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Abstract – Ultracold atoms which are subject to ultra-relativistic dynamics are investigated. By
using optically induced gauge potentials we show that the dynamics of the atoms is governed by
a Dirac-type equation. To illustrate this we study the trembling motion of the centre of mass for
an effective two-level system, historically called Zitterbewegung. Its origin is described in detail,
where in particular the role of the finite width of the atomic wave packets is seen to induce a
damping of both the centre of mass dynamics and the dynamics of the populations of the two
levels.
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Introduction. – Ultracold atoms obeying ultra-
relativistic dynamics would be a match made in heaven.
An atomic cloud cooled down to nano-kelvin tempera-
tures offers an unprecedented opportunity to study and
manipulate a true quantum gas. Relativistic dynamics,
on the other hand, seems at first sight incompatible with
the concept of an ultracold quantum gas. This is not
necessarily the case. It has been noted in earlier works
on atomic gases [1–3], trapped ions [4,5], and also in
layers of graphene [6,7], that it is indeed possible to study
relativistic dynamics for systems which are inherently
non-relativistic. Counter-intuitively this is the case in the
low-momentum limit.
Already in the early days of quantum mechanics the

dynamics of relativistic particles attracted a lot of atten-
tion. It was soon realised that a number of counter-
intuitive results would follow in the relativistic limit, such
as the Zitterbewegung or the Klein paradox. Zitterbewe-
gung has attracted a lot of interest over the years and is
continuing to be an active field of research which involves
a broad range of physical systems [7–10].
The notion of Zitterbewegung itself has its roots in the

work of Schrödinger on the motion of the free particle
based on Dirac’s relativistic generalization of a wave equa-
tion for spin-1/2 particles [11,12]. From these early days on
the existence of the Zitterbewegung for relativistic parti-
cles has also been the subject of some controversy [13,14].

(a)E-mail: magm1@hw.ac.uk

Zitterbewegung results from the interference of the
positive- and negative-energy solutions of the free Dirac
equation. The frequency of this interference process is
determined by the energy gap between the two possi-
ble solution manifolds. In case of the historically first
discussed motion of a free electron wave packet this energy
gap is on the order of twice the rest energy 2mec

2 of the
electron, i.e., the energy necessary to create an electron-
hole pair. For a consistent description in the case of free
electrons the concepts of quantum field theory would be
necessary. If the Zitterbewegung is driven by a process
which corresponds to an energy of the order of the rest
mass, then this unfortunately also makes it rather unlikely
to observe the trembling motion with real electrons [14].
A number of physical systems, can, however, be

described by an effective Dirac equation. For these
systems the creation energy of all participating real
particles is much larger than the gap energy and thus
the processes of particle creation and annihilation can
be disregarded. Moreover, the considered particles are
of a quasi-particle nature involving the atomic internal
states with different spin projections. The combination
of these features allow us to study the phenomenon
of Zitterbewegung in regimes far away from its initial
discovery —the motion of a free electron.
In this paper we will study the trembling centre of

mass motion of an atom characterised by two internal
states, which are subject to an off-diagonal matrix gauge
potential. In the limit of low momenta and strong gauge
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Fig. 1: One possible laser configuration for the tripod system
which results in a non-trivial gauge potential for the two
corresponding dark states.

fields the dynamics is well described by a Dirac-type
equation. In recent papers [2,15–18] it has been shown how
atoms with an internal tripod level structure, see fig. 1,
may evolve under the influence of an effective non-Abelian
vector potential. Here we restrict the motion to only one
direction (see also ref. [3] for a two-dimensional description
of Zitterbewegung).
The paper is organized as follows. In the following

section we will briefly outline the derivation of the gauge
potentials for the spin system. As an example of the
resulting dynamics in the presence of non-trivial gauge
potentials we study the Zitterbewegung for neutral atoms.
We discuss the phenomenon of Rabi-type oscillations of
the atomic internal states occurring in this context and
finally the damping mechanisms due to the finite widths
of the wave packets.

