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Geometric potentials in quantum optics: A semi-classical
interpretation
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Abstract –We propose a semi-classical interpretation of the geometric scalar and vector potentials
that arise due to Berry’s phase when an atom moves slowly in a light field. Starting from the full
quantum Hamiltonian, we turn to a classical description of the atomic centre-of-mass motion
while still treating the internal degrees of freedom as quantum variables. We show that the scalar
potential can be identified as the kinetic energy of an atomic micro-motion caused by quantum
fluctuations of the radiative force, and that the Lorentz-type force appears as a result of the
motion-induced perturbation of the internal atomic state. For a specific configuration involving
two counter-propagating Gaussian laser beams, we relate the geometric forces to the radiation
pressure and dipole forces known from quantum optics. The simple physical pictures provided by
the present analysis may help for the design and the implementation of novel geometric forces.
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Cold atomic gases are considered as efficient simulators
of quantum condensed matter systems (for a review, see
e.g. [1]). The confinement potential and the atomic inter-
actions can be tailored almost at will, allowing, for exam-
ple, to mimic with atomic vapours situations encountered
for electrons in solid state materials. A major step in
the implementation of these simulators is the possibility
to apply a gauge field to the cold atomic gas in order
to model the vector potential appearing when charged
particles are placed in a magnetic field. Up to now such
gauge fields have been mostly obtained by rotating the
gas [2]. In this case the transformation to the rotating
frame indeed corresponds to giving the particles a ficti-
tious charge, and applying an effective uniform magnetic
field. Another method consists in using so-called geomet-
ric potentials which can considerably extend the range of
gauge fields realisable in neutral gases. In particular, they
offer the possibility to produce non-homogeneous or time-
dependent effective orbital magnetism.
Geometric potentials [3–6] generally result form Berry’s

phase [7] that appears when particles with an internal
structure move slowly enough that their fast internal
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dynamics adiabatically adjusts to the centre-of-mass
motion. In quantum optics such geometric potentials
can be generated using laser beams to split the atomic
internal energy levels. This was suggested in [8,9], and
a first experimental investigation was presented in [10].
The concept of geometric potentials can be extended to
simulate gauge fields that are more elaborate than the
U(1)-symmetry of electromagnetism. Using appropriate
laser configurations, one can in principle implement the
general ideas outlined in [11] to generate non-Abelian
gauge fields [12,13].
In spite of numerous investigations of possible geomet-

ric potentials in quantum optics, a simple physical inter-
pretation of the forces appearing due to the gauge fields
seems still to be lacking. Of course these forces ultimately
arise from the exchange of momentum between light and
atoms, but this generic process can lead to different phys-
ical mechanisms. Since identifying these mechanisms may
help to design future configurations, we propose in this
letter a semi-classical analysis of geometric potentials. Our
approach is directly inspired by the formalism used to
calculate the standard radiative forces acting on an atom
placed in a laser beam. We first present the general semi-
classical derivation of the two (scalar and vector) geomet-
ric potentials acting on an atom. We then discuss the
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various physical pictures that emerge for the concrete im-
plementation that has been proposed in [14].
We start with a brief reminder of the standard formal-

ism of geometric potentials, in which both internal and
external (centre-of-mass) atomic degrees of freedom are
treated using quantum mechanics. The relevant internal
dynamics is described in an N -dimensional Hilbert space.
The atom can be submitted to static electric or magnetic
fields as well as to time-dependent electromagnetic fields.
The fields are supposed to be in a coherent state so that
they can be described by classical functions. Assuming
that the time-dependence of the atom-field interaction can
be eliminated using the rotating-wave approximation, the
eigenstates of the atom-field coupling form an orthogonal
basis {|ψj(r)〉, j = 1, . . . , N} of the internal Hilbert space
of the atom at any point r. We denote Ej(r) the corre-
sponding energies. The Hamiltonian of the problem is thus

Ĥ =
p̂2

2M
+ V̂ (r), (1)

V̂ (r) =

N∑
j=1

Ej(r) Q̂j(r). (2)

