
Herding model and 1/f noise

This article has been downloaded from IOPscience. Please scroll down to see the full text article.

2011 EPL 96 60007

(http://iopscience.iop.org/0295-5075/96/6/60007)

Download details:

IP Address: 193.219.47.101

The article was downloaded on 09/12/2011 at 14:05

Please note that terms and conditions apply.

View the table of contents for this issue, or go to the journal homepage for more

Home Search Collections Journals About Contact us My IOPscience

http://iopscience.iop.org/page/terms
http://iopscience.iop.org/0295-5075/96/6
http://iopscience.iop.org/0295-5075
http://iopscience.iop.org/
http://iopscience.iop.org/search
http://iopscience.iop.org/collections
http://iopscience.iop.org/journals
http://iopscience.iop.org/page/aboutioppublishing
http://iopscience.iop.org/contact
http://iopscience.iop.org/myiopscience


December 2011

EPL, 96 (2011) 60007 www.epljournal.org

doi: 10.1209/0295-5075/96/60007

Herding model and 1/f noise

J. Ruseckas
(a)
, B. Kaulakys and V. Gontis

Institute of Theoretical Physics and Astronomy, Vilnius University - A. Goštauto 12, LT-01108 Vilnius,
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Abstract – We provide evidence that for some values of the parameters a simple agent-based
model, describing herding behavior, yields signals with 1/f power spectral density. We derive a
non-linear stochastic differential equation for the ratio of number of agents and show, that it
has the form proposed earlier for modeling of 1/fβ noise with different exponents β. The non-
linear terms in the transition probabilities, quantifying the herding behavior, are crucial to the
appearance of 1/f noise. Thus, the herding dynamics can be seen as a microscopic explanation of
the proposed non-linear stochastic differential equations generating signals with 1/fβ spectrum.
We also consider the possible feedback of macroscopic state on microscopic transition probabilities
strengthening the non-linearity of equations and providing more opportunities in the modeling of
processes exhibiting power-law statistics.

Copyright c© EPLA, 2011

Introduction. – Kirman’s seminal herding model was
introduced in refs. [1,2]. This is a simple stochastic
model of information transmission initially designed to
explain the herding behavior in ant colonies, gathering
food from two identical sources located in their neighbor-
hood. Kirman noticed that entomologists and economists
observe similar patterns in rather different systems. If
there are two identical food sources available to ants in a
colony, majority of ants still tend to use only a single food
source at any given time. Furthermore, switches to the
new food source occur despite the fact that food sources
remain identical [3]. Human crowd behavior tends to be
quite similar, at least in the statistical sense. There are
observations that the majority of people tend to choose
more popular products, than less popular ones, despite
both being of a similar quality. The article [2] also cites
numerous works, which speculate that herding behavior
might be related to the fluctuations of asset price. In
Kirman’s formalization the switching probabilities do not
depend on the source, thus the probability distribution of
ant’s visiting times at both mangers is symmetric.
Kirman’s model and similar approaches have been

applied as models of herding and contagion phenomena
in financial markets [1,4,5]. In ref. [6] the equilibrium
distribution of the related discrete-time stochastic process

(a)E-mail: julius.ruseckas@tfai.vu.lt

within the more general theoretical framework of Polya
urn processes has been derived. The associated Fokker-
Planck equation for the pertinent continuous symmetric
dynamic process has been derived and solved in ref. [7].
The parameters of Kirman’s herding model applied to the
description of financial markets were estimated in ref. [8]
by the introduction of a simulated moment approach
extracting two key parameters of the model via match-
ing of the empirical kurtosis and the first autocorrelation
coefficient of squared returns. A direct estimation of the
parameters of a related agent-based model, based on a
closed-form solution of the unconditional distribution of
returns, has been proposed in ref. [9]. Kirman’s model was
generalized in ref. [10]. It is worth noticing that the appro-
priate agent-based models can yield emergence the power-
law scaling, long-range correlations, (multi)fractality and
fat tails (see, e.g., [11,12] and references herein), however
the omnipresent 1/f noise have not yet been revealed in
such approach.
The phrases “1/f noise”, “1/f fluctuations”, and