The equation of motion. – In the following we will
assume the motion of the atoms to be restricted to one
dimension. We choose our coordinate system such that the
x-axis is aligned along that particular dimension. A gas of
ultracold atoms can be considered dynamically one dimen-
sional if the corresponding transversal energy scale given
by the transversal trapping frequency is much higher than
all other energy scales, such as the temperature or chemi-
cal potential in the presence of collisional interactions. In
this paper we neglect collisions between the atoms which
is justified if we consider sufficiently dilute gases.
To the effectively one-dimensional cloud of cold atoms

we apply the scheme for inducing non-Abelian gauge
potentials as presented in [16], and obtain in the limit
of low momenta a quasi-relativistic situation as shown
in [2]. For this purpose, we consider the adiabatic motion
of atoms in the presence of three resonant laser beams.
The technique is remarkably versatile and offers the possi-
bility to shape the gauge potentials quite freely. Vari-
ous possibilities exist for creating non-trivial equations
of motions [16]. Here we have chosen a laser configura-
tion where two of the beams have the same intensity but
counter-propagate. The third laser beam has a different
intensity compared to the two other laser beams. Its wave
vector is chosen to be perpendicular to the axis defined by
the propagation direction of laser 1 or 2. The configuration
is depicted in fig. 1.

By defining the total Rabi frequency Ω=
√∑3

n=1 |Ωn|2
and the mixing angle θ from tan θ=

√|Ω1|2+ |Ω2|2/|Ω3|,
we can write the Rabi frequencies of the participating
laser fields in the following form: Ω1 =Ωsin θe

−iκx/
√
2,

Ω2 =Ωsin θe
iκx/
√
2 and Ω3 =Ωcos θe

−iκy. Applying this
notation we find that in the interaction picture the
Hamiltonian is given by

Ĥint =−� (Ω1|0〉〈1|+Ω2|0〉〈2|+Ω3|0〉〈3|)+h.a. (1)

The Hamiltonian Ĥint yields two dark states |Di〉, i= 1, 2,
which contain no contribution from the excited state |0〉:

|D1〉= 1√
2
e−iκy

(
eiκx|1〉− e−iκx|2〉), (2)

|D2〉= 1√
2
e−iκy cos θ

(
eikx|1〉+ e−ikx|2〉)− sin θ|3〉. (3)

Both dark states are eigenstates of Ĥint with zero eigen-
energy. They depend on the position due to the spatial
dependence of the Rabi frequencies Ωi .
The bright state |B〉 ∼Ω∗1|1〉+Ω∗2|2〉+Ω∗3|3〉 is coupled

to the exited state |0〉 with the Rabi frequency Ω and
therefore separated from the dark states by energies ±�Ω.
If |Ω| is large compared to any two-photon detuning or
Doppler shifts due to the atomic motion, we can neglect
transitions out of the dark states, i.e., we use the adiabatic
approximation. In this limit it is sufficient to expand the
general state vector |χ〉 of the quantum system in the dark
state basis

|χ(r, t)〉=
2∑
i=1

Ψi(r, t)|Di(r)〉, (4)

where the expansion coefficients Ψi(r, t) are the wave
functions for the centre of mass motion of the atoms in
the dark state i. By collecting the wave functions in the
spinor

Ψ̄ =

(
Ψ1
Ψ2

)
(5)

we find that the latter obeys the effective Schrödinger
equation [16]

i�
∂

∂t
Ψ̄ =

[
1

2m

(
px− Â

)2
+ V̂ +Φ̂

]
Ψ̄, (6)

where px denotes the momentum along the x-axis and m
is the atomic mass. Here Â is an effective vector potential
matrix, also called the Mead-Berry connection [19,20]
and V̂ and Φ̂ are effective scalar potentials matrices. The
gauge potentials An,m = i�〈Dn(r)|∇Dm(r)〉 and Φn,m =
�
2