Here,M is the atomic mass, p̂=−i�∇ the centre-of-mass
momentum operator and Q̂j(r) = |ψj(r)〉〈ψj(r)| the
projector onto the j-th internal eigenstate. Suppose now
that the energy of one of the internal eigenstates, say
|ψ1〉, is well separated from the other ones. We choose
the initial internal atomic state equal to |ψ1(r)〉 at any
point r and suppose that the atom moves slowly enough
for the adiabatic theorem to hold. The internal state then
remains equal to |ψ1〉 at any time, and the energy E1(r)
plays the role of a potential energy for the centre-of-mass
motion. In addition, the geometric phase accumulated by
the atom gives rise to additional vector A(r) and scalar
U(r) potentials so that the atom Hamiltonian in the
adiabatic approximation [3–6] reads

Ĥadiab. =
(p̂−A(r))2
2M

+E1(r)+U(r), (3)

with
A(r) = i� 〈ψ1(r)|∇ψ1(r)〉, (4)

U(r) =
�
2

2M

∑
j �=1
|〈ψ1(r)|∇ψj(r)〉|2 , (5)

where we note by convention |∇ψ(r)〉=∇ (|ψ(r)〉).
The goal of this letter is to provide a simple physical

interpretation of these potentials within the framework
of a semi-classical analysis. Here, the term semi-classical
refers to the fact that we describe the atomic internal
degrees of freedom using quantum mechanics, but we
treat classically the centre-of-mass motion. Within this
approximation we want to recover the equation of motion

M
dv

dt
=−∇E1(r)−∇U(r)+v×B(r) (6)

corresponding to the Hamiltonian (3). This equation of
motion involves three forces. The first one is simply the
gradient of the energy E1 of the occupied level. The second
one originates from the scalar potential U(r), and the
third one has the structure of a Lorentz force for a charge
q= 1 in an effective magnetic field B(r) =∇×A(r).
The main tool for the semi-classical analysis is the force

operator acting on the N -dimensional Hilbert space:

F̂ (r) =−∇V̂ =−
∑
j

(
∇(Ej) Q̂j +Ej∇(Q̂j)

)
. (7)

Knowing the internal state |φ〉 for an atom at point r (a
concept which is valid within the semi-classical approach),

we will be able to calculate the average force 〈φ|F̂ (r)|φ〉
and the correlation functions of the force operator. This
semi-classical approach has been very fruitful for the study
of the radiative forces acting on an atom irradiated by
laser beams [15], and its connection with a full quantum
description of the atomic motion in laser light is well
established [16].

Origin of the scalar potential. – In this section we
consider an atom with zero centre-of-mass velocity, so that
the Lorentz force in (6) is also zero. The atom internal
state is supposed to be |φ〉= |ψ1〉 and we immediately get
from (7)

〈F̂ (r)〉=−∇E1, (8)

where we used that the states {|ψj(r)〉} form a normalised
orthogonal basis at any point r. We thus recover the
first term in eq. (6) but not the force originating from
the scalar potential U(r). This could be expected since
expression (5) of the scalar potential involves the atomic
massM , which does not enter in expression (7) of the force

operator F̂ . The scalar potential can still be recovered
within the semi-classical approach, as we show now,
provided one goes one step beyond the mere calculation
of the average force.
The starting point of our reasoning consists in noting

that the state |ψ1〉 occupied by the atom is an eigenstate
of the coupling Hamiltonian V̂ , but not an eigenstate of
the force operator F̂ . Hence, 〈F̂ 2〉 �= 〈F̂ 〉2 or, in physical
terms, the force acting on the atom undergoes quantum
fluctuations around its average value. As we will see,
these fluctuations occur at the typical Bohr frequencies
ωj1 = (Ej −E1)/� of the internal atomic motion. For the
adiabatic approximation to hold, these frequencies have
to be much larger than the characteristic frequencies of
the external atomic motion. Consequently, the quantum
fluctuations of the force cause a fast micro-motion of the
atom, similar to the one arising for charged particles in
a Paul trap [17]. The kinetic energy of the micro-motion
then plays the role of a potential for the slow motion of
the atomic centre of mass [18]. We demonstrate below
that this kinetic energy coincides with the scalar potential
U(r).
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The fluctuations of the force operator F̂ are charac-
terised by the symmetrised correlation function of the op-
erator δF̂ = F̂ −〈F̂ 〉, calculated in the Heisenberg picture:

