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A theory of fluorescence depolarization arising from singlet-singlet exciton annihilation is presented for an ensemble of ran- 
domly oriented molecular domains. This paper extends our previous work including the effects of the orientational distribution 
of chromophores forming a domain. The orientational order of the domain is described by the distribution fimction f (0) depend- 
ing on one angle 6, the angle between the transition dipoles of chromophores (or their aggregates) and the symmetry axis of the 
domain. By using a kinetic equation of a continuous model for exciton annihilation, the time evolution of the fluorescence an- 
isotropy is investigated. For large t < T, the anisotropy was shown to decrease as t - ‘/*,t-_nt+const.)andt-‘forS=l,S=-1 
and - 1 <S-z 1 (Sf 0), respectively, 7 being the excited - state lifetime and S=& ( 3cosz0- 1) /2 being the order parameter of 
the domain. The residual anisotropy at long times is analysed using both continuous and discrete models of exciton annihilation. 
It is shown that from the residual anisotropy against intensity curves one can estimate both the domain size and the order param- 
eter S. The theory accounts for the intensity-dependent depolarization observed recently in the J-aggregated pseudoisocyanine 
dye (PIG) solution. Applications to photosynthetic systems are also discussed. 

1. Introduction 

The excitation energy transfer in condensed mo- 
lecular systems together with the related high-density 
effect of exciton-exciton annihilation has been the 
subject of many investigations [ 1- 11 J . Experimen- 
tally, singlet-singlet exciton annihilation manifests 
itself by a decrease in the integrated fluorescence 
quantum yield and also by a decrease in the fluores- 
cence lifetime, as the intensity of the excitation laser 
pulses is increased. This paper considers another 
possible manifestation of exciton annihilation. The 
object of this paper is to treat the time-dependent flu- 
orescence depolarization arising from exciton anni- 
hilation. This phenomenon is sensitive to the inten- 
sity of the excitation pulses, whereas the usual 
depolarization arising from energy transfer [ 2,12-l 5 ] 
or the rotational motion [ 16,171 is independent of 
intensity. Our previous study [ 18 ] is extended here, 
taking account of the orientational distribution of the 
transition moments of the chromophores forming a 
domain. It is shown that the present depolarization 
can provide information not only about the domain 

size, as pointed out in ref. [ 18 1, but also about the 
orientational distribution of the chromophores form- 
ing the domain. 

The paper is organized as follows. In section 2 the 
problem is formulated. In section 3 the continuous 
model of exciton annihilation is employed to inves- 
tigate the time evolution of the fluorescence depolar- 
ization. In section 4 the residual fluorescence anisot- 
ropy at long times is analysed using both the 
continuous and discrete descriptions of the annihila- 
tion. In section 5 some final remarks are presented, 
as well as applications to J-aggregated dye solutions 
and photosynthetic systems being discussed. 

2. Formulation of the problem 

2.1. The system 

The system of interest, shown schematically in fig. 
1 a, consists of a large number of molecular domains 
embedded in a three-dimensional medium. An indi- 
vidual domain is composed of many identical chro- 

0301-0104/91/$03.50 0 1991 - Elsevier Science Publishers B.V. (North-Holland) 



170 G. Juzelitinas I Depolarization arising from exciton annihilation 

a) 
///, 0 //,/, II 

// ’ 
t 

/ =4 

-A-’ P .\\ ’ 
-“‘\\\ \ .------/ 

k 

b) II I 

Fig. 1. Schematic representation of the ensemble of molecular 
domains (a) and an individual domain (b ). Here & andj are the 
unit vectors parallel to the symmetry axis of the domain and to 
the transition moment of a chromophore (or an aggregate) form- 
ing the domain, respectively, and 1) is the vector indicating the 
polarization of the excitation pulse. 