2m 〈Dn(r)|∇B(r)〉〈B(r)|∇Dm(r)〉 emerge due to the
spatial dependence of the dark states. The additional
scalar potential is defined by Vn,m = 〈Dn(r)|V̂ |Dm(r)〉
with V̂ =

∑3
j=1 Vj(r)|j〉〈j| and Vj(r) being the trapping

potential for atoms in the bare state j.
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With the setup presented in fig. 1 these potentials take
in the x-direction the form

Â=−�κ
(

0 ex cos θ
ex cos θ 0

)
=−�κ′σxex, (7)

Φ̂ =
�
2κ2

2m

(
sin2 θ 0
0 sin2(2θ)/4

)
, (8)

V̂ =

(
V1 0
0 V1 cos

2 θ+V3 sin
2 θ

)
, (9)

where we have introduced the notation κ′ = κ cos(θ) and
assumed that the external trapping potentials for the first
two atomic states are the same, i.e. V1 = V2. In addition,
the external trap in the transversal direction is assumed
to dominate over any effective gauge potential in this
direction. Hence, we can use an effectively one-dimensional
equation of motion.

The Dirac limit. – In the considered setup the
presence of an energy gap is necessary in order to observe
Zitterbewegung. Such a gap is obtained by different, but
constant, trapping potentials V1 and V3 which can be
altered by detuning the corresponding lasers from the
atomic transitions. Alternatively, the intensity ratio of the
laser beams can be used to adjust the scalar potential.
It is convenient to introduce the following notation:

Vz =
1

2
[V11+Φ11− (V22+Φ22)] (10)

and shift the zero level of energy. The trapping potential
then reads

V̂ +Φ̂= Vzσz = Vz

(
1 0
0 −1

)
, (11)

where σz is one of the Pauli spin matrices. In the limit of
low momenta, i.e., |p| � �κ, we can neglect in eq. (6) the
kinetic energy term and are left with an effective Dirac
equation

i�∂tΨ̄ =

[
−A ·px

m
+
A2

2m
+Vzσz

]
Ψ̄ (12)

=HDAΨ̄ = [c̃σxpx+Vzσz] Ψ̄. (13)

Here c̃= �κ
m
is a recoil velocity, which is typically on the

order of cm/s for alkali atoms and photons in the optical
spectral region. The transition from the Schrödinger to
the Dirac limit, in eq. (13), is most clearly justified by
considering a wave packet with increasing width as shown
in fig. 2 [2]. Equation (13) is the starting point of our main
discussion. We note that the A2 can be absorbed into the
potential term and we are hence left with an equation
which resembles the Dirac equation for a free relativistic
particle with the rest energy substituted by the potential
energy difference between the two levels.

(a)  (b)  

(c)  (d)  

Fig. 2: Density plot showing the Dirac limit and the role of the
initial width of the wave packets. Figures (a)–(c) display the
full Schrödinger dynamics using eq. (6) for initial Gaussian
states with increasing width σ. This results in a sharper
momentum distribution with |p| � �κ increasingly fulfilled.
The pure Dirac case is shown in (d) for comparison. The
dynamics in (a)–(d) shows in addition to the Zitterbewegung
also a damping.

Zitterbewegung. – In most textbooks [21,22] Zitter-
bewegung is derived by solving the Heisenberg equation for
the position operator. For a free particle with rest massm,
the Dirac Hamiltonian HD containing the speed of light c,

HD = cαp+βmc
2, (14)

is used to obtain the time dependence for the position
operator x̂. By using the anticommutation properties of
the Dirac α and β matrices one finds

x̂(t) = x̂(0)+H−1D c2pt

− i�c

2
H−1D

(
e−2iHDt/�− 1

)(
α(0)− cpH−1D

)
. (15)