C(t, t′) =
1

2
〈δF̂ (t) · δF̂ (t′)+ δF̂ (t′) · δF̂ (t)〉. (9)

Since the average is taken in an eigenstate of the Hamilto-
nian, C(t, t′) depends only on the time difference τ = t− t′
and we obtain after some algebra

C(τ) =
∑
j �=1

Cj cos (ωj1τ) , (10)

with

Cj = �
2ω2j1 |〈ψ1|∇ψj〉|2. (11)

In order to understand the consequences of these fluc-
tuations, consider a classical particle submitted to a
stochastic force F (t) such that F (t) = 0 and F (t) ·F (t′) =
C(t− t′). The Fourier transform f(ω) of F (t) is such
that f(ω) = 0 and f∗(ω) ·f(ω′) = δ(ω−ω′)B(ω), where

B(ω) =
1

2

∑
j �=1

Cj (δ(ω+ωj1)+ δ(ω−ωj1)) (12)

is the Fourier transform of C(τ). The solution of the equa-
tion of motion ṗ=F is

p(t) =

∫
f(ω)

iω
eiωt dω (13)

and has a zero average. However, the average kinetic
energy is strictly positive and equal to

p2

2M
=

∫
B(ω)

2Mω2
dω. (14)

In the explicit calculation of (14), the contribution of the
ω−2 denominator cancels out the transition frequencies
ωj1 that appear in expression (11) of Cj . Finally one ex-
actly recovers the result (5) for the scalar potential. This
validates the interpretation of this potential in terms of
the kinetic energy of the atomic micro-motion.
The above result sheds new light on the Hamiltonian (3)

of the full quantum description. We can now interpret the
term M v̂2/2, with M v̂= p̂−A, as the kinetic energy of
the slow centre-of-mass motion, whereas the kinetic en-
ergy of the fast micro-motion builds the scalar potential
U(r). It is also interesting to connect the present analysis
of the scalar geometric potential with the intriguing
problem of a two-level atom moving around the node
of a standing wave. In the latter case, it is found that
the average force acting on the atom is zero, as expected
since the light intensity vanishes at the nodes. However,
the atomic momentum diffusion coefficient, which is also
related to the correlation function of the force operator, is
non-zero [15,19].

Origin of the Lorentz force. – We now consider the
case of a slowly moving atom and calculate the average
of the force operator (7) at first order in velocity. More
precisely, we assume an atom initially at rest in the inter-
nal state |φ〉= |ψ1〉, that is adiabatically set in motion
to reach a velocity v. Because of this motion the inter-
nal atomic state contains some admixture of the other
eigenstates |ψj〉 and the average force is different from the
zero-velocity result.
We write the internal state as |φ〉=∑j αj |ψj〉 and solve

the Schrödinger equation as a power series in velocity. The
procedure detailed in the appendix gives the coefficients
αj at first order in v:

αj(t)� i�v · 〈ψj |∇ψ1〉
Ej −E1 e−iE1t/� (j �= 1). (15)

The calculation of the average force at first order in v is
also outlined in the appendix and leads to

〈F̂ 〉= i�〈∇ψ1| (v · |∇ψ1〉)+ c.c. (16)

One can readily check that this expression coincides with
the Lorentz force v×B appearing in eq. (6).
This way of recovering the Lorentz force is very rem-

iniscent of the general semi-classical calculation of the
velocity-dependent radiative forces [15,16]. There is one
important difference, however. In the latter case one gen-
erally finds F ·v �= 0, which is at the origin of laser cooling
(for example via the Doppler or Sisyphus mechanisms).
In the particular case considered here, no photon sponta-
neous emission process occurs, dissipation is absent, and
we are left with a Lorentz force of geometric origin.

