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ABSTRACT: A new approach to investigate one-electron spectra of regular
quasi-one-dimensional systems is suggested. It is based on an inverted order of operations
that differs from the traditional solid-state theory, interchain interactions are taken into
account before the intrasubchain ones (subchains correspond here to subsets of
translationally equivalent atomic orbitals). The block-diagonalization transformation for
matrices [V. Gineityte, Int J Quantum Chem 68, 119 (1998)] is used to perform the first step
of the approach. Given that the intersubchain interactions are sufficiently weak, the
nonzero blocks of the transformed one-electron Hamiltonian matrix correspond to
separate subchains of the initial chain and thereby play the role of effective Hamiltonian
matrices for separate energy bands influenced by the interband interaction. Elements of
these matrices describe effective interactions between atomic orbitals (AOs) of the given
subchain that consist of their direct interactions and of indirect interactions by means of
the nearest AOs of other subchains. Moreover, separate additive increments of the
dispersion relation depend on particular local effective interactions of AOs. As a result, the
approach suggested is especially efficient for interpretation of dispersion curves in terms
of local constitution of the system. c© 2001 John Wiley & Sons, Inc. Int J Quantum Chem
81: 321–331, 2001
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Introduction

S tudies of one-electron states (energy bands)
of polymers and other extended quasi-one-

dimensional systems are usually based on solu-
tion of eigenvalue equations for the relevant one-
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electron Hamiltonian or Fockian matrices repre-
sented in the basis of atomic orbitals (AOs). To
simplify the problem, cyclic boundary conditions
are most commonly imposed on the chain under
study. As a result, concepts and methods of the
solid-state theory [1, 2] are applied for investigation
of the energy bands of polymers [3 – 12], e.g., the
quasi-momentum vector k, the dispersion relation,
etc.
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Given that an elementary cell of our translation-
ally symmetric chain contains M AOs, M subchains
of equivalent basis functions may be revealed there.
On this basis, two types of interactions (resonance
parameters) may be distinguished, viz. the intrasub-
chain parameters and the intersubchain ones.

The first step of the standard theory of energy
bands of polymers [3 – 12] consists in taking into
account the translational symmetry of the chain
and thereby the intrasubchain resonance parame-
ters. The usual way of doing this lies in passing to
the basis of the Bloch functions for each set of equiv-
alent AOs separately. As a consequence, M energy
bands are obtained, each of them corresponding to
an isolated subchain and being most usually de-
scribed by a cos-like curve.

Regard for resonance parameters of the intersub-
chain type makes the second step of the conven-
tional theory. To this end, an M×M-dimensional
k-dependent square block of the transformed
Hamiltonian matrix corresponding to an elemen-
tary cell is diagonalized for certain values of the
quasi-momentum vector k. As a result, the final dis-
persion curves of the system under study follow
from a k-dependent interaction of M cos-like curves
being referred to as the interband interaction.

The above-described classical approach forms
the basis of efficient numerical methods for calcula-
tion of band structures, including the most popular
Hartree–Fock crystal orbital method [5 – 7].

Interpretation of dispersion curves in terms of lo-
cal constitution of the chain also is an important part
of the investigation of quasi-one-dimensional sys-
tems [3]. However, just the relations between these
curves and local interorbital interactions are rather
involved and difficult to analyze in the framework
of the conventional solid-state theory. The main rea-
son for that consists in the delocalized nature of
the Bloch functions [2, 3]. As a consequence, the
interband interaction becomes directly related to in-
teraction of delocalized subsystems (subchains) of
equivalent AOs.

In this connection, development of alternative
theories of one-electron spectra of regular quasi-
one-dimensional systems becomes of interest.

The experience of dealing with eigenvalue equa-
tions for matrices shows that it is the decision
on the first step when solving the problem that
determines the terms in which the results are ex-
pressed and interpreted [13]. In this connection,
we are about to suggest in this study an new ap-
proach to investigation of energy bands of regu-
lar quasi-one-dimensional systems. The approach is

based on an inverted order of operations against
that of the standard theory, namely taking into ac-
count the intersubchain interactions with regard
to the intrasubchain ones. To perform the above-
specified initial step, we will invoke the block-
diagonalization transformation for matrices pro-
posed recently [14 – 18] and being equivalent to the
so-called eigenblock equation [15]. Choice of just
this procedure is based on the following expecta-
tions.

Application of the block-diagonalization trans-
formation to the common one-electron model
Hamiltonian matrix of alkanes in the basis of bond-
ing and antibonding bond orbitals (BOs) [14, 15]
allowed us to obtain a new Hamiltonian matrix in
the form of a direct sum of two nonzero blocks
(eigenblocks) corresponding to subsets of bonding
BOs and antibonding BOs, respectively. At the same
time, the eigenblocks proved to imbibe the initial in-
teractions between BOs of different types. It should
be added here that an evident analogy may be
traced between subspaces of bonding and antibond-
ing BOs of alkanes and those of equivalent AOs
within chains of regular constitution.

An explicit perturbative solution of the block-
diagonalization problem has been obtained in
Refs. [14 – 18] in the particular case of weak inter-
subset interaction. To be able to apply this solution,
we will dwell on regular quasi-one-dimensional
systems described by large differences in Coulomb
parameters of individual subchains as compared to
the intersubchain resonance parameters. It should
be mentioned, however, that the case of two quasi-
degenerate subsets of orbitals also may be treated
algebraically [15, 19]. This case also will be dis-
cussed separately.