“flicker noise” refer to the phenomenon, having the power
spectral density at low frequencies f of signals of the form
S(f)∼ 1/fβ , with β being a system-dependent parame-
ter. Power-law distributions of spectra of signals with
0.5<β < 1.5, as well as scaling behavior in general, are
ubiquitous in physics and in many other fields, including
natural phenomena, human activities, traffics in computer
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networks and financial markets [13–23]. This subject has
been a hot research topic for many decades (see, e.g., a
bibliographic list of papers by Li [24], and a short review
in Scholarpedia [13]). Despite the numerous models and
theories proposed since its discovery more than 80 years
ago [25,26], the subject of 1/f noise remains still open
for new discoveries. Most of the models and theories
are not universal because of the assumptions specific to
the problem under consideration. In 1987 Bak et al. [27]
introduced the notion of self-organized criticality (SOC)
with the motivation to explain the universality of 1/f
noise, as well. Although the paper [27] is the most cited
paper in the field of 1/f noise problems, it was shown
later on [28,29] that the mechanism proposed in [27]
results in 1/fβ fluctuations with 1.5<β < 2 and does
not explain the omnipresence of 1/f noise. On the other
hand, we can point to a recent paper [30] where an
example of 1/f noise in the classical sandpile model has
been provided. A short categorization of the theories and
models of 1/f noise is presented in the introduction of
the paper [31].
Recently, the non-linear stochastic differential equations

(SDEs) generating signals with 1/f noise were obtained in
refs. [32,33] (see also recent paper [31]), starting from the
point process model of 1/f noise [34–39]. Nonlinear SDEs
provide macroscopic description of a complex system.
Microscopic, agent-based reasoning of equations exhibit-
ing 1/f noise can yield further insights into the behavior
of the system. In this paper we show that it is possible to
obtain non-linear SDE of the form of refs. [32,33] starting
from the agent-based herding model. Thus, it is possible
to show analytically that the non-linear nature of herding
interactions and appropriate choice of variable results in
1/f fluctuations.

The herding model. – In papers [1,2,4] Kirman
employed a simple model to describe the behavior of
a multitude of heterogeneous interacting agents. In the
model the dynamic evolution is described as a Markov
chain. There is a fixed number N of agents, each of them
being in state 1 or in state 2. The number of agents in
the first state is denoted by n, and the number in the
second state by N −n. The core of Kirman’s model is
the pairwise interaction governing the transition of the
agents between the two states. Neither the probability of
following another companion nor the success in recruiting
companions depend on the outcome of previous meetings.
The lack of memory of the agents is the crucial assumption
to formalize the population dynamics as a Markov process.
Describing the dynamics as a jump Markov process in
continuous time, the transition probabilities per unit time
are given by

p(n→ n+1)≡ p+(n) = (N −n)(σ1+hn), (1)

p(n→ n− 1)≡ p−(n) = n(σ2+h(N −n)). (2)

The above probabilities define a one-step stochastic
process [40]. The constants σ1 and σ2 describe the

idiosyncratic propensity to change the state, while the
term h describes the herding tendency. We allow the two
constant parameters σ1 and σ2 to assume different values,
generating asymmetric behavior. The non-linearity in the
transition probabilities (1) and (2) constitutes a crucial
ingredient of the model: the presence of non-linear terms,
is the imprint of interactions among agents. The linear
terms would imply independence of the behavior of the
agents.
The transition rates (1) and (2) describe a scenario

where the interaction among agents does not depend on
the fraction of agents in the alternative states, but rather
on the overall number of such agents. Such a choice
makes the transition rates non-extensive, the connectivity
between agents increases with the number of agents N .
The interactions have a global character, the range of
the correlations involves a macroscopic fraction of agents.
This means that temporal correlations in the level of
fluctuations might be observed for any system size. We will
show further that such non-linear terms in the transition
probabilities leads to 1/f behavior of the power spectral
density.
The transition probabilities imply the Master equation

for the probability Pn(t) to find n agents in the state 1 at
time t [40]:

