting and donating orbitals for the donor-

and acceptor-containing SAHs, respectively, in the frame-

work of the two-orbital model.

To show the consequences of our approximation

upon the intersubset polarization, let us substitute Eq.

(64) into Eqs. (37) and (41) determining matrices Zd(2)

and Za(2) respectively. We then obtain:

QZd(2) + Zd(2)Q + r(g)Qd+dQ = 0 , (68)

QZa(2) + Za(2)Q + t(m)Q2B+aa+BQ2 = 0 . (69)

Comparison of Eqs. (68) and (69) with matrix equa-

tions determining the intersubset polarization matrices

of PAHs16 is of interest. Indeed, local perturbations of

Coulomb and/or resonance parameters inside subsets

{c°} and {c*} of AHs give birth to the first order

intersubset polarization matrices Z ( )

( )

1

°
and Z ( )

(*)

1 , respec-

tively, conditioned by matrix equations:

QZ ( )

( )

1

°
+ Z ( )

( )

1

°
Q – QD(1)Q = 0 , (70)

QZ ( )

(*)

1 + Z ( )

(*)

1 Q +Q2B+A(1)BQ2 = 0 . (71)

where D(1) and A(1) stand for the relevant blocks of the

first order Hamiltonian matrix for PAHs.16 Coincidence

of overall constitutions of Eqs. (68) and (70), as well as

of Eqs. (69) and (71), is evident. Moreover, the products

d+d and aa+ are square matrices containing non-zero ele-

ments d2 and n2, respectively, in the positions 11 and

zero elements elsewhere. As a result, the second order

matrices – r(g)d+d and t(m)aa+ are proportional to parti-

cular first order matrices D(1)loc and A(1)loc describing lo-

cal perturbations of Coulomb parameters of AOs c1
° and

c1
* , respectively. Consequently, mutual proportionalities

may be concluded between matrices Zd(2) and Z (1)loc

( )°

as well as between Za(2) and Z (1)loc

(*)
, where Z (1)loc

( )°
and

Z (1)loc

(*)
stand for solutions of Eqs. (70) and (71) referring

to local perturbation matrices D(1)loc and A(1)loc respec-

tively [To show this, it is only required to employ the in-

tegral solutions of Eqs. (68) to (71).23,29,31].

Diagonal elements of matrices Z ( )

( )

1 loc

°
and Z ( )

(*)

1 loc

were shown to determine16 the relevant polarizabilities

of the atom-atom type,1–4,6 widely used when describing

the effects of local perturbations in AHs. Hence, diago-

nal elements of matrices Zd(2) and Za(2) and thereby the

population alterations due to the intersubset polarization

in SAHs are proportional to the relevant atom-atom

polarizabilities in the parent AH. Using the above-men-

tioned integral solutions,23,29,31 diagonal elements of ma-

trices Zd(2) and Za(2) may be expressed as:

Zd(2), jj = – r(g)d2

0

∞

∫{(exp [–Qt]Q)j1}
2 dt , (72)

Za(2), jj = – t(m)n2

0

∞

∫{(exp [–Qt]Q2B+)j1}
2 dt (73)

and prove to be of negative signs. By contrast, Xd(2),ii

and Xa(2),ii take positive values as it may be demon-

strated on the basis of the first relation of Eq. (35).16 The

overall result is:

Zd(2),jj < 0, Za(2),jj < 0, Xd(2),ii > 0, Xa(2),ii > 0 (74)

and it is nothing more than the analogue of the rule of

the alternating polarity for SAHs. It is seen that the

intersubset polarization gives rise to negative and posi-

tive alterations in populations of AOs of subsets embrac-

ing the sites of electron-donating and accepting substitu-

ents, i.e., of subsets {c°} and {c*} respectively, whilst

the population alterations of AOs of opposite subsets are of

opposite signs. Hence, the effect of an electron-donating

(accepting) substituent resembles that of a heteroatom of

a lower (higher) electronegativity vs. the carbon atom in

respect of the intersubset polarization.