Thus, the first step of our approach will con-
sist in transforming the initial N × N-dimensional
one-electron Hamiltonian matrix H of a regular
quasi-one-dimensional chain containing K elemen-
tary cells (N = M × K) into a block-diagonal form
defined as a direct sum of M individual K × K-
dimensional blocks (eigenblocks). Given that the
intersubchain interaction is weak, each of these
eigenblocks is likely to correspond to a separate sub-
chain of our chain as was the case with alkanes
[14, 15].

Inasmuch as each subchain of equivalent AOs
gives birth to an energy band containing K lev-
els [1 – 3], the eigenblocks of the relevant matrix
H may be expected to play the role of effective
model Hamiltonian matrices for separate energy
bands influenced by the interband interaction. Then
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an explicit examination of the interband interaction
seems to be feasible before the final diagonalization
of the matrix H and thereby before passing to the
delocalized description of the system. This, in turn,
offers a possibility of interpretation of the final dis-
persion curves in terms of local constitution of the
chain. Just the above-described expectations are ver-
ified in this work.

To this end, we start with a brief description
of the block-diagonalization procedure for Hamil-
tonian (Fockian) matrices. Thereupon, we turn to
interpretation of eigenblocks in terms of local con-
stitution of a regular chain. Finally, some particular
examples are considered in a detail.

Block-Diagonalization Transformation
for Hamiltonian Matrices of Regular
Quasi-One-Dimensional Chains

Let us consider a regular quasi-one-dimensional
system containing N = M × K basis orbitals
(AOs) {ϕ}. Let us enumerate these orbitals in such
a way that the first K AOs ϕ1,r (r = 1, 2, . . . , K) re-
fer to the first subchain; the subsequent K AOs ϕ2,r

(r = 1, 2, . . . , K) correspond to the second subchain,
etc.

Let us assume now that the intersubchain reso-
nance parameters are first-order terms as compared
to differences in Coulomb parameters of separate
subchains. Then the initial model Hamiltonian ma-
trix H of our system may be presented as a sum of
zero-order and first-order matrices, i.e.

H = H(0) +V. (1)

The zero-order term H(0) is assumed to be a block-
diagonal matrix of the form [16, 17]

H(0) =

∣∣∣∣∣∣∣∣∣∣
E(0)1 0 0 . . . 0

0 E(0)2 0 . . . 0
0 0 E(0)3 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . E(0)M

∣∣∣∣∣∣∣∣∣∣
, (2)

where E(0)k, k = 1, 2, . . . , M are K × K-dimensional
submatrices (blocks), each of them containing the
intrasubchain resonance parameters of the respec-
tive subchain along with Coulomb ones. It is seen
that zero-order intrasubchain interactions are al-
lowed here in contrast to intersubchain interactions.

The first-order term V of Eq. (1) also may be di-
vided into K × K-dimensional blocks describing the
intrasubchain interactions (the diagonal blocks) and

the intersubchain ones (the off-diagonal blocks), i.e.,

V =

∣∣∣∣∣∣∣∣∣∣
V11 V12 V13 . . . V1M

V21 V22 V23 . . . V2M

V31 V32 V33 . . . V3M

. . . . . . . . . . . . . . .

VM1 VM2 VM3 . . . VMM

∣∣∣∣∣∣∣∣∣∣
. (3)

The block-diagonalization transformation for the
matrix H takes the form [14 – 17]

H′ = C+HC =

∣∣∣∣∣∣∣∣∣∣
E1 0 0 . . . 0
0 E2 0 . . . 0
0 0 E3 . . . 0
. . . . . . . . . . . . . . .

0 0 0 . . . EM

∣∣∣∣∣∣∣∣∣∣
, (4)

where Ek, k = 1, 2, . . . , M are the K × K-dimensional
eigenblocks [15] of this matrix and C is an unitary
matrix, i.e.,

C+C = I. (5)

The superscript + here and below denotes the
Hermitian-conjugate (transposed) matrix, and I is
the unit matrix of the respective dimension. As with
the Hamiltonian matrix H, the transformation ma-
trix C also may be divided into K × K-dimensional
submatrices Cmk (m, k = 1, 2, . . . , M).

To obtain a perturbative solution of the matrix
problem defined by Eqs. (4) and (5) [14 – 18], the en-
tire eigenblocks Ek and the submatrices Cmk of the
matrix C have been sought in the form of power se-
ries, i.e.,

Ek = E(0)k + E(1)k + E(2)k + · · · (6)

and

Cmk = C(0)mk + C(1)mk + C(2)mk + · · · . (7)

The zero-order members of Eq. (6) coincide with the
initial blocks E(0)k of Eq. (2), while the zero-order
term of Eq. (7) equals to

C(0)mk = Iδmk. (8)

The first-order corrections to the eigenblocks, in
turn, coincide with the respective diagonal blocks
of the perturbation matrix V, i.e.,

E(1)k = Vkk. (9)

The second-order corrections of Eq. (6) E(2)k have
been expressed as follows [17]:

E(2)k = 1
2

∑
i

(1− δki)
(
V+ikC(1)ik + C+(1)ikVik

)
, (10)

where the submatrices C(1)ik (i 6= k) meet the matrix
equations

E(0)iC(1)ik − C(1)ikE(0)k +Vik = 0. (11)
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The third-order corrections E(3)k also may be ob-
tained as described in Ref. [17]. The final expression
takes the form