In eq. (15) the first and second term describe a motion
which is linear in time, while the third term gives an
oscillating contribution, the Zitterbewegung. To observe
this trembling motion an initial 4-component spinor state
needs to contain positive and negative energy solution
parts as the α matrix is mixing these. The frequency
of the oscillating term can be estimated in the particles
rest frame as 2mc2/�. This typically large energy is the
energy difference between a particle and antiparticle.
To obtain Zitterbewegung in cold quantum gases we
emphasise that the two dark states described by eq. (13)
are not a particle-antiparticle pair, but they are still
separated by an energy gap which is generated by the
constant potential term in eq. (11). Different to previous
work [2] the Dirac Hamiltonian HDA now contains a term
which corresponds to an effective rest mass.
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Exact solutions in the Schrödinger limit. – Before
discussing the wave packet dynamics we briefly summarise
the solution of the Schrödinger equation (6) with the
gauge potentials from eqs. (7)–(9). The general solution
can readily be written down in momentum space,

Ψ̄(k, τ) = e−i(k
2+2σxk+Ṽzσz)τ Ψ̄(k, 0), (16)

where now the dimensionless k is expressed in units of
κ′ and the time τ in units of 2m/�κ′2. If we choose a
Gaussian momentum distribution with a width ∆ for the
initial state,

Ψ̄(k, 0) =
1√
∆
√
π
e−(k−k0)

2/2∆2
(
c1
c2

)
, (17)

we obtain an exact time-dependent solution of the form

Ψ̄(k, τ) =
1√
∆
√
π
e−

(k−k0)2
2∆2

+i(k2+1)τ

×

c1 cos(ωkτ)+ i(c1Ṽz+c22k)ωk

sin(ωkτ)

c2 cos(ωkτ)− i(c2Ṽz−c12k)ωk
sin(ωkτ)


, (18)

where we have introduced the k-dependent frequency

ωk =

√
4k2+ Ṽ 2z . (19)

With the solution Ψ̄(k, τ) we can calculate the centre of
mass motion for the two-component wave packet where
we use the standard definition of the density, ρ(k, τ) =
|Ψ1(k, τ)|2+ |Ψ2(k, τ)|2, or the dynamics of any other
quantity depending upon the two dark states.

Dark state dynamics. Our system with two degenerate
dark states shows not only a relativistic behaviour, but
also properties familiar from two-level systems in quantum
optics [23]. In order to see this in more detail we write
the spinor Ψ̄(x, t) as a combination of slowly varying
envelopes, φi(x, t) i= 1, 2, and coefficients which describe
the population of the two dark states,

Ψ̄ =

(
φ1(x)c1(t)
φ2(x)c2(t)

)
. (20)

The spatial shape φi(x, t) should change much slower
than the population ci(t) of the i-th component of the
spinor such that we can neglect all its derivatives with
respect to time. The solutions are normalised according to
〈φi|φi〉= 1 and |c1|2+ |c2|2 = 1. After inserting the ansatz
from eq. (20) into eq. (13) we obtain a set of coupled
differential equations for the coefficients:

i

(
ċ1
ċ2

)
=

(
Vz1 Ω̃

Ω̃∗ Vz2

)(
c1
c2

)
, (21)

where

Ω̃ =
c̃

�
〈φ2|px|φ1〉, (22)

and
Vzi = 〈φi|Vz|φi〉/�. (23)

The two spin components are coupled, hence the solutions
to eq. (21) will show population oscillations between the
two dark states with a frequency

ω2R = |Ω̃|2+
1

4
(Vz1−Vz2)2 . (24)

For a vanishing overlap integral Ω̃, the coupling between
the spin components in eq. (21) becomes zero and we
expect no oscillations of the populations. A non-vanishing
effective Rabi frequency Ω̃ can be achieved if the initial
state has a non-zero momentum of the form