It is evident that total population alterations of par-

ticular AOs inside the parent AHs are made up of sums

of increments originating from the intersubset polariza-

tion and from the intersubsystem charge transfer. As a

result, positive population alterations unambiguously

follow for all AOs c i
* of the donor-containing system,

and negative total alterations result for all AOs c j
° of the

acceptor-containing system. As far as subsets of AOs

embracing the sites of substitution are concerned, the re-

spective total population alterations are determined by

the intersubset polarization except for the very site of
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substitution, where a significant charge transfer is also

expected. As a result, alterations in populations of AOs

c i
°( j ≠ 1) and c i

* (i ≠ 1) take negative and positive signs

for the donor- and acceptor-containing systems, respec-

tively. Consequently, the rule of alternating polarity is

unambiguously predicted to be valid also for total popu-

lation alterations of AOs of SAHs, except for those at

the very site of substitution.

Furthermore, substituting Eq. (64) into Eqs. (38) and

(42) yields zero matrices for both Dd(2) and Da(2) and

thereby for submatrices Nd(2) and Na(2) taking the off-di-

agonal positions in the second order corrections to CBO

matrices Pd(2) and Pa(2) (see also Eq. (33)). Consequent-

ly, alterations in bond orders inside the parent AHs due

to substitution prove to be determined by elements of

matrices Md(2) and Ma(2) following from Eq. (56) after

replacing the bond orders Pid, Pjd, etc. by respective ap-

proximate versions shown in Eqs. (66) and (67). It is

seen that non-zero products PidPjd and PiaPja and thereby

significant alterations primarily arise for orders of bonds

attached to the site of substitution in the framework of

our approximate model. Inasmuch as positive values were

obtained for elements of the matrix BQ referring to

nearest-neighboring pairs of AOs in AHs,11 the inequal-

ity (BQ)i1 > 0 may be expected for AOs c i
* taking the

nearest-neighboring positions with respect to the site of

the electron-donating substituent. Thus, both Pid and

Md(2),i1 are negative quantities and thereby reduction of

bond orders attached to the donating substituent follows.

For the case of an electron-accepting substituent, the

same conclusion may be drawn on the basis of the posi-

tive sign of Pja and of the negative sign of Ma(2),j1.

Illustration of the Results

In this section, we are about to illustrate the above-ob-

tained algebraic results using substituted benzenes as an

example.

Numbering of 2pz AOs of carbon atoms inside the

phenyl ring (see Scheme 1) will be chosen so as to en-

sure the anti-block-diagonal structure of the relevant

submatrices of Hamiltonian matrices of Eqs. (1) and (2).

[Non-zero resonance parameters referring to chemical

bonds should be found in the off-diagonal blocks B and

B+ in this matrix]. Matrices Q, R and QB+ for the ring

then take the form:16

Q = R =
1

6

5 1 1

1 5 1

1 1 5

− −
− −
− −

, QB+ =
1

3

2 2 1

1 2 2

2 1 2

−
−

−
. (75)

Let us start with verification of Eq. (62). Matrices

Q–1 and R–1 contained within Eq. (60) are equal to:

Q–1 = R–1 =
1

3

4 1 1

1 4 1

1 1 4

. (76)

Diagonal elements of this matrix are four times larger

compared to the off-diagonal ones. After adding the in-

crements g I and m I (g > 0, m > 0) in accordance with Eq.

(60), the resulting matrices (Fd)
–1 and (Fa)

–1 become

even closer to their approximate versions proportional to

unit matrices.

Let us now turn to the substituted benzenes. The

electron-accepting substituent (A) will be placed at the

first position of the phenyl ring represented by the AO c1
*

(Scheme 1). Again, the electron-donating substituent (D)

will be attached to the fourth position, which coincides

with the first position of the subset {c°}. Scheme 2 repre-

sents the signs of population alterations in these deri-

vatives of benzene due to the intersubsystem charge

transfer and to the intersubset polarization separately, as

well as of their total values. It is evident that ortho- and

para-positions correspond to AOs c i
* of the D-substitu-

ted molecule, as well as to AOs c j
° of the acceptor-con-

taining system. Accordingly, it is predicted that the pop-

ulation is donated to the above-enumerated positions by

the substituent D and withdrawn from the same posi-

tions by the acceptor A. The ipso positions c 4
° and c1

*

are embraced by the effect too.
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Scheme 1. Numbering of 2p
z

AOs of carbon atoms for substituted
benzenes containing an electron-donating substituent (D) and an
electron-accepting substituent (A). Carbon atoms containing AOs
of subsets {c*} and {c°} are accordingly denoted by * and °.