E(3)k = 1
2

∑
i

(1− δki)
(
V+ikC(2)ik + C+(2)ikVik

)
, (12)

where the submatrices C(2)ik (i 6= k) follow from so-
lution of the matrix equation

E(0)iC(2)ik − C(2)ikE(0)k +Wik = 0 (13)

and

Wik =
∑

j

VijC(1)jk − C(1)ikVkk. (14)

No problems arise in the way of obtaining also
the higher order corrections to eigenblocks as de-
scribed in Refs. [16, 17]. The principal solutions of
matrix equations such as those of Eqs. (11) and (13)
have been discussed in Ref. [17].

Let us dwell now on the particular case when
the zero-order blocks E(0)k, k = 1, 2, . . . , M are di-
agonal matrices. This evidently implies first-order
magnitude of both intra- and intersubchain reso-
nance parameters.

As a result of both the diagonality requirement
for blocks E(0)k and the regular constitution of sub-
chains, these submatrices become actually propor-
tional to K-dimensional unit matrices, i.e.,

E(0)k = ε(0)kI, (15)

where ε(0)k is a constant coinciding with the one-
electron energy of equivalent AOs ϕk,r (r = 1,
2, . . . , K) of the kth subset. We then obtain

C(1)ik = 1
ε(0)k − ε(0)i

Vik, C(2)ik = 1
ε(0)k − ε(0)i

Wik,

(16)
where Wik is defined by Eq. (14) [The expressions of
Eq. (16) refer to i 6= k, whereas C(1)ik = 0 for any k.]

After substituting Eq. (16) into Eqs. (10) and (12),
the corrections E(2)k and E(3)k take the form

E(2)k =
∑
i(6= k)

1
ε(0)k − ε(0)i

VkiVik (17)

and

E(3)k =
∑
i(6= k)

∑
j(6= k)

1
(ε(0)k − ε(0)i)(ε(0)k − ε(0)j)

VkiVijVjk

− 1
2

∑
i(6= k)

1
(ε(0)k − ε(0)i)2 [VkiVikVkk

+ VkkVkiVik]. (18)

The expressions of Eqs. (17) and (18) formally re-
semble those of the usual Rayleigh–Schrödinger
perturbation theory (RSPT) [20, 21]. However, en-
tire submatrices of the first-order matrix V arise in
Eqs. (17) and (18) instead of its particular elements.

The analogy between our perturbative solution
and the usual RSPT [17] embraces also the quasi-
degenerate case. To show this, let us assume that
the ith and jth subchains consists of AOs of similar
energies so that the difference E(0)i − E(0)j may be
considered as a small matrix relatively to Vij. Let
us confine ourselves to the case of large interactions
between pairs of AOs inside the same elementary
cell.

Basis orbitals ϕi,r and ϕj,s belonging to the ith and
jth subsets (i 6= j) always may be enumerated in
such a way that the intracell resonance parameters
take diagonal positions within the matrix Vij. As
with diagonal elements of blocks E(0)k, the elements
Vij,rr also may be assumed to be uniform. Let us take
them equal to unit for simplicity. We then obtain

Vij = I+�ij, (19)

where �ij is a small matrix.
Let us turn now to the basis of intracell bonding

and antibonding combinations of pairs of AOs de-
fined as follows:

ψb,r = 1√
2

(ϕi,r+ ϕj,r), ψa,r = 1√
2

(ϕi,r− ϕj,r) (20)

and denoted by subscripts b and a, respectively.
The relevant 2K×2K-dimensional transformation

matrix U evidently contains four K-dimensional
unit matrices, viz.

U = 1√
2

∣∣∣∣I I
I −I

∣∣∣∣. (21)

As a result of this transformation, a new Hamil-
tonian matrix block containing four subblocks fol-
lows. Now the intersubset block equals to

3 = 1
2

(
E(0)i − E(0)j +�ij −�+ij

)
, (22)

and it may be considered as a small matrix as com-
pared to the new difference between the intrasubset
blocks

Eb − Ea = 2I+�ij +�+ij . (23)

This result indicates that the total transformed
Hamiltonian matrix complies with the requirements
of the above-outlined perturbation theory. Hence,
eigenblocks corresponding to the bonding subset of
orbitals {ψb} and to the antibonding one {ψa}may be
obtained using Eqs. (1)–(18).
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Interpretation of Eigenblocks of The
Hamiltonian Matrix and of Their
Particular Elements

Let us consider the expressions shown in Eqs. (6),
(9), (17), and (18) in a more detail. It is seen that
the principal contributions to eigenblocks Ek coin-
cide with respective intrasubchain blocks E(0)k +Vkk

of the initial model Hamiltonian matrix H in accor-
dance with Eqs. (6) and (9). Hence, correspondence
of any eigenblock Ek to the respective (kth) subchain
is beyond any doubt. It is also seen that the second-
and the third-order increments to eigenblocks im-
bibe the intersubchain interactions described by ma-
trices Vik (i 6= k).

In the case of a weak intersubchain (interband)
interaction, an energy band is known to correspond
to each subchain of equivalent AOs [1 – 3]. Thus,
the eigenblocks Ek defined by Eqs. (17) and (18) are
nothing more than the effective model Hamiltonian
matrices for separate energy bands influenced by
the interband interaction.