Illustration for a particular atom-laser configu-
ration. – We now relate the geometric forces in quantum
optics to the known radiative forces that generally act
on an atom irradiated by one or several laser beams. We
thus explain the mechanisms at the origin of the geomet-
ric potentials in terms of exchange of momentum between
atoms and light. For this purpose, we turn to the specific
configuration sketched in fig. 1, which has been proposed
in [14]. A three-level atom with two degenerate ground
states |g±〉 and an excited state |e〉 is irradiated by two
counter-propagating laser beams. The beam propagating
in the +y (respectively, −y) direction drives the transi-
tion g+↔ e (respectively, g−↔ e). The two beams have
the same waist w and the same intensity. They are offset
with respect to the y-axis by a distance ±b/2, where b is
typically of the order of w.
Using the rotating-wave approximation the atom-light

coupling can be written as

V̂ (r) =−�∆|e〉〈e|+
∑
j=±
(�κj(r)|e〉〈gj |+h.c.) . (17)

The Rabi frequencies κ± are given by

κ±(r) = κ e±iky e−(x∓b/2)
2/w2 , (18)
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Fig. 1: Atomic level scheme and laser configuration proposed
in [14] to generate a vector and a scalar potential.

where k is the modulus of the wave vector of the laser
beams. We assume that the Raman resonance condition is
satisfied between the two ground levels g±, and we denote
∆ the detuning of the laser frequency with respect to the
g±↔ e transition.
A well-known characteristic of this configuration is that

one of the three eigenstates of V̂ (r) involves only the two
ground states |g±〉 and has zero overlap with the excited
state |e〉 [20–22]. An atom prepared in this so-called non-
coupled or dark state will not undergo any spontaneous
emission process, which is a key feature for the practical
use of geometric potentials. The non-coupled state is

|ψ1〉= κ−
Ω
|g+〉 − κ+

Ω
|g−〉, (19)

where we set Ω= (|κ−|2+ |κ+|2)1/2. The corresponding
energy at any point is E1(r) = 0 so that the first term on
the right-hand side of (6) vanishes. The scalar potential
and the effective magnetic field are [14]

U(x) =
�
2(k2+ b2/w4)

2M
G(x), (20)

B(x) =−2�kb
w2

G(x)uz, (21)

where G(x) = cosh−2(2xb/w2).
We start our analysis with the scalar potential U(r).

When x→±∞, it tends to zero as expected from its inter-
pretation as the energy of a micro-motion, which vanishes
when the atom sits outside the laser beams. The value of
U at r= 0 can also be recovered easily. At this point the
two components of the force operator are

F̂x =−F0 (|e〉〈ga|+ |ga〉〈e|) , (22)

F̂y =−iF1 (|e〉〈ga| − |ga〉〈e|) , (23)

where F0 =
√
2 �κb/w2, F1 =

√
2 �kκ and where we

have introduced the antisymmetric combination |ga〉=
(|g+〉− |g−〉)/

√
2. At r= 0, |ψ1〉= |ga〉 so that 〈F̂x,y〉= 0,

which directly follows from E1(r) = 0. The correlation
function of the force is readily calculated; choosing ∆= 0
for simplicity, we find C(τ) = (F 20 +F

2
1 ) cos(

√
2κτ). The

kinetic energy of the micro-motion induced by this oscil-
lating force is (F 20 +F

2
1 )/(4Mκ2) and indeed coincides

with the general result (20) at x= 0. For realistic laser
configurations the waist w and the offset b are large com-
pared to k−1 so that the dominating contribution is due
to F1, corresponding to a micro-motion directed along the
propagation axis y of the beams.
The two operators F̂x and F̂y given in (22), (23) are the

so-called dipole force operator and radiation pressure force
operator, respectively. The dipole force F̂x originates from
the intensity gradient of the laser beams along the x-axis.
In terms of photon momentum exchange, it can be under-
stood as a redistribution of photons between the various
plane waves that contribute to the formation of the
intensity gradient (see, e.g., [19]). The radiation pressure
force F̂y originates from the phase variation e

±iky of the
laser beams along the y-axis. It leads to changes of atomic
momentum by ±�k when the atom absorbs a photon from
one of the laser beams. Interestingly, the cancellation of
the average force acting on an atom at rest at r= 0
in the internal state |ga〉 results from a destructive interfer-
ence. For example, 〈F̂x〉= 0 because the state |ga〉 is a
combination with equal weights of the two eigenvectors
|χ±〉= (|ga〉± |e〉)/