φi(x) = e
−x2/σ2+ik0x (25)

with a width σ and momentum k0, which will consequently
result in population transfer between the two dark states.
A simulation of this situation is shown in fig. 3(f) and
fig. 4. The splitting of the wave packets and their motion in
opposite directions can be well understood by considering
the dispersion relation of eqs. (6) or (13). For k0 �= 0 the
wave packets experience different group velocities from the
different dispersion branches.
To illustrate in more detail the phenomenon of Rabi

oscillations we examine again the exact solution in eq. (18)
and choose an initial state with c1 = c2 = 1/

√
2. The popu-

lation difference, ∆N(t) = |ψ1(t)|2− |ψ2(t)|2, can easily be
calculated in the limit ∆= 0. In this limit the Gaussian
initial state turns into a representation of the delta func-
tion,

∆N(τ) =
4k0Ṽz√
4k20 + Ṽ

2
z

sin2
(
τ

√
4k20 + Ṽ

2
z

)
. (26)

From this result we see the importance of the initial
momentum k0. For k0 = 0 there is no transfer of population
between the dark states, whereas for a non-zero initial
momentum the amplitude of the population oscillation is

proportional to k0. In addition, the frequency
√
4k20 + Ṽ

2
z

is k0-dependent as well.
This behavior is shown for a finite width of the wave

packets in fig. 4 where the width was chosen such that the
dynamics takes place in the Dirac limit. In this case, an
attenuation of the amplitude of the dark state population
difference also occures. The Rabi oscillations are accompa-
nied by the disappearance of the Zitterbewegung; an effect
we will study in the next section in more detail.

The centre of mass dynamics. The transient nature
of Zitterbewegung has already been studied in effective
relativistic systems such as mono- and bilayer graphite [6]
and ultracold atoms [3]. These studies differ, however,
from the present one in several respects. Firstly, refs. [3,6]
consider two-dimensional systems and secondly, they
found that a non-zero momentum in one direction leads
to Zitterbewegung in the perpendicular direction. This
is in contrast to our studies where the Zitterbewegung
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Fig. 3: Left column: the density as a function of time shows

Zitterbewegung for different energy gaps ((a) with Vz =
�
2κ2

2m

and (c) with Vz = 3
�
2κ2

2m
) and in (e) with an initial momentum

k0 = κ
′. Right column: the centre of mass shows the expected

oscillation ((b) and (d)) with an upward drift. With an initial
momentum kick the behaviour is different compared to (a)
and (c), as can be seen in (e) and (f), where the Zitterbewegung
breaks down after a few oscillations as the two states are
moving in different directions. The initial spinor was in (a)–(d)
(1, 1, )T /

√
2 and in (e) and (f) (1, eiπ/4)T /

√
2.

is induced by the potential term in eq. (13) (compare
with eq. (23) in [6] or eq. (11) in [3]). Apart from the
non-vanishing initial momentum leading inevitably to
a vanishing of the interference effect, a finite width of
the wave packets also leads to an attenuation of the
Zitterbewegung. As shown in fig. 2 the attenuation occurs
in both limits, i.e., the Schrödinger and the Dirac limit.
In the following we analyse the exact solution (18) and

study the role of the finite width of the wave packets on
the Zitterbewegung. To this end we consider the center of
mass of the wave packets, i.e.

〈x(τ)〉 = i
∫ ∞
−∞
dkΨ̄†(k, τ)∂kΨ̄(k, τ) =

1

∆
√
π

∫ ∞
−∞
dke−

k2

∆2

(
4k2

ω2k
τ +

Ṽ 2z
ω3k
sin(2ωkτ)

)
, (27)

(a)

(c)

(b)

(d)

(e) (f )
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Fig. 4: Rabi type oscillations superimposing the Zitterbewe-
gung can be seen for an initial preparation with non-zero
momentum k0 = κ

′. The dynamics is sensitive to the initial
conditions. Panels (a) and (b) show |Ψ1(t, x)|2 for the initial
spinor (1, 1)T /