Now, let us consider the influence of the inter-
subchain interaction upon the individual elements
of the eigenblock Ek. An element of this eigenblock
corresponding to AOs ϕk,p and ϕk,q may be presented
in the form

Ek,pq = ε(0)kδpq + Vkk,pq

+
∑
i(6= k)

1
ε(0)k − ε(0)i

∑
r

Vki,prVik,rq

+
∑
i(6= k)

∑
j(6= k)

1
(ε(0)k − ε(0)i)(ε(0)k − ε(0)j)

×
∑
r,s

Vki,prVij,rsVjk,sq

− 1
2

∑
i(6= k)

1
(ε(0)k − ε(0)i)2

∑
r,s

[Vki,prVik,rsVkk,sq

+Vkk,prVki,rsVik,sq]. (24)

In the case of an off-diagonal element (p 6= q), the
principal (first-order) contribution to Ek,pq coincides
with the resonance parameter between AOs ϕk,p and
ϕk,q, i.e.,

E(1)k,pq = Vkk,pq ≡ 〈ϕk,p|Ĥ|ϕk,q〉 (25)

and represents the direct (through-space) inter-
action of the above-mentioned AOs. Again, the
second-order increment to the same element takes

the form

E(2)k,pq =
∑
i(6= k)

1
ε(0)k − ε(0)i

∑
r

〈ϕk,p|Ĥ|ϕi,r〉〈ϕi,r|Ĥ|ϕk,q〉
(26)

and describes the indirect interaction of the same
AOs by means of AOs of other subchains, the latter
playing the role of mediators. It is evident that the
second-order increment to the eigenblock Ek takes a
nonzero value if the AO ϕi,r interacts directly both
with ϕk,p and ϕk,q.

Similarly, the third-order terms of Eq. (24) may
be shown to represent the indirect interactions of
the same AOs by means of two mediators. It is
noteworthy that AOs both of the subchain under
consideration (i.e., the kth one) and of other sub-
chains are able to play the role of mediators in this
case, provided that the mediators interact directly
both with each other and with AOs under consid-
eration. For example, the AOs ϕk,r and ϕi,s of the kth
and ith subchain, respectively, play the role of medi-
ators of the indirect interaction described by the last
increment of Eq. (24).

Hence, an off-diagonal element Ek,pq (p 6= q) of
the eigenblock Ek describes the effective interac-
tion between AOs ϕk,p and ϕk,q of the kth subchain,
which consists of the direct interaction of the above-
mentioned two AOs and of various types of their
indirect interactions. Basis orbitals of the other sub-
chains are necessarily involved in the indirect inter-
actions of AOs ϕk,p and ϕk,q.

It may be also easily seen that the diagonal el-
ement Ek,pp of the kth eigenblock describes the ef-
fective one-electron energy of the AO ϕk,p of the kth
subchain under the influence of other subchains. In-
deed, the zero-order increment to Ek,pp equal to ε(0)k

coincides with the energy of an isolated AO ϕk,p

whereas the remaining terms describe the correction
to this energy owing to the presence of other sub-
chains. Given that the entire Coulomb parameters
are included into the zero-order Hamiltonian ma-
trix H(0) of Eq. (2), the equality Vkk,pp = 0 may be
accepted. Again, the increments of the second and
of the subsequent orders to an element Ek,pp may be
shown to represent the indirect self-interactions of
the AO ϕk,p by means of other AOs.

It should be noted here that the concept of di-
rect and indirect interactions of basis orbitals was
originally introduced [22 – 24] for saturated organic
molecules. Bond orbitals played the role of basis
functions in this case, and the interactions were re-
ferred to as through-space and through-bond ones.
Now, this concept acquires a new application in the
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theory of energy bands of quasi-one-dimensional
systems.

Let us turn again to Eqs. (24)–(26). Resonance pa-
rameters, and thereby the direct interactions of AOs,
are known to decrease rapidly when the distance be-
tween the two involved AOs grows (see, e.g., [25]).
Thus, the first-order increment to the element Ek,pq

shown in Eq. (25) is essentially local in nature. As
far as the second-order increment is concerned, only
the AOs ϕi,r situated in the nearest neighborhood of
both ϕk,p and ϕk,q are able to play the role of efficient
mediators in the second-order (indirect) interaction.
The same evidently refers to the third-order terms.
Hence, both Ek,pq and Ek,pp are determined mainly
by the structure of the nearest neighborhood of the
AOs ϕk,p and ϕk,q, and of the AO ϕk,p, respectively.

It is seen, therefore, that the intersubchain in-
teraction turns into an effective intrasubchain in-
teraction after performing the block-diagonalization
procedure. It is essential that no turning to delocal-
ized orbitals (such as Bloch functions) is required
here. As a consequence, the intersubchain interac-
tion that was essentially local in nature remains
local also after block-diagonalization. How this local
interaction exerts influence upon the energy bands
will be considered in the next section.