mophores (or their aggregates), and all domains are 
assumed to be of the same size. The orientational or- 
der of molecules forming the domain is described by 
a normalized probability distribution function de- 
pending on one angle 0, the angle between the tran- 
sition dipoles of chromophores (or their aggregates) 
and the symmetry axis of the domain (fig. 1 b ) . This 
function can be expanded in a series of even Le- 
gendre polynomials as follows: 

f(e)= T 4(2L+l)P,P, (cosf!?) ) (2.1) 
L= ,2,... 

where FL are the order parameters of the domain de- 
fined as the moments of the distribution, 

lr .- 

ITL= PL(cOse)f(e) sinode. 
I 
0 

(2.2) 

An isotropic probability density for the orientations 
of the domains is assumed. Both the interdomain ex- 
citation energy transfer and the changes in orienta- 

tion due to rotational motion are considered to be 
negligible. No barriers for energy transfer within a 
domain exist. The fraction of initially excited chro- 
mophores is considered to be sufficiently low to avoid 
saturation effects. 

2.2. Fluorescence anisotropy 

The quantity of interest is the time-dependent flu- 
orescence anisotropy given by 

r= (ZII -ZI )/(ZII +2Z1 ) , (2.3) 

where I, and II are the intensities of the emitted light 
polarized parallel and perpendicular, respectively, to 
the polarization of the excitation pulse. 

We shah consider the anisotropy at relatively long 
times, t > q, after the electronic excitations have al- 
ready redistributed within the domains, z,xR’ID 
being the redistribution time, R being the domain ra- 
dius, and D being the coeffkient of exciton diffusion. 
Under the assumption that the incoherent excitation 
energy transfer (hopping) among the chromophores 
forming the domains takes place, the diffusion coef- 
ficient can be evaluated as D= wa2, where w is the 
rate of the excitation transfer between the adjacent 
chromophores and a is the interchromophore dis- 
tance. This means that, for example, in case a= 10 A, 
w-l = 0.25 ps and R = 200 A, the redistribution time 
r, is about 100 ps. 

For t> r,, the emission intensities of the individual 
domains are given by #’ 

Z;fo”azNk,(t) , em aJT&, ( t ) > (2.4) 

where the unit vector k indicates the orientation of 
the domain, k,, is its parallel component,& andj, are 
the components of the unit vector 1 parallel to the 
transition moment of an individual chromophore 
forming a domain (see fig. lb), and Nk, (t) is the ex- 
citon-number density, which depends on the domain 
orientation. The overscribed bar denotes the average 
over the different orientations of the chromophores 
forming a domain: 

*’ The present theory is valid for t < T, as well, providing the do- 
main is composed of chromophores with parallel transition 
moments ($=l) [18]. 
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where q is the azimuthal angle (see fig. 2). 
The averaging of ZB”” and Zym over the orienta- 

tions of the domams (It a (I,, d”‘“),ZIa(Z~m))and 
the subsequent use of eq. (2.3) yield 

(2.6) 

where the brackets ( ) denote the average over all 
possible orientations of the domains. 

Relative to k, el, e2 the unit vectorj can be defined 
by the polar coordinates 0 and Q (see fig. 2 ) : 

j=kcos8+elsinBcos~+e2sinesiny,. 

Usingeqs. (2.5) and (2.7) one finds 

(2.7) 

J+sk;+(l-S)/3) (2.8) 

where S is the order parameter of the domain, 
S=P2= (3c0szfL 1)/2. The model presented in- 
cludes two limiting cases, S= 1 and S= - 1. For S= 1 
the domain is composed of chromophores with par- 
allel transition dipoles. This situation has been inves- 
tigated in our previous paper [ 18 1. For S= - f , the 

k 
/ 

Fig. 2. Relation between the unit vectors j, k and the polar coor- 
dinates 0 and (p. Here k, c,, q is the set of the orthogonal basis 
vectors, e2 being perpendicular to the polarization of the excita- 
tion pulse (ez,=O). 

transition moments of the chromophores forming the 
domain are perpendicular to the orientational vector 
k. 