∂

∂t
Pn = p

+(n− 1)Pn−1+ p−(n+1)Pn+1
−(p+(n)+ p−(n))Pn. (3)

For large enough N we can represent the group dynamics
by a continuous variable x= n/N . Using standard meth-
ods from ref. [40], a Fokker-Planck equation is derived
from the Master equation (3) assuming that N is large
and neglecting the terms of the order of 1/N2:

∂

∂t
Px(x, t) =− ∂

∂x
h(ε1(1−x)− ε2x)Px(x, t)

+
1

2

∂2

∂x2
h
(
2x(1−x)+ ε1

N
(1−x)+ ε2

N
x
)
Px(x, t), (4)

where ε1 ≡ σ1/h, ε2 ≡ σ2/h are scaled parameters. In the
following we will ignore the terms of the order of 1/N
in the diffusion term in eq. (4), assuming that variable
x is not too close to the boundaries x= 0 and x= 1,
i.e., x� ε1/N and 1−x� ε2/N . In addition we assume
that ε1, ε2 > 0. Thus the Fokker-Planck equation for the
herding model has the form

∂

∂t
Px(x, t) = − ∂

∂x
h(ε1(1−x)− ε2x)Px(x, t)

+
∂2

∂x2
hx(1−x)Px(x, t). (5)

This Fokker-Planck equation corresponds to the stochastic
differential equation

dx= h(ε1(1−x)− ε2x)dt+
√
2hx(1−x)dW, (6)
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where W is a standard Wiener process (the Brownian
motion). The steady-state solution of eq. (5) has the form

P0(x) =
Γ(ε1+ ε2)

Γ(ε1)Γ(ε2)
xε1−1(1−x)ε2−1. (7)

Equations (5)–(7) were obtained in ref. [9].
Using ε1 = ε2 in eq. (7) we recover the equilibrium

distribution as in ref. [2]. The distribution (7) exhibits a
unique mode if both parameters take a value larger than 1,
while it shows bi-modality for the case ε1, ε2 < 1. Further-
more, the distribution shows a monotonic behavior if one
parameter is larger than 1 and the other smaller than 1.

Non-linear stochastic differential equation
generating signals with 1/fβ noise. – Starting from
the point process model, proposed and analyzed in
refs. [34–39], the non-linear SDEs generating processes
with 1/fβ noise are derived [31–33]. The general expres-
sion for the proposed class of Itô SDEs is

dx= σ2
(
η− 1
2
λ

)
x2η−1dt+σxηdW. (8)

Here x is the signal, η �= 1 is the power-law exponent
of the multiplicative noise, λ defines the behavior of
stationary probability distribution, and W is a standard
Wiener process (the Brownian motion). The Fokker-
Planck equation corresponding to SDE (8) gives the
power-law probability density function (PDF) of the signal
intensity P0(x)∼ x−λ with the exponent λ. In refs. [33,39]
it was shown that SDE (8) generates signals with power
spectral density

S(f)∼ 1
fβ
, β = 1+

λ− 3
2(η− 1) . (9)

The non-linear SDE (8) has the simplest form of the multi-
plicative noise term, σxη dW . Multiplicative equations
with the drift coefficient proportional to the Stratonovich
drift correction for transformation from the Stratonovich
to the Itô stochastic equation [41] generate signals with
the power-law distributions [31]. Equation (8) is of such a
type and has the stationary PDF of the power-law form.
The connection of the power spectral density of the signal
generated by SDE (8) with the behavior of the eigenvalues
of the corresponding Fokker-Planck equation was analyzed
in ref. [42]. In ref. [43] it is shown that 1/fβ noise is equiv-
alent to a Markovian eigenstructure power relation.
SDE (8) exhibits the following scaling property: chang-

ing the stochastic variable from x to a scaled variable x′ =
ax changes the time scale of the equation to t′ = a2(1−η)t,
leaving the from of the equation unchanged. This scaling
property is one of the reasons for the appearance of the
1/fβ power spectral density.
Another remarkable property of SDE (8) is the behavior