Studies of Particular Examples

For the sake of simplicity, let us dwell in this
section on quasi-one-dimensional chains containing
two AOs within an elementary cell and thereby two
subchains (M = 2). Then the subscripts i, j, and k of
Eqs. (15)–(18) may be replaced by numbers 1 and 2,
corresponding to the first and the second subchain,
respectively. If the reference point is chosen in the
middle of the energy gap between AOs of the first
and the second subchain and this gap is taken equal
to the double negative energy unit in addition, the
matrices E(0)1 and E(0)2 take the following simple
form:

E(0)1 = I, E(0)2 = −I. (27)

From Eqs. (15), (17), (18), and (27) we then obtain

E1 = I+V11 + 1
2 V12V+12 − 1

8

(
V11V12V+12

+V12V+12V11 − 2V12V22V+12

)+ · · · , (28)

E2 = −I+V22 − 1
2 V+12V12 − 1

8

(
V22V+12V12

+V+12V12V22 − 2V+12V11V12
)+ · · · . (29)

These expressions will be applied now for investi-
gation of particular subchains.

INTERACTION OF TWO ENERGY BANDS
ORIGINATING FROM ns AND n′s AOS

Let us start with a regular chain of uniform
atoms, each of them containing two AOs of the s
type, e.g., ns = 1s, n′s = 2s. These AOs evidently
build up an elementary cell of the chain. In ac-
cordance with the above-specified energy reference
point and the (negative) energy unit, the zero-order
energies of the ns and n′s AOs will be taken equal to
1 and −1, respectively.

Let γ and β stand for resonance parameters of the
intersubchain-type corresponding to pairs of AOs
of the same atom and of the nearest-neighboring
atoms, respectively, as shown in Figure 1(a). When

FIGURE 1. Examples of regular quasi-one-dimensional
chains studied in this work. Chains consisting of uniform
atoms, each of them containing two AOs are shown in
diagrams (a) and (b). Atoms of the chain (a) are
described by two AOs of the s-type (ns and n′s), while
those of the chain (b) contain an ns AO and an n′p AO.
The last picture (c) represents an alternating chain
consisting of atoms of two types A and B, each of them
described by a single AO. Greek letters (β, γ , ω, and σ )
stand for various types of resonance parameters.
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expressed in our negative energy units, these pa-
rameters are positive, i.e., γ > 0, β > 0. The
intrasubchain resonance parameters for the near-
est pairs of ns AOs will be denoted by σ (σ > 0),
whereas those for the nearest-neighboring n′s AOs
will be designated by ω (ω > 0).

Using the above-introduced designations, the el-
ements of submatrices V11, V22, and V12 of the
first-order matrix V may be represented in the form

V11,ij = σ (δi,j+1 + δi,j−1), V22,ij = ω(δi,j+1 + δi,j−1),
(30)

V12,ij = V+12,ij = β(δi,j+1 + δi,j−1)+ γ δij. (31)

Equations (30) and (31) should be substituted into
the expressions for eigenblocks E1 and E2 shown
in Eqs. (28) and (29). Then the elements of these
eigenblocks (E1,ij and E2,ij) become of the following
constitution:

E1,ij =
(
1+ β2 + 1

2γ
2)δij + (σ + βγ )(δi,j+1 + δi,j−1)

+ 1
2β

2(δi,j+2 + δi,j−2)+ · · · , (32)

E2,ij =
(−1+ β2 + 1

2γ
2)δij + (ω − βγ )(δi,j+1 + δi,j−1)

− 1
2β

2(δi,j+2 + δi,j−2)+ · · · , (33)

where terms to within the second order are in-
cluded.

The influence of the intersubchain interaction
upon the intrasubchain Hamiltonian matrix ele-
ments may be easily seen from Eqs. (32) and (33).
Thus, one-electron energies of the ns AOs are in-
creased by

1 = β2 + 1
2γ

2 (34)

under the influence of the n′s AOs, whereas those
of n′s AOs are decreased accordingly. The correc-
tion 1 of Eq. (34) originates from the second-order
increment of Eq. (28) and describes the indirect self-
interactions of the ns (n′s) AOs by means of the n′s
(ns) AOs. Alternatively, it may be interpreted as the
total “repulsion” of the given AO (e.g., ϕ1i = ns)
from the three nearest AOs of the second subchain
(ϕ2i, ϕ2,i−1, and ϕ2,i+1). It is evident that just the
above-mentioned three AOs interact with the AO ϕ1i

directly.
Furthermore, the interactions between the

nearest-neighboring AOs of the first subchain (e.g.,
ϕ1i and ϕ1,i+1) becomes increased by βγ owing to
the indirect interaction of these AOs by means of
two AOs of the second subchain (ϕ2i and ϕ2,i+1,
respectively), whereas that between the nearest
AOs of the second subchain is decreased by βγ .

The most important peculiarity of the elements
E1,ij and E2,ij, however, consists in the emergence
of a new effective interactions between the second-
neighboring pairs of AOs of the first subchain under
the influence of the second subchain and vice versa.
For example, an interaction equal to 1

2β
2 arises be-

tween AOs ϕ1i and ϕ1,i+2 of the first subchain owing
to their indirect interactions by means of AOs ϕ2,i+1

situated in between the former and playing the role
of the only mediator.

It is noteworthy that the effective model Hamil-
tonian matrices E1 and E2 represented by elements
E1,ij and E2,ij describe rather simple chains contain-
ing effective bonds between the first-neighboring
and the second-neighboring pairs of AOs. As a
result, the well-known methods of obtaining the dis-
persion relations for simple chains (see, e.g., [26])
may be applied here.