√
2 and (1, eiπ/4)T /

√
2, respectively, whereas

panels (c) and (d) show |Ψ2(t, x)|2 for the initial spinor
(1, 1)T /

√
2 and (1, eiπ/4)T /

√
2. The population of the dark

states is depicted in (e) with (1, 1)T /
√
2 and in (f) with

(1, eiπ/4)T /
√
2 as initial states.

where we have assumed k0 = 0. From the first term under
the integral sign we obtain a drift term for the centre of
mass,

xd = τ

[
1−√π Ṽz

∆
e
Ṽ 2z
∆2 Erfc

(
Ṽz

∆

)]
, (28)

where Erfc is the complementary Error function. In the
limit of Ṽz/∆� 1, and using the asymptotic expansion of
the Error function,

Erfc(x) =
e−x

2

x
√
π

(
1+

∞∑
n=1

(−1)n (2n− 1)!!
(2x2)n

)
, (29)

we obtain a reduced drift as a function of increasing Ṽz/∆.
This is a finite-size effect and stems from the finite width
of the wave packet. The drift motion has already been
identified in our numerical analysis as shown in fig. 3.
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The second term under the integral in (27) stands for the
Zitterbewegung. This is an effect due to the Âpx-term in
the Schrödinger equation (6) in contrast to the mechanism
in [24]. Again, in the limit Ṽz/∆� 1, the integral can be
readily calculated and gives for the oscillating part

xz =
1

Ṽz

sin
(
2Ṽzτ +

1
2 arctan(

∆2

4Ṽz
τ)
)

(1+ ∆4

16V 2z
τ2)1/4

. (30)

From this expression we see that a spread in the momen-
tum distribution will cause a damping also for the oscil-
lating term of the centre of mass. The damping of the
Zitterbewegung is relatively slow, but inevitable. This can
be explained by envisaging a collection of oscillators each
with a different frequency which is k-depenent. In this
case the centre of mass will show a damping if the revival
time is infinite. The underlying equation is after all the
Schrödinger equation, and only in the limit ∆= 0 should
we strictly speaking use a Dirac-type equation. With the
full Schrödinger equation a free wave packet will always
expand, albeit slowly if ∆ is small, and hence will also
show a damped Zitterbewegung.
For a typical alkali atom such as 87Rb with a wave

packet width of 10µm one would get ∆2τ/4Ṽz > 1 for
times larger than 1ms, with a centre of mass oscillation
frequency of the order of 1 kHz and a corresponding
amplitude of the order of two microns. Hence a broad
wave packet as initial state would favour the detection of
the Zitterbewegung. The experimental setup for observing
these effects would be remarkably simple. The dark states
need to be prepared, but the rest is free expansion.

Conclusions. – In this letter we have showed using
ultracold atoms how Zitterbewegung, known from
relativistic physics, is a generic phenomenon which will
naturally occur in systems with degenerate eigenstates.
The additional effects such as drift, attenuation and
Rabi-type oscillations have been discussed. The role of
initial momenta and the width of the wave packets has
been investigated. Interestingly, the atomic scenario offers
a number of new possibilities. We are now in a position,
for instance, to study a system which would correspond to
a confined Dirac particle by introducing external atomic
potentials, either by optical or magnetical means, for the
atoms. If the external trap is weak compared to the Ṽz,
its influence on the wave packet dynamics can be deduced
from the dispersion relation. In the opposite limit the
trap dynamics dominates with reduced Zitterbewegung.
This consequently leads us to ponder whether the present
system will show Bose-Einstein condensation, and, if
so, what will such a quantum state look like [25]. In
this context interactions between the atoms will play
an important role, where one would be faced with a
non-linear Dirac-type equation to describe the dynamics.

The source of the non-linearity is, however, non-trivial
due to the underlying collisions between the two dark
states.
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Appl. Phys. B, 89 (2007) 439.
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