under transformation of the variable x: if instead of x we
introduce

y= xα, (10)

then from eq. (8) we get the equation of the same type

dy= σ′2
(
η′− λ

′

2

)
y2η

′−1dt+σ′yη
′
dW, (11)

only with different parameters σ′ = ασ, η′ = (η− 1)/α+1,
λ′ = (λ− 1)/α+1.
For λ> 1 the distribution P0(x) diverges as x→ 0,

therefore the diffusion of stochastic variable x should be
restricted at least from the side of small values, or eq. (8)
should be modified. The simplest choice of the restriction
is the reflective boundary conditions at x= xmin and
x= xmax. However, other forms of restrictions are possible
and have been considered, as well. Exponentially restricted
diffusion is generated by the SDE

dx = σ2
[
η− 1
2
λ+
m

2

(
xmmin
xm
− x

m

xmmax

)]
x2η−1dt

+σxηdW (12)

obtained from eq. (8) by introducing the additional terms.
For λ= 3 we get that β = 1 and SDE (8) gives signal

exhibiting 1/f noise. Numerical solution of the equations
confirms the presence of the frequency region for which the
power spectral density has 1/fβ dependence. The width
of this region can be increased by increasing the ratio
between the minimum and the maximum values of the
stochastic variable x. In addition, the region in the power
spectral density with the power-law behavior depends on
the exponent η: if η= 1 then this width is zero; the width
increases with increasing the difference |η− 1| [42].
For some choices of parameters, SDE (8) or its variant

(12) takes the form of the well-known SDEs considered
in econopysics and finance. In case when the exponent of
multiplicative noise η= 0 and σ= 1, (8) takes the form of
the SDE for the Bessel process [44],

dx=
δ− 1
2

1

x
dt+dW, (13)

of dimension δ= 1−λ, while η= 1/2 and σ= 2 corre-
sponds to the squared Bessel process [44],

dx= δdt+2
√
xdW, (14)

of dimension δ= 2(1−λ). SDE with exponential restric-
tion (12) for η= 1/2, xmin = 0 and m= 1 gives the Cox-
Ingersoll-Ross (CIR) process [44],

dx= k(θ−x)dt+σ√xdW, (15)

where k= σ2/2xmax and θ= xmax(1−λ). When ν = 2η,
xmax =∞ and m= 2η− 2, then eq. (12) takes the form of
the Constant Elasticity of Variance (CEV) process [44],

dx= µxdt+σxηdW, (16)

where µ= σ2(η− 1)x2(η−1)min .
The numerical analysis of the proposed SDE (8) reveals

the secondary structure of the signal composed of peaks
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or bursts, corresponding to the large deviations of the
variable x from the proper average fluctuations. Bursts
are characterized by power-law distributions of burst
size, burst duration, and interburst time [31]. Therefore,
proposed non-linear SDEs may simulate avalanches in self-
organized critical (SOC) models and extreme event return
times in long memory processes.

Herding model and 1/f noise. – Let us consider
the case when x� 1. Then SDE (6) approximately has
the form

dx≈ h(ε1− ε2x)dt+
√
2hxdW. (17)

Equation (17) has the form of our non-linear SDE (8) with
the multiplicative noise and having parameters η= 1/2,
λ= 1− ε1. The term with ε2 in eq. (17) gives restrictions
at larger x. The possible values of the parameter ε1 are
restricted to ε1 > 0 and this limits the possible values of
the exponents λ and β. In particular, it is not possible to
obtain 1/f noise with β = 1 for the herding dynamics of
population x. Nevertheless, the non-linear form of eq. (17)
allows to apply transformation (10) and gets a flexible
choice of variables and corresponding exponents λ and β.
One possible choice is to consider y= 1/x, having α=−1

in eq. (10). The range of possible values of 1/x is [1,+∞).
Since only large values of y are relevant for obtaining
1/f noise, this range can be extended to include zero by
introducing y= 1/x− 1 = (1−x)/x. This variable y has a
clear interpretation: it is equal to the ratio of the number
of agents in the state 2 to the number of agents in the
state 1:

y=
1−x
x
=
N −n
n
. (18)