Using eqs. (2.6) and (2.8) the anisotropy becomes 

r=S(3G21Go - 1) 12 , 

with 

(2.9) 

I 

G, = (k;“&,(t) > = j- k;;Nq(t) W, . 
0 

(2.10) 

Equations (2.4), (2.9) and (2.10) implicitly assume 
that the absorption and emission transition dipoles 
are directed along the same axis. In case a different 
electronic level than that from which emission occurs 
is excited and its transition moment is at some angle 
(Y to that of the latter, the anisotropy (2.9) should be 
reduced by the factor d= (3 cos’cy - 1) /2. 

2.3. Intensity-dependent depolarization 

At low pumping intensity only one excitation can 
be created per domain, so the exciton-number den- 
sity of all domains decreases exponentially with the 
same decay rate. Under this condition the anisotropy 
(at t> 7r) is equal to 0.4S2. It is lower than the theo- 
retical maximum of 0.4, since a certain depolariza- 
tion arising from the energy transfer takes place just 
after the excitation (at t < 7r), before the homogene- 
ous distribution of the excited states is formed within 
the domains. 

When several excitons are created simultaneously 
in a given domain, a bimolecular singlet-singlet an- 
nihilation is possible. The annihilation rate is known 
to increase with the density of the excitons. In other 
words, more excited domains decay faster than less 
excited ones [the number of excitons created in an 
individual domain depends on the domain orienta- 
tion, see eqs. (3.2) and (4.2) 1. Thus, the annihila- 
tion tends to reduce the initial anisotropy induced in 
the sample by the polarized excitation pulse. It leads 
to the intensity-dependent fluorescence depolariza- 
tion. 

For large molecular domains, the annihilation per- 
sists down to very low intensity, provided the energy 
transfer within a domain is fast enough. This means 
that the present depolarization is possible even when 
the fraction of excited chromophores, p, is relatively 
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low, for example, p= l/3000 [ 111. The usual inten- 
sity-dependent depolarization arising from satura- 
tion effects (because of the ground-state depletion) 
[ 19 ] occurs at considerably higher intensities when 

p is comparable with unity. 

3. JCinetics of depolarization 

In this section the continuous model of exciton an- 
nihilation is employed to investigate the kinetics of 
the depolarization. That is the mean number of ex-, 
citons per domain is considered to be sufficiently 
large, so that the fluctuations of the exciton number 
would be negligible. The time evolution of the exci- 
ton-number density, Nkl (t), is assumed to obey the 
standard kinetic equation of exciton annihilation [ 3- 
6,201: 

dN,Jdt= -7-IN,‘, - yN:, , (3.1) 

where 7-l is the unimolecular decay rate, y is the ex- 
citon annihilation coefficient, and the subscript k, 
indicates the domain orientation. The initial exciton- 
number density, Nk, (0)) depends on the intensity of 
the excitation pulse as well as on the domain orien- 
tation. The pulse duration is assumqd to be suffi- 
ciently short, so that both exciton annihilation and 
unimolecular decay could be neglected during the 
pumping (delta pulse excitation). Under this condi- 
tion the initial density of excitons is proportional to 
the absorption probability in a given domain ( o$, 
seeeq. (2.8)): 

Nk,(O)=3&[Sk:+(l-S)/31, (3.2) 

where No= ( Nk, (0) ) is the average density of exci- 
tons created by the pulse. 

Eq. ( 3.1) has a solution 

where 
(3.3) 

T=[l-exp(-t/7)17, (3.4) 

Txt, for ter. (3.5) 

In eq. (3.3) the annihilation coefficient is assumed 
to be a constant. If y wre a time-dependent function, 
yT should be replaced by 

I y(t’) exp( -t’/r) dt’ . 
b 

This is the case at short times when the diffusion 
length is less than the annihilation radius and thereby 
y(t) does not reach its limiting value. Moreover, if 
the energy transfer within a domain is low dimen- 
sional, no annihilation constant exists, for example, 
for a two-dimensional energy transfer y(t) - 
(In t)-‘+O, as t-m [20]. 