Scheme 2. Signs of population alterations caused by the intersub-
system charge transfer (CT) and by the intersubset polarization (IP),
as well as those of total population alterations (Tot) for derivatives
of benzene containing electron-donating substituents (D) and elec-
tron-accepting substituents (A).



Signs of population alterations caused by the

intersubset polarization follow from Eq. (74). On the ba-

sis of superposition of these two components of the ef-

fect, increased total populations of ortho- and para-posi-

tioned carbon atoms are predicted along with reduced

occupation numbers of AOs of the meta-positioned at-

oms in the D-substituted benzenes. At the same time, re-

duced and increased occupation numbers refer to

ortho/para and meta positions, respectively, in the case

of an acceptor-containing system. These results are in

line both with numerical calculations by means of the

simple Hückel method and trends in chemical reactivity

of substituted benzenes.18–21

A more detailed consideration of the same systems

becomes possible after invoking the NCMOs. Let us

confine ourselves to the case of an electron-donating

substituent for simplicity. The basis orbital j(+)d of this

substituent interacts mostly with the NCMO Y ( )

( )

− 4

0
of

the phenyl ring of the following constitution:

Y ( )

( )

− 4

0
=

1

2
[–c4 +

2

3
(c1 + c2) –

1

3
c3] , (77)

the latter following from Eq. (7) after employment of the

matrix OB+ of Eq. (75). It is seen that the orbital Y ( )

( )

− 4

0
is

localized on ipso-, ortho- and para-positions with respect

to the substituent. Relative values of the partial delocali-

zation coefficients of the resulting NCMO F(+)d over the

above-enumerated positions are correspondingly propor-

tional to 1, 4/9 and 1/9. Partial populations donated by the

substituent D to these positions are also proportional to

the same numbers in accordance with Eq. (54).

Another way of obtaining the same result involves

consideration of bond orders formed between the elec-

tron-donating orbital j(+)d and AOs of benzene. These fol-

low from Eq. (66) after invoking Eq. (75) and are equal to:

P4d = r(g)d, P5d = P6d = 0, P1d = P2d = –
2

3
r(g)d ,

P3d =
1

3
r(g)d . (78)

Populations donated to particular carbon atoms result

from the squares of these bond orders in accordance

with Eq. (54) and also prove to be proportional to 1, 4/9

and 1/9 for AOs c 4
° , c1

* and c 3
* respectively.

Let us now turn to alterations in orders of chemical

bonds inside the phenyl ring due to substitution. As al-

ready mentioned, these bond orders are determined by

elements of the matrix Md(2) defined by Eq. (55) in the

framework of our approximation. Using Eq. (78) within

Eq. (56) yields the following result:

Md(2),14 = Md(2),24 = –
1

3
[r(g)d]2 , (79)

whilst the remaining elements of the same matrix take

zero values. Thus, a local reduction of bond orders at-

tached to the site of substituent may be concluded.

On the whole, a simple and illustrative model is ob-

tained for substituted benzenes on the basis of our re-

sults. To present an independent verification of the

model, let us invoke the results of direct numerical cal-

culations of substituted benzenes by means of the simple

Hückel method.6 Thus, bond orders between the AO of

the nitrogen atom and those of the phenyl ring of the ani-

line molecule (Ph–NH2) were shown to take the follow-

ing values:

P 4d

(c)
= 0.291, P 5d

(c)
= P 6d

(c)
= –0.032 ,

P1d

(c)
= P 2d

(c)
= –0.167, P 3d

(c)
= 0.127 ,

(80)

where the superscript (c) here and below refers to calcu-

lated characteristics. It is seen that both the signs and the

relative values of bond orders of Eq. (80) closely resem-

ble those of Eq. (78).