A stochastic variable similar to y (18) was used in ref. [9]
to model absolute return, while our variable x corresponds
to a fraction of fundamentalists in ref. [9]. Transformation
(18) of variables leads from SDE (6) to

dy= h[(2− ε1)y+ ε2](1+ y)dt+
√
2hy(1+ y)dW. (19)

A similar equation has been obtained in ref. [45]. The
steady-state PDF of the new variable y is

P0(y) =
Γ(ε1+ ε2)

Γ(ε2)Γ(ε1)

yε2−1

(1+ y)ε2+ε1
. (20)

When y� 1, then eq. (19) approximately has the form

dy≈ h(2− ε1)y2dt+
√
2hy

3
2 dW. (21)

Equation (21) has the form of our non-linear SDE (8)
with multiplicative noise, having parameters η= 3/2,
λ= 1+ ε1. Equation (21) is similar to a well-known
3/2 model of stochastic volatility [46]. According to
eq. (9), the power exponent of the power spectral
density is β = ε1− 1. If ε1 = 2, we obtain the 1/f
spectrum. Thus it is possible to obtain a signal with
1/f noise starting form the herding model. SDE (19)
demonstrates yet another possible form of the restric-
tion of diffusion of the stochastic variable in SDE (8)
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10-1 100 101 102 103 104

S(f)

f

Fig. 1: (Color online) Steady-state PDF P0(y) (upper panel)
and power spectral density S(f) (lower panel) of the signal
generated by eq. (19). The dashed (green) lines are the
analytical expression (20) for the steady-state PDF (upper
panel) and the slope 1/f (lower panel). The parameters used
are ε1 = ε2 = 2 and h= 1.

from the side of small values. It is of interest to note,
that the strong herding tendency for h>σ1/2 (ε1<2)
yields the long-range process with β < 1, the power-law
correlation C(t)∼ 1/t1−β , and distribution (20) with the
diverging variance.
The comparison of the numerically obtained steady-

state PDF and the power spectral density of the signal
generated by eq. (19) with analytical expressions is
presented in fig. 1. For the numerical solution we use
the Euler-Marujama approximation with variable step
of integration, transforming the differential equations to
the difference equations [32,33]. We see a good agreement
of the numerical results with the analytical expressions.
Numerical solution of the equations confirms the presence
of the frequency region for which the power spectral
density has 1/f dependence.
For the comparison, the steady-state PDF and the

power spectral density of the stochastic variable y calcu-
lated using the number of agents n according to eq. (18),
is presented if fig. 2. The number of agents n is obtained
from the jump process defined by the transition probabili-
ties (1) and (2). We see a good agreement of the numerical
results with the analytical expressions. Thus, numerical
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Fig. 2: (Color online) Steady-state PDF P0(y) (upper panel)
and power spectral density S(f) (lower panel) of the stochastic
variable y calculated according to eq. (18), using the number
of agents n obtained from the jump process defined by the
transition probabilities (1) and (2). The dashed (green) lines
are the analytical expression (20) for the steady-state PDF
(upper panel) and the slope 1/f (lower panel). The total
number of agents is N = 10000, other parameters are the same
as in fig. 1.

calculations confirm the SDE (19) and the possibility to
obtain the 1/f spectrum from a herding model.

Possible generalizations. – One of the possible
generalizations of the model presented above is to
consider a stochastic variable y defined as

y=

(
1−x
x

)1/α
. (22)

Then the transformation of variables leads from SDE (6)
to the SDE

dy =
h

α

[(
1+ 1

α
− ε1
)
+
(
ε2+

1
α
− 1) y−α] y(1+ yα)dt

+

√
2h

α
y1−

α
2 (1+ yα)dW. (23)

The corresponding steady-state PDF is

P0(y) =
αΓ(ε1+ ε2)

Γ(ε2)Γ(ε1)

yαε2−1

(1+ yα)ε2+ε1
. (24)