After making use ofeqs. (2.9), (2.10) (3.2), and 
(3.3), we find 

r=O.5[(1-R)-‘-3$-‘-l], 

(Nkl)=3N,,@-l(l-R) exp(-t/7), 

where 

(3.6) 

(3.7) 

@=3yNoT, (3.8) 

R=(S@)-‘Mtan-‘M, O<S< 1 , (3.9) 

=(ISI$)-‘Mtanh-‘M, -q<S<O, (3.10) 

~=[l~I@/(~@+1)l”2, (3.11) 

6= (1 -S)/3, (3.12) 

that is, the fluorescence anisotropy is a function of 
@= 3yN,T, No being proportional to the intensity of 
the excitation pulse. In other words, information 
about the large (small) reduced time behaviour of 
the anisotropy is the same as information about its 
high- (low-) intensity behaviour. The analysis of the 
limiting cases of small and large reduced times (low 
and high intensities) is presented in the appendix. It 
should be noted that for t-et 7, the reduced time T co- 

incides with the ordinary time t [see eq. (3.5) 1, 
whereas for t > 7, T+ 7. Moreover, one must remem- 
ber that in case S# 1, the theoretical analysis of the 
depolarization presented here holds only for t < 7r, 7, 
being the redistribution time of excitons within a do- 
main (see section 2). 

Examples of decay curves calculated according to 
eq. (3.6) using various values of S are shown in fig. 
3. For 1 -SC 1, the differences between the curves 
are more distinguishable if one plots @“2r/r(0) 
against log @ (fig. 4 ) . As seen in fig. 4, the curves dif- 
fer from each other in shape and in position with re- 
spect to the abscissa. As the value of S increases, the 



G. Juzelkinas /Depolarization ading from exciton annihilation 173 

ml I I 1 I 

0 5 10 15 20 25 
@ 

Fig. 3. Normalized anisotropy, r/r(O), plotted as a function of 
@=3yN0T. 
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Fig. 4. Plot of @I/’ r/r(O) as a function of log,, @J. 

curves decrease more slowly and are shifted to the 
right on the horizontal log@ scale. Thus, it is possible 
to determine S from the anisotropy decay curves. All 
curves in fig. 4, except that for S= 1, approach zero 
as @*co. The asymptotic solution for S= 1 is shown 
by the horizontal dashed line. 

A remark should be made concerning the behav- 
iour of the anisotropy at large reduced times (or high 
intensities). As is shown in the appendix, both for 
0 <S< 1 and - f <S-C 0, the anisotropy is hyperbolic 
in reduced time, while for S= 1 and S= - f, the an- 
isotropy decreases more slowly. The differences in 
asymptotic behaviour arise from the different types 
of initial conditions. That is, for - f <S-Z 1 the exci- 
tation of all domains is possible [Nk, (0) # 01, 

whereas for S= 1 and S= - f , the domains with kl = 0 
and k, = f 1, respectively, cannot be excited and 
thereby the asymptotic decay law depends on the be- 
haviour of the initial density of excitons near 
N,,(O)=O.ForS=l,N,,(O)-kiandforS=-j,the 
initial density goes linearly around k, = f 1. As a re- 
sult, the anisotropy decreases as T-‘/2 and 
T - ’ (In T+ const. ) , respectively. For - 4 < S< 0 and 
0 <S-C 1, all domains make a significant contribution 
to the fluorescence anisotropy at large reduced times. 
The relative difference of the exciton-number den- 
sity of two initially excited domains, 
[Nk,(t)-Nk;(t)]/Nkl(f),decrea~as (yT)-‘. This 
leads to the hyperbolic decay of the anisotropy. 

4. Residual anisotropy 

Firstly, let us consider the continuous model of the 
annihilation discussed in the previous section. At long 
times, exp( -t/r) e 1, the annihilation rate be- 
comes negligible compared to the monomolecular 
decay rate. As a result, the excited-state decay of all 
domains becomes exponential and thus the depolar- 
ization ceases. The residual anisotropy at long times, 
rzt, is obtained from eq. (3.6) or fig. 3 by substitut- 
ing r for T. Here the superscript “cant” refers to the 
continuous model considered. The residual anisot- 
ropy rznt becomes small compared to its low-inten- 
sity value of 0.4S2, as IV0 =* ( F) - I. 