Given that terms of the solid-state theory [2, 3]
are chosen (namely, the quasi-momentum vector k
and the elementary cell’s position vector a), the ap-
proximate dispersion relations for the two energy
bands of our system take the form

ε1(k) = (1+1)+ 2(σ + βγ ) cos(ka)

+ β2 cos(2ka)+ · · · , (35)

ε2(k) = −(1+1)+ 2(ω − βγ ) cos(ka)

− β2 cos(2ka)+ · · · . (36)

These relations should be compared to those of iso-
lated subchains of the initial chain, viz.

ε◦1(k) = 1+ 2σ cos(ka), ε◦2(k) = −1+ 2ω cos(ka).
(37)

The dispersion curves ε1(k), ε2(k), ε◦1(k), and ε◦2(k)
are shown in Figure 2.

To be able to interpret separate peculiarities
of these curves in terms of local interactions, an
evident interrelation between terms of Eqs. (32)
and (33), on the one hand, and those of Eqs. (35)
and (36), on the other hand, should be used along
with the above-discussed local interpretation of the
former.

Thus, the first k-vector-independent terms of
Eqs. (35) and (36) are directly related to effective
energies of AOs described by the parameter 1 of
Eq. (34). Similarly, the coefficients of the cos(ka)-
like terms originate from the effective interactions
between the nearest-neighboring pairs of AOs de-
termined by sums σ + βγ and ω − βγ for the
first and for the second subchain, respectively. Fi-
nally, the “weights” of the cos(2ka)-like increments
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FIGURE 2. Diagram representing the formation of the
final dispersion curves ε1(k) and ε2(k) of the regular
quasi-one-dimensional chain displayed in Figure 1(a).
The simple cos(ka)-like curves ε◦1(k) and ε◦2(k)
correspond to isolated subchains of the chain under
study and represent the dispersion relations of Eq. (37).
The cos(2ka)-like curves εn

1(k) and εn
2(k) represent the

new terms arising within Eqs. (35) and (36) owing to the
interband interaction. The expressions for parameters µ
and ν in terms of the initial resonance parameters β, γ ,
ω, and σ are shown in Eq. (40). The level density
functions ρ1(ε) and ρ2(ε) corresponding to the
dispersion curves ε1(k) and ε2(k), respectively, are
shown in the right part of the picture.

depend on the relative value of the new effective
interaction between the second-neighboring pairs
of AOs.

As a result, the final dispersion curves prove to
be made up of three additive components, each of
them referring to a definite type of effective interor-
bital interaction. This principal conclusion forms the
basis for interpretation of the observed dispersion
curves in terms of local interactions. For example,
alteration in the band’s width is described by the

following parameter:

θ = ε1(0)− ε1(π/a) = −(ε2(0)− ε2(π/a)
) = 4βγ ,

(38)
which is proportional to the indirect interaction be-
tween the nearest-neighboring pairs of AOs. It is
seen that the total width of the first band is increased
by θ , whereas that of the second band is reduced by
θ as compared to respective values for isolated sub-
chains.

In this context, the influence of the new effective
interaction between the second-neighboring pairs
of AOs upon the final dispersion curves deserves
particular attention. Indeed, the new cos(2ka)-like
contribution arising within Eqs. (35) and (36) deter-
mines some significant changes in the shapes of the
final dispersion curves as compared to the simple
cos(ka)-like shape.

In particular, the lower part of the first band and
the upper part of the second band become streched
after adding the cos(2ka)-containing term, whereas
the upper part of the first band and the lower part
of the second band become compressed under the
influence of the same term. If we turn to the density
of states ρ(ε) is defined as follows:

ρ(ε) =
∣∣∣∣∂k
∂ε

∣∣∣∣. (39)

An increased density of states corresponds to the
compressed regions of the final dispersion curves,
and decreased values of the function ρ(ε) refer to
the streched parts of these curves.

The above-discussed examples demonstrate the
existance of direct relations between separate char-
acteristics of dispersion curves and individual effec-
tive interactions. On the other hand, there are some
features of dispersion curves that originate from a
simultaneous action of different interorbital interac-
tions. The so-called interband “repulsion” may be
mentioned here as an example.

Thus, comparison of curves ε1(k) and ε2(k) to
ε◦1(k) and ε◦2(k), respectively, shows that curve ε1(k)
is shifted downward vs. ε◦1(k), whereas ε2(k) is
shifted upward vs. ε◦2(k). This phenomenon proves
to be determined by superposition of various types
of interorbital interactions. In particular, the inter-
band repulsion energies µ and ν corresponding to
k = 0 and k = π/a, respectively, are related to the
above-described interorbital interaction parameters
as follows:

µ = 1+ 2βγ + β2, ν = 1− 2βγ + β2. (40)

It is seen that all types of effective interactions
(viz. the self-interactions of AOs, the effective inter-
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actions between the first-neighboring pairs of AOs
and those between their second-neighboring pairs)
participate in the interband repulsion.

INTERACTION OF ENERGY BANDS
ORIGINATING FROM ns AOS AND n′p AOS

Let us consider now another chain of uniform
atoms, each of them containing an ns AO and an
n′p AO as shown in Figure 1(b). The main difference
of this system from the previous one consists in the
emergence of both positive and negative resonance
parameters. In addition, the equality γ = 0 may be
assumed for this chain.