It should be noted that PDF (24) for some choice of
parameters has the form of distributions featured in

non-extensive statistical mechanics [47–53]: the values of
the parameters α= 1, ε2 = 1 correspond to a q-exponential
distribution with q= 1+1/(1+ ε1) and the values of the
parameters α= 2, ε2 = 1/2 correspond to a q-Gaussian
distribution with q= 1+2/(1+2ε1). When y� 1, then
we get SDE (8) with parameters η= 1+α/2, λ= 1+αε1.
According to eq. (9), the power exponent of the power
spectral density is β = ε1+1− 2/α.
Another way to generalize the herding model is to intro-

duce the additional non-linearities into transition proba-
bilities (1) and (2). The original transition probabilities
(1) and (2) assume that agents meet at a constant rate
and therefore the coefficients σ1, σ2 and h are constant.
One possibility to extend the model is to assume that the
rate at which the agents meet depends on the global state
of the system. In such a situation the new transition prob-
abilities can be written as

p(n→ n+1) = 1

τ(n)
(N −n)(σ1+hn), (25)

p(n→ n− 1) = 1

τ(n)
n(σ2+h(N −n)), (26)

where τ(n) describes the time scale of the microscopic
events. Assuming that the time scale τ depends only on
the ratio x= n/N , the SDE obtained form the modified
model instead of eq. (6) has the form

dx=
h

τ(x)
(ε1(1−x)− ε2x)dt+

√
2
h

τ(x)
x(1−x)dW,

(27)
whereas the SDE for the variable y= (1−x)/x is

dy=
h

τy(y)
[(2− ε1)y+ ε2](1+ y)dt+

√
2
h

τy(y)
y(1+ y)dW.

(28)
Here τy(y)≡ τ(1/(1+ y)). A similar modification of the
herding model has been proposed in ref. [45].
Let us consider the case of τ(y) = y−γ . Then eq. (28)

becomes

dy= h[(2− ε1)y+ ε2]yγ(1+ y)dt+
√
2hy1+γ(1+ y)dW.

(29)
In the limit y� 1 we get SDE (8) with parameters η=
3/2+ γ/2, λ= ε1+1+ γ. According to eq. (9), the power
exponent of the power spectral density is

β = 1+
λ− 3
2(η− 1) = 1+

ε1+ γ− 2
1+ γ

. (30)

Thus we have shown that it is possible to obtain different
values of the parameter η in eq. (8).

Conclusions. – Starting from a simple agent-based
model describing herding behavior we obtained a non-
linear SDE for the agent population x equal to the fraction
of agents in the state 1. For x� 1 this non-linear SDE
has a form similar to the SDE proposed in refs. [32,33]
for the modeling of 1/f noise. This form suggests that
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it might be possible with the appropriate transformation
of variables to obtain signals having 1/f behavior of the
power spectral density from this agent model. However,
the possible values of the parameter ε1 in the model,
eq. (17), are restricted to the positive values and this
limits the values of the exponents λ and β of the power-
law statistics. The solution is to consider not the fraction
of agents x, but another variable y, equal to the ratio
of number of agents in the state 2 to the number of
agents in the state 1. This new variable is related to
x by a simple transformation. The non-linear SDE for
the stochastic variable y in the limit of large values
y� 1 has the required form for obtaining the 1/f noise.
This result shows that it is possible to obtain the 1/f
noise starting from the agent-based herding model and
introducing the appropriate variables. These analytical
results are checked by numerical calculations, showing
good agreement with analytical predictions. Thus, herding
dynamics can be seen as a microscopic explanation of
proposed non-linear SDEs generating signals with 1/fβ

spectrum. The derivation of SDEs shows that non-linear
terms in the transition probabilities, describing global
interactions between agents, are crucial to the appearance
of 1/f noise. The exponents λ and β of the power-
law statistics can be adjusted by introducing feedback
between the macroscopic system state x and the rate of the
microscopic events 1/τ(x). Application of a similar model
for the description of the return in the finacial markets
has been proposed in ref. [45].
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