The second model to be discussed includes the fact 
that the annihilation ceases when the number of ex- 
citons in the domain decreases to unity. That is, we 
shall investigate the residual anisotropy, rp, arising 
from the fluctuations of the initial number of exci- 
tons in the domains. The annihilation time, Cannih, is 
supposed to be short enough as compared with the 
unimolecular decay time 7, so that only the last re- 
maining exciton in a domain could decay via fluores- 
cence. The duration of the excitation pulse is as- 
sumed to be sufficiently short compared to the 
unimolecular decay time. With these assumptions the 
exciton-number density at sufficiently long times is 
proportional to the probability for at least one pho- 
ton to be absorbed per domain (such a situation cor- 
responds to the case treated by Mauzerall [ 2 1 ] ): 

Nk,K[l-exP(-Y)] exP(-t/r), ~m&mmih~ 
(4.1) 
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y=3no[Ski + (1 -S)/3] ) (4.2) 

where y is the mean number of excitons created in a 
domain and no is its average over all possible orien- 
tations of the domains. Here the Poisson distribution 
of the number of excitons generated in the domain is 
taken.Usingeqs. (2.9), (2.10), (4.1), and (4.2),we 
obtain 

r~=0.25{2SA-n~‘A+n;’ exp[ - (g+h)]} 

/(l-A) 9 (4.3) 

where 

I 

A=exp(-h) s exp(-&if) dk,, , (4.4) 
0 

g= 3sno ) h=(l-S)n(). (4.5) 

Eq. (4.4) can be rewritten as follows: 

A=OS(7c/g)” erf(g’/*) exp( -h) , O<S< 1 , 

(4.6) 

and 

A= lgl-‘~2F(lg11~2) ew[--(g+h)l , 

-~Gs<O, (4.7) 

with erf( . ..) being the error function and F( . ..) being 
the Dawson function (see section 7.1 of ref. [ 22 ] ). 

For low intensities of the excitation pulse, no c 1, 
the residual anisotropy is close to its maximum of 
0.4s*: 

ry=0.4S2[1-j(l+$-$*)n,]. (4.8) 

In the limit of high intensities, no 1 S I 2 1, the behav- 
iour of the anisotropy depends on the sign of the or- 
der parameter: 

putt_ 1 a ‘12 
m - 

( > 4 3no 
exp[-(l-S)%], O<SGl, 

and 

(4.9) 

r?=(6no)-‘exp[-(2S+l)no], -$GSCO, 
(4.10) 

that is, for S= 1, the anisotropy goes as n& ‘I* [ 181 
and for S= - 4, it goes as n, ’ . In case the transition 
moments of chromophores forming a domain are 

neither parallel (S# 1) nor perpendicular to the ori- 
entational vector k (S# - 4 ), the excitation of all do- 
mains becomes possible. This leads to the exponen- 
tial decay of the anisotropy at high intensities. The 
exponential factors in eqs. ( 4.9 ) and (4.10 ) are equal 
to the probabilities that domains with k,, = 0 (S> 0) 
or k,, = -t 1 (SC 0) were not initially excited. The be- 
haviour of pre-exponential factors depends on the sign 
of the order parameter. At intermediate intensities, 
l<<n,<<(l-S)-’ [(l-S)<<l] or l<no< 
(2S+ 1 )- ’ [ (2S+ 1) c 1 ] , the exponential factors 

are of no importance, and the decrease of the residual 
anisotropy is algebraic ( - n, I’* and - n,j- ’ , as for 
S= 1 and S= - l/2, respectively). 

In fig. 5 we have plotted t-r/r(O) against no for 
different order parameters. 