As a result, a minus sign arises within the new
expression for elements V22,ij of the matrix V22,
whereas those of the matrix V11 may be taken from
Eq. (30). The elements V12,ij of the matrix V12, in
turn, take the form

V12,ij = −V+12,ij = β(δi,j−1 + δi,j+1). (41)

Then the final expressions for elements of eigen-
blocks E1 and E2 are

E1,ij =
(
1+ β2)δij + σ (δi,j−1 + δi,j+1)

− 1
2β

2(δi,j−2 + δi,j+2)+ · · · , (42)

E1,ij = −
(
1+ β2)δij − ω(δi,j−1 + δi,j+1)

− 1
2β

2(δi,j−2 + δi,j+2)+ · · · . (43)

Accordingly, the dispersion relations take the
form

ε1(k) = (1+ β2)+ 2σ cos
(
ka
)

− β2 cos(2ka)+ · · · , (44)

ε2(k) = −(1+ β2)+ 2ω cos
(
ka
)

− β2 cos(2ka)+ · · · (45)

for the ns band and for the n′p band, respectively.
Let us compare the dispersion relations of

Eqs. (35) and (44) that describe the ns band under
the influence of an n′s band and of an n′p band, re-
spectively.

It is seen that the most essential difference be-
tween Eqs. (35) and (38) consists in opposite signs
of their cos(2ka)-like terms. This peculiarity is evi-
dently due to different signs of indirect interactions
between the second-neighboring pairs of ns AOs by
means of an n′s AO and by means of an n′p AO (both
of them being localized in between the two ns AOs).
The negative cos(2ka)-containing term of Eq. (44)
gives rise to an increased density of states in the

lower part of the band (k ≈ 0) and to a reduced den-
sity of states in the upper part of the band (k ≈ π/a)
in contrast to the function ρ1(ε) of Figure 2.

ALTERNATING CHAIN CONTAINING BOTH
FIRST- AND SECOND-NEIGHBORING
RESONANCE PARAMETERS

Let us consider now a chain made up of atoms
of two different types (A and B), each of them rep-
resented by a single AO. Atoms are assumed to be
situated in such a way that each atom possesses
two neighbors A and two neighbors B, as shown in
Figure 1(c).

Equation (30) for elements of matrices V11 and
V22 is valid for this chain as well, while the elements
of the intersubchain block V12 are

V12,ij = β(δi,j+ δi,j−1), V+12,ij = β(δi,j+ δi,j+1). (46)

Substituting Eqs. (30) and (46) into Eqs. (28)
and (29) indicates that no cos(2ka)-containing terms
arise to within the second-order terms inclusive in
contrast to the chains (a) and (b). After taking into
account the third-order terms of Eqs. (28) and (29)
as well, the elements of the first eigenblock E1 take
the form

E1,ij =
[
1+ β2 + 1

2β
2(ω − σ )

]
δij

+ [σ + 1
2β

2 + 1
2β

2(ω − σ )
]
(δi,j−1 + δi,j+1)

+ 1
4β

2(ω − σ )(δi,j−2 + δi,j+2)+ · · · , (47)

and the respective dispersion relation ε1(k) is

ε1(k) = [1+ β2 + 1
2β

2(ω − σ )
]

+ 2
[
σ + 1

2β
2 + 1

2β
2(ω − σ )

]
cos(ka)

+ 1
2β

2(ω − σ ) cos(2ka)+ · · · . (48)

It is seen that the sign of the third-order cos(2ka)-
containing term depends on the relative values of
the intrasubchain resonance parametersω and σ . As
a result, the density of states ρ1(ε) corresponding
to the dispersion function ε1(k) of Eq. (48) resem-
bles the function ρ1(ε) of Figure 2 if ω > σ . In
the opposite case (ω < σ ), the shape of the den-
sity function under discussion resembles that of the
function ρ2(ε) of Figure 2. If an equality ω = σ is
valid, a cos(ka)-like shape of the dispersion curve of
Eq. (48) follows. Emergence of the differenceω−σ in
Eqs. (47) and (48) and thereby the above-discussed
results may be accounted for by the presence of
terms of different signs within the third-order in-
crements to the eigenblocks E1 and E2 as shown in
Eqs. (28) and (29).
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On the whole, the results of this section demon-
strate the efficiency our approach for interpretation
of the principal characteristics of energy bands of
regular quasi-one-dimensional systems in terms of
local constitution of the chain. Thus, the dispersion
relations, the density of states, and the interband
interaction are among characteristics of the above-
mentioned type.

Relations of Approach Suggested
to Other Theories and Methods:
Concluding Remarks

1. Let us start with the relation of the present
approach to the standard solid-state theory
[1 – 3].

As already mentioned, the two ways of investiga-
tion of quasi-one-dimensional systems differ in the
relative order of taking into account the intra- and
intersubchain interactions. Hence, the respective fi-
nal numerical results may be expected to coincide
with one another provided that these are obtained
at the same level of approximation.

The very block-diagonalization problem for ma-
trices shown in Eq. (4) may be formulated for any
Hermitian matrix H, where Ek, k = 1, 2, . . . , M are
eigenblocks of any dimension [17]. This problem,
however, is considerably less explored than the di-
agonalization problem. The question whether or not
a general (nonperturbative) solution of the problem
of Eq. (4) may be obtained also is still open.