Furthermore, bond orders inside the phenyl ring of

the same aniline molecule were also calculated in the

same study.6 These are:

P14

(c)
= P 42

(c)
= 0.637, P 25

(c)
= P16

(c)
= 0.673,

P 34

(c)
= P 36

(c)
= 0.663, Pbenz

(c)
= 0.667,

(81)

where the last bond order (Pbenz

(c)
) represents the relevant

value for the parent benzene molecule. It is seen that the

orders of bonds attached to the site of the substituent

(viz., P14

(c)
and P 42

(c)
) are reduced most significantly, as

predicted by our approximate model. It is also notewor-

thy that the formation of elements Md(2),ij on the basis of

Eq. (56) by replacing Pid and Pjd by respective numerical

values of Eq. (80) yields the following result:

M d(2),14
' = M d(2),24

' = –0.024,

M d(2),16
' = M d(2),25

' = 0.003,

M d(2),35
' = M d(2),36

' = –0.002 . (82)

The alterations in the neighboring bond orders deter-

mined by Eq. (82) are even closer to the relevant exact

values of Eq. (81).

Thus, our two-orbital model of substituted benzenes

is also supported by the results of numerical calcula-

tions.

CONCLUSIONS

Rules governing the effects of substituents in SAHs are:

(i) The effect of substituent of any type upon the elec-

tronic structure of an AH consists of two additive com-

ponents, viz., of the charge transfer between the above-
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mentioned subsystems and of the intersubset polarization

inside the AH due to the very presence of the substituent.

(ii) The total population transferred between a

substituent and an AH becomes divided up equally be-

tween the two subsets of AOs of the AH.

(iii) The partial population transferred between the

substituent and an individual 2pz AO of the AH is pro-

portional to the square of the respective bond order, as

well as to the extent of delocalization of the orbital of

the substituent over the AO under consideration when

making up the respective NCMO.

(iv) The total transfer of population from (or to) the

substituent can be approximately represented as an elec-

tron-donating (accepting) effect of its orbital upon a sin-

gle NCMO of the parent AH attached to the site of sub-

stitution. Accordingly, the relative extents of populations

donated to (or withdrawn from) separate AOs of the AH

are determined by the shape of the above-specified prin-

cipal NCMO.

(v) The intersubset polarization inside the AH due to

substitution is governed by the second order analogue of

the rule of alternating polarity. For an electron-donating

(accepting) substituent, the relevant component of the

total charge redistribution resembles that caused by a

heteroatom of lower (higher) electronegativity.

(vi) Alterations in bond orders between chemi-

cally-bound pairs of atoms of the AH due to substitution

are proportional to the products of two newly-formed

intersubsystem bond orders between the orbital of the

substituent and the 2pz AOs of carbon atoms involved in

the given bond. Predominant weakening of bonds at-

tached to the site of substitution is actually observable.
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SA@ETAK

Pravila koja odre|uju djelovanje substituenata na alternatne konjugirane ugljikovodike

Viktorija Gineityte

Izvedeni su eksplicitni algebarski izrazi i analizirane matrice naboja i reda veze te srodne matrice

reprezentacije ne-kanonskih molekularnih orbitala substituiranih alternatnih konjugiranih ugljikovodika

pomo}u blokova Hückelove matrice ne-supstituiranih ugljikovodika. Hückelova matrica odgovara matrici

susjedstva grafa, koji predstavlja ugljikov kostur molekule. Postavljena su pravila koja odre|uju djelovanje

supstituenata na elektronsku strukturu ugljikovodika koja dopunjuju klasi~na pravila. Valja istaknuti da je pri

tome ustanovljeno da postoje dvije aditivne komponente unutar djelovanja supstituenata na alternatni

ugljikovodik. To su prijenos elektronskoga naboja izme|u navedenih blokova i me|ublokovska polarizacija

unutar ugljikovodika. To odgovara particiji temeljnoga skupa 2pz atomskih orbitala u dva podskupa. Pravilo

koje odre|uje utjecaj prve komponente sastoji se od jednake raspodjele naboja izme|u dva podskupa atomskih

orbitala ugljikovodika. Pokazano je da polarizaciju izme|u dva podskupa odre|uje analog pravila o

alterniraju}oj polarizaciji drugoga reda. Sve navedeno ilustrirano je na supstituiranim benzenima.
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