The discrete model considered above gives a lower 
bound to the residual anisotropy, since in this model 
there is a complete annihilation of excitons as long as 
there is more than one exciton in the domain. For the 
continuous model, the anisotropy reaches its limiting 
value before the mean number of excitons per do- 
main, no, decreases to unity, so the following ine- 
quality must hold: rgont > rp. 

To compare the two models quantitatively, one 
should express the exciton density No as the number 
of excitons per domain: No+no and y-+r/2, where 
r= 2yN (D) is the bimolecular decay rate of a pair of 
excitons in a domain, NCD) being the exciton number 

Fig. 5. Normalized residual anisotropy, r2.“” /r(O), plotted against 
the initial number of excitons per domain no. calculated accord- 
ing to eq. (4.3). 
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density corresponding to one exciton per domain. The 
application of the continuous model is justified as 
long as 7-l **r [6]. Therefore, writing T=r and 
comparing eq. (3.6) with eq. (4.3) or fig. 3 with fig. 
5, for 

No> (yz)-’ [n,,>2(r~)-‘> 1] 

we find that t-z”“’ a r-2. Moreover, in case SZ 1 and 
S# - 4, the residual anisotropy rza falls to zero faster 
than rzt, as the initial density of excitons increases. 
That is, the high-intensity dependence of re,“” is ex- 
ponential and that of rz”“’ is hyperbolic. For S= 1, 
both rp* and rp go as ng”’ [ 181. The relation 
between the two approaches will be discussed in more 
detail elsewhere [ 23 ] using the annihilation model, 
which incorporates both continuous and discrete 
models [ 6 1. 

5. Concluding remarks 

In this paper we have extended our previous work 
on fluorescence depolarization due to exciton anni- 
hilation [ 181 to include the effects of the orienta- 
tional distribution of the transition dipoles of chro- 
mophores (or their aggregates) forming a domain. 
The depolarization was shown to be dependent on the 
order parameter of the domain, S = 4. By using both 
continuous and discrete models for exciton annihi- 
lation, the time and intensity dependence of the flu- 
orescence anisotropy, r, has been investigated. For the 
continuous model, the anisotropy was shown to be a 
function of two variables, @= 3 yNOT and S, where y is 
the annihilation constant, No is the average density 
of excitons created by the pulse, and T is the reduced 
time defined in eq. (3.4). For small reduced times 
(or low intensities), Te ( yNO) -I, the anisotropy is 
close to its low-intensity value of 0.4 S*. In the limit 
of large reduced times, TX= ( yNO) -I, the asymptotic 
decay law depends on the order parameter. That is, 
both for - 4 <S<O and O<S< 1, the anisotropy is 
hyperbolic in reduced time, and for S= 1 and S= - 4 
it goes as T-‘I* and T - ’ (In T+ const. ) , respec- 
tively. At long times, exp( -t/r) e 1, T+r, the an- 
isotropy reaches a finite value, r+f:“* # 0. The resid- 
ual anisotropy f?’ is obtained from eq. (3.6) (or 
fig. 3) by writing @=&o= 3yN,7. Experimentally, yN,, 
and 7 can be determined from the isotropic excited- 

state decay kinetics using eq. (3.7). Thus, a compar- 
ison of the theoretical and experimental rJr(0) 
plotted against & curves gives the value of S, 
r(0) ~0.4 S* being the low-intensity residual anisot- 
ropy. In the case that the absorption and emission di- 
poles are at some angle cr to each other, both r, and 
r(0) should be reduced by the same factor 
d= (3cos*cu - 1) /2. This means that rJr( 0) does not 
depend on cy and thereby the present method gives 
the correct values of S for cx # 0 as well. After the or- 
der parameter is obtained from the intensity depen- 
dence of the residual anisotropy, the angle (1! can be 
estimated knowing the value of the low-intensity an- 
isotropy since, in general, r(0) ~0.4 S*d. 