In the present form, the approach suggested
is based on a perturbative solution of the block-
diagonalization problem. In particular, the case de-
scribed by Eqs. (15)–(18) corresponds to a power
series with respect to both intra- and intersubchain
resonance parameters. Hence, coincidence of our fi-
nal numerical results to those of the standard theory
may be expected if an analogous power series is in-
voked in the latter case as well.

To verify this expectation, let us turn again to
the chain of Figure 1(a) and consider it by means
of the usual solid-state theory [1 – 3]. Two delocal-
ized Bloch functions 91(k) and 92(k) correspond-
ing to subchains of the ns and n′s AOs, respec-
tively, may be obtained in this case. The relevant
two-dimensional k-dependent Hamiltonian matrix
block takes the form

H(k) =
∣∣∣∣ 1+ 2σ cos(ka) γ + 2β cos(ka)
γ + 2β cos(ka) −1+ 2ω cos(ka)

∣∣∣∣, (49)

and the exact dispersion relation

ε1,2(k) = (ω + σ ) cos(ka)
± {1+ γ 2 + 2

[
(σ − ω)+ 2βγ

]
cos(ka)

+ [4β2 + (σ − ω)2] cos2(ka)
}1/2 (50)

may be easily obtained after solving the respective
two-dimensional secular problem. Accordingly, the
final energy bands may be interpreted as a result of
a k-dependent interaction of two cos(ka)-like dis-
persion curves, each of them corresponding to a
delocalized subsystem (subchain). Nevertheless, if
we expand the square root of Eq. (50) into power
series with respect to resonance parameters β, γ , σ ,
and ω, the relations of Eqs. (35) and (36) follow.

Both the advantages and weak points of the new
approach vs. the standard one reveal themselves on
the basis of this simple example. Thus, despite its
limitations caused by the application of the pertur-
bation theory, the new approach offers additional
possibilities for interpretation of the final results. As
the above analysis shows, it allows us to interpret
the separate increments of the dispersion relation
in terms of local (direct and indirect) interactions of
AOs and thereby in terms of local structure of the
chain.

2. Let us dwell now on the relation of the present
approach to the so-called noncanonical theory
of molecular orbitals (MOs) [17, 18].

To this end, let us consider the particular case
of the block-diagonalization problem of Eq. (4) for
systems like those of Figure 1 containing N = 2K
basis orbitals and the same total number of elec-
trons. Then the zero off-diagonal blocks of the trans-
formed matrix H coincide with the occupied-vacant
intersubset blocks. As a result, the problem of Eq. (4)
is nothing more than the matrix form of the Brillouin
theorem for noncanonical MOs, the latter follow-
ing from matrix C. In the case of a regular system,
the localized crystalline orbitals (Wannier functions
[27, 28]) are likely to be among noncanonical MOs.
One-electron density matrix (bond order matrix)
also may be easily obtained on the basis of the
transformation matrix C [18]. Hence, for the above-
specified systems our approach coincides with the
noncanonical theory of MOs.

3. The approach developed in this work yields
effective Hamiltonian matrices for separate
subspaces of the total space of AOs. In this re-
spect, certain analogy may be traced between
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this approach and the Löwdin’s partitioning
technique [29 – 32]. The principal difference
between these procedures, however, consists
in the fact that an eigenvalue-dependent ef-
fective Hamiltonian matrix and thereby the
secular problem of an iterative nature was ob-
tained in Refs. [29 – 32] in contrast to our case.

Nevertheless, in the case of two subsets certain
relations may be established between these prob-
lems after additional assumptions. If the eigenvalue
arising within the Löwdin’s effective Hamiltonian
matrix is taken equal to 1 and the matrix [2I−V22]−1

is expanded into power series with respect to V22,
the resulting eigenvalue-independent Hamiltonian
matrix coincides with that of Eq. (28) to within the
second-order terms inclusive.

4. Comparison of the present approach to the re-
duction procedure of Ref. [13] also deserves at-
tention, as K×K-dimensional effective Hamil-
tonian matrices have been obtained there as
well. Let us start with the main differences of
these approaches.

The eigenvalue-dependent effective Hamiltonian
matrices of Ref. [13] describe the whole chain un-
der study and not its separate subchains. Moreover,
quite extended fragments of the chain and not sep-
arate AOs correspond to diagonal elements of these
matrices. Finally, no conditions of perturbative na-
ture have been imposed when performing the re-
duction procedure.

It is also noteworthy that both approaches yield
coinciding results for some simple chains contain-
ing AOs described by sufficiently different Coulomb
parameters. The quasi-one-dimensional alternating
chain described in Ref. [13] and containing AOs of
two types represented by Coulomb parameters α1

and α2 is among the above-mentioned chains. To
show this, no more is required to take Eq. (14a) of
Ref. [13] and substitute α1 = −1, α2 = 1 and β = γ ,
ε = 1 into this relation.

On the whole, both the results of this work and
of Ref. [13] indicate that a straightforward solution
of the secular problem for the matrix H is hardly
the most efficient way of qualitative investigation of
electronic structures of extended systems. Indeed,
the primary block-diagonalization of the matrix H
described in this work and lowering of the dimen-
sion of the secular problem by means of elimination
of certain coefficients of the matrix C suggested in
Ref. [13] both yield new results that are usefull for

interpretation of one-electron spectra of the above-
mentioned systems.
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