√
2 of the force operator F̂x. The dipole

force felt by an atom in state |χ±〉 is ∓F0, so that the
average force vanishes for an atom prepared in |ga〉.
We now turn to the case of a moving atom and to the

interpretation of the Lorentz force. As the force is linear
in velocity, we can study separately the cases of a motion
parallel to the x- and to the y-axis. We first consider an
atom moving along the y-axis with velocity vy. Its internal
state differs from the value |ga〉 of an atom at rest, and its
expression at first order in vy, as deduced from (15), is

|φ〉= |ga〉+ kvy√
2κ
|e〉, (24)

where we have again chosen ∆= 0 for simplicity. This state
can also be calculated directly by switching to the atom
rest frame, which amounts to adding the small perturba-
tion δV̂ = kvy(Q̂−–Q̂+) to the atom-light coupling, where
Q̂± is the projector on the state |g±〉. One can check that
the state |φ〉 is an eigenstate of the perturbed coupling
V̂ + δV̂ with the same eigenvalue 0. The average force
acting on an atom in the state (24) is not zero anymore.
The perfect balance between the two dipole forces ±F0
is now broken to the benefit of −F0 (+F0) if vy > 0
(vy < 0). The explicit calculation of 〈φ|F̂x|φ〉 is immedi-
ate and yields exactly the Lorentz force value −2�kbvy/w2
obtained from eq. (21). In the case of a motion along the
y-axis, the Lorentz force is therefore a direct consequence
of the dipole potential. Remarkably, the Lorentz force is
independent of the Rabi frequency κ although the dipole
force amplitude F0 is proportional to κ. The reason is that
the “rotation” angle of the state |φ〉 with respect to the
non-coupled state scales as κ−1 (see eq. (24)) and this
scaling exactly compensates for the κ-dependence of F0.
We finally consider an atomic motion along the x-axis,

with a Lorentz force along the y-axis, originating thus from
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the radiation pressure force operator F̂y. This case could
be analysed along the lines of eqs. (15), (16), but it is actu-
ally more instructive to look at the cumulative effect of the
Lorentz force, i.e. the change of momentum along y, when
the atom crosses the two laser beams. Suppose that the
atom is initially located at time t1 at a point x1 < 0 with
|x1| 
w. At this location κ+/κ− = exp(2x1b/w2)� 1,
so that eq. (19) leads to |ψ1〉 � |g+〉. At a later time t2 the
atom has reached the point x2 =−x1, where |ψ1〉 � |g−〉.
The momentum change caused by the Lorentz force is
aligned with the y-axis and its value is

∆py =−
∫ t2
t1

Bzvx dt=−
∫ x2
x1

Bz(x) dx

= �k
[
tanh(2x2b/w

2)− tanh(2x1b/w2)
]
. (25)

With the above assumption that |x1|= |x2| 
w and
b∼w, we obtain

∆py � 2�k. (26)

This expression has a clear physical interpretation in terms
of photon absorption and stimulated emission. When the
atom moves from x1 to x2, its internal state rotates adi-
abatically from |g+〉 to |g−〉. This happens by the ab-
sorption of a photon from the wave propagating in the
+y-direction, driving the g+→ e transition, and the stim-
ulated emission of a photon in the wave propagating in the
−y-direction, driving the e→ g− transition. The origin of
the Lorentz force in this case is therefore closely related to
the so-called STIRAP process (Stimulated Raman Adia-
batic Passage) [23].