The discrete model discussed in section 4 gives a 
lower limit to the residual anisotropy, for in this 
model the annihilation is considered to be fast 
enough, so that only the last remaining exciton in a 
domain can decay via fluorescence. Thus, knowing 
the residual anisotropy at high intensities one can ob- 
tain the lower bound to the domain size using eqs. 
(4.3) or fig. 5. 

The domain size of photosynthetic systems [6- 
8,241 and aggregated dye solutions [ 111 is usually 
estimated by comparing the theoretically calculated 
fluorescence quantum yield against intensity curves 
with the curves obtained experimentally. Here we 
have shown that, using the residual fluorescence an- 
isotropy against intensity curves, one can obtain in- 
formation not only about the domain size, but also 
about the orientational distribution of chromo- 
phores (or their aggregates) forming a domain as well. 
The present method, however, is applicable only to 
systems in which the transition moments of chro- 
mophores in domains are ordered (S# 0). 

In this paper we have dealt with the fluorescence 
depolarization. The results presented can also be used 
to analyse the decay of the induced absorption an- 
isotropy in polarized pump-probe experiments, pro- 
vided the changes in the absorption spectrum, U, are 
a linear function of the exciton density. In other 
words, the energy of the excitation pulses should be 
sufficiently low to avoid nonlinear spectral changes. 
The decay of the induced absorption anisotropy in 
the J-aggregated pseudoisocyanine (PIC) dye solu- 
tion will be discussed below. 

In aqueous solutions the highly concentrated PIC 
dye is known to form thread-like J aggregates having 
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an unusually narrow excitonic J band at 573 nm [ 25- 
27 1. The optical properties of J aggregates have been 
the subject of continuous interest for many years 
[ 11,25-35 1. Recently, the excited-state dynamics of 
PIC J aggregates has been investigated by Sundstriim 
et al. using polarized picosecond and subpicosecond 
absorption spectroscopy method [ 111. High values 
of the induced absorption anisotropy have been found 
at long times. This suggests a high orientational order 
of the J aggregates forming a domain. At very low ex- 
citation intensity (below the onset of the annihila- 
tion) the residual anisotropy at long times is 
r(0) co.25 [ 111. Theoretically, r(0) =0.4S2d, with 
d= ( 3cos2a- 1)/2, (Y being the angle between the 
polarization of the J band and that of the spectrum 
of its changes. For PIC J aggregates d= 1 (cy = 0)) since 
the single-photon excitation of the J aggregate in- 
duces a blue shift of the excitonic J band without any 
change to its polarization #2 [ 36 1. In this way, we find 
the order parameter: Sx 0.8. For instance, if the tran- 
sition moments of aggregates forming a domain were 
distributed homogeneously within a cone of half-an- 
gle /3, S= 0.8 would correspond to 8= 34’. Moreover, 
the residual anisotropy was shown to decrease as the 
intensity of excitation pulses increases [ 111. The 
present theory accounts for such a depolarization. At 
I = 1.4~ lOI photons cme2 pulse-’ and il,,= 569 
im (under these conditions the fraction of initially 
excited PIC molecules is about 1 / 3000)) the residual 
anisotropy is: r, = 0.1, that is rJr( 0) = 0.4. Since the 
discrete model presented in section 4 gives a lower 
limit to the residual anisotropy, using fig. 5 we find 
that the domain should contain more than 6 X 1 O3 PIC 
molecules. The slightly higher value of the lower limit 
of the domain size (ND> 104) has been obtained in 
our previous paper [ 181 using a simpler model in 
which S= 1. The estimate ND> 6 x 103, is in agree- 
ment with earlier evaluations of the domain size ob- 
tained from both integrated fluorescence quantum 
yield curves and excited-state decay kinetics [ 111. 
The lack of experimental data on the intensity depen- 
dence of the residual anisotropy of the PIC solution 
does not allow us to obtain information on the ori- 
entational distribution of J aggregates forming a do- 
main using the present technique. Neither are we able 
to compare the experimental decay of the anisotropy 

112 The J band is polarized parallel to the aggregate axis [25,27]. 

at short times with the theoretical one, since the dis- 
tribution time rr of excitons within PIC domains in 

solution is too large (about 100 ps) [ 111. (For S# 1, 
the present theory is applicable only for times greater 
than the redistribution time r,, see section 2.) The fit 
of r(t) at short times is possible for systems where 
either the redistribution time is short enough or the 
transition dipoles of chromophores forming the do- 
main are parallel (S= 1). 

We hope. that the theoretical results presented here 
can be applied to other systems, such as J aggregates 
adsorbed on colloid silica and photosynthetic anten- 
nae. For example, the absence of the depolarization 
suggests that in living cells of green bacteria the exci- 
tation transfer within a bacteriochlorophyll c an- 
tenna occurs between chromophores (or their aggre- 
gates) with parallel transition moments [ 37 1. The 
absence of the depolarization also suggests a high ori- 
entational order of the J-aggregates of PIC on colloid 
silica [ 381. However, although the laser intensities 
employed by Horng and Quitevis [ 381 have been 
comparable to those used by SundstrSm at al. [ 111, 
no intensity-dependent depolarization arising from 
exciton-exciton annihilation has been observed. This 
could be because of the fact that the domains of J ag- 
gregates on colloid silica are considerably smaller than 
those in the solution [ 381. The present theoretical 
investigation seems to be not applicable to photosyn- 
thetic antenna systems of purple bacteria at T, = 296 
K, because the complete decay of the induced ab- 
sorption anisotropy indicates the absence of the long- 
range orientational order of chromophores forming a 
domain [ 391. On the other hand, the high values of 
the residual anisotropy obtained at the longer wave- 
length region of the spectrum at T, = 77 K imply that 
either the bacteriochlorophyll QY transition moments 
are highly oriented or no energy transfer between 
BChl molecules occurs [ 401. 
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Appendix: asymptotic bebaviour of the fluorescence 
anisotropy 

(i) For small reduced times (or low intensities), 
Te (yN,-,)-‘, only a small fraction of the initially 
created excitons has decayed via annihilation: 

(Nk,)=NO[l-f(l+$S*)@]exp(-t/r) 

z&exp( -l/r). (A.11 

As a result, the anisotropy is close to its low-intensity 
value of 0.4 S*: 

r=o.4s*[l-f(l+~S-~S*)~]. (A.2) 

(ii) For large reduced times, T% (YN~)-‘, eqs. 
(3.6) and (3.7) simplify to 

r=OS(R-3/g), (A.3) 

(JC, > = (V)-’ exp( -t/r) =&, (A.4) 

and the asymptotic behaviour of the anisotropy de- 
pends strongly on the value of the order parameter. 
ForO<S<l,wehave 

r=B,@-' , T>> [)J&,( l-S)]-‘, (A.51 

where 

B, =0.5[ (Sb)-“*tan-‘(S/b)“*-31 , (‘4.6) 

with b given by eq. (3.12). That is, the anisotropy 
goes as T - ‘. For S= 1, the anisotropy goes as T - ‘I* 

[ 18 1. The present decay law is also preserved for S# 1 
at intermediate times, provided the transition mo- 
ments are nearly parallel: 

r=0.25x@-“*, 

(yNo)-lezT~[yNo(l-S)]-‘. (‘4.7) 

For negative order parameters, we find that 

r=B2@-‘ , T> WdS- ISIJI-' , (A.81 

r=(2@)-‘[ln(2@)-31, 

(yN,)-‘~T~[yN,(t-ISI)l-‘, (A.9) 

where 

B2=0.5[(JSJb)-‘/*tanh-‘(ISI/b)‘/*-31, 

(A.lO) 

that is, at large reduced times the anisotropy goes as 

T-’ for S# - 4, and for S= - 4 (the transition mo- 
ments of chromophores forming a domain are per- 
pendicular to the orientational vector k) it behaves 
as T - ’ (In T+ const. ). The latter decay law also holds 
for S# - f at intermediate times, provided 

(f-lSl)=l. 
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