Discussion and conclusion. – We have given here a
semi-classical interpretation of the geometric forces that
act on a slowly moving particle with multiple, spatially
varying, internal energy levels. Such a situation is encoun-
tered in quantum optics when an atom moves in the light
field created by several quasi-resonant laser beams. The
main assumption is that the atom follows adiabatically one
of its internal energy levels which is supposed to be well
separated from all the other ones. Under these conditions
the atomic centre-of-mass motion involves a scalar and a
vector potential. The scalar potential originates from the
kinetic energy of the micro-motion of the atom, under the
action of the quantum fluctuations of the radiative force
operator. The Lorentz-type force associated with the vec-
tor potential results from the perturbation of the atomic
internal state due to the slow atomic motion. This changes
the expectation value of the force with respect to an atom
at rest, but does not induce any dissipation. The way we
obtain our results is very reminiscent of the general deriva-
tion of the radiative forces created by quasi-resonant laser
beams. Taking as an example the configuration proposed
in [14], we have related the intervening geometric forces
with either the radiation pressure force or the dipole force.
Our approach can be viewed as a quantum version

(for the internal degrees of freedom) of the fully classical
results of [24], where the authors analysed the motion of a

particle with a permanent magnetic moment placed in a
strong, non-homogeneous magnetic field. There, a rapid
oscillation of the magnetic moment superimposed onto a
slow secular motion was found. This rapid oscillation gives
rise to a scalar potential similar to the one of interest
here. When the particle with its magnetic moment initially
aligned with the magnetic field was set in motion, it
was found that the magnetic moment acquires a non-zero
component in a direction perpendicular to the magnetic
field. The Lorentz-type force that emerged in this situation
is also very similar to the present one.
To conclude, geometric potentials may constitute in the

future a key ingredient for the realisation of a general
“quantum gas toolbox” that allows one to address various
open problems of many-body physics. We hope that the
simple physical pictures provided by the present analysis
may help for the design and the implementation of novel
geometric forces in this context.
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Appendix

Derivation of the Lorentz force. – In this appendix
we detail the calculation of the perturbed state |φ〉 of a
slowly moving atom and the resulting force 〈F̂ 〉. At time
0 the atom is at rest in the internal state |φ〉= |ψ1〉. We
suppose that it is uniformly accelerated during a time T
to a velocity v: v(t) = v t/T for 0� t� T . Our aim is to
calculate |φ〉 and 〈F̂ 〉 at time T .
The general expression of the internal atomic state is
|φ(t)〉=∑j αj(t)|ψj(r(t))〉, leading to the average of the
force operator (7):

〈F̂ 〉= −
∑
j

∇Ej |αj |2

+
∑
j,k

(Ek −Ej) α∗kαj 〈ψk|∇ψj〉. (A.1)

To calculate the force at first order in v, we need all coef-
ficients αj also at first order. Using the Schrödinger equa-

tion i�|φ̇〉= V̂ (r(t))|φ〉 and |φ̇〉=∑j α̇j |ψj〉+αj v · |∇ψj〉,
we get the corresponding equations of motion:

α̇j =−iEjαj/�+
∑
k

αk v · 〈ψj |∇ψk〉. (A.2)

At order zero all αj ’s are zero except α1(t)=exp(−iE1t/�).

60001-p5



M. Cheneau et al.

At order one we obtain for j �= 1

αj(T ) =−v · 〈ψj |∇ψ1〉 e−iEjT/�
∫ T
0

ei(Ej−E1)t/�
t

T
dt,

(A.3)
where |ψj〉, |ψ1〉, Ej and E1 are taken at order zero in v,
hence at the location r of the atom at time T . Assuming
that the atom is adiabatically set into motion, i.e. T (Ej −
E1)/�
 1, we get

αj(T )� i�v · 〈ψj |∇ψ1〉
Ej −E1 e−iE1T/�. (A.4)

At order one in v the equation of motion for α1 is

α̇1 =−i(E1−v ·A)α1/�, (A.5)

whose solution is a number of modulus 1. The two re-
sults (A.4) and (A.5) entail that the first part of 〈F̂ 〉
in (A.1) has no first-order component in v since the con-
tributions of the αj ’s for j �= 1 are at least of order 2, and
the contribution of α1 is independent of v. In the second
part of (A.1), the only relevant terms are those where one
of the two indices k or j equals 1. Applying the closure
relation and keeping the terms linear in velocity, we finally
reach the result (16) for the average force. We note that
our procedure is similar to the original derivation of the
geometric phase [7], which emerges from the term v ·A
in (A.5).
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