
Semilocalized Approach to
Investigation of Chemical Reactivity

V. GINEITYTE
Institute of Theoretical Physics and Astronomy, Vilnius University,
Gostauto 12, 2600 Vilnius, Lithuania

Received 5 November 2002; accepted 8 May 2003

DOI 10.1002/qua.10704

ABSTRACT: Application of the power series for the one-electron density matrix
(Gineityte, V., J Mol Struct Theochem 1995, 343, 183) to the case of two interacting
molecules is shown to yield a semilocalized approach to investigate chemical reactivity,
which is characterized by the following distinctive features: (1) Electron density (ED)
redistributions embracing orbitals of the reaction centers of both molecules and of their
neighboring fragments are studied instead of the total intermolecular interaction energy; (2)
the ED redistributions are expressed directly in the basis of fragmental orbitals (FOs)
without passing to the basis of delocalized molecular orbitals (MOs) of initial molecules; (3)
terms describing the ED redistributions due to an intermolecular contact arise as additive
corrections to the purely monomolecular terms and thereby may be analyzed
independently; (4) local ED redistributions only between orbitals of the reaction centers of
both molecules are described by lower-order terms of the power series, whereas those
embracing both the reaction centers and their neighborhoods are represented by higher-
order terms. As opposed to the standard perturbative methods based on invoking the
delocalized (canonical) MOs of isolated molecules, the results of the approach suggested are
in-line with the well-known intuition-based concepts of the classic chemistry concerning
reactivity, namely, with the assumption about different roles of the reaction center and of
its neighborhood in a chemical process, with the expectation about extinction of the indirect
influence of a certain fragment (substituent) when its distance from the reaction center
grows, etc. Such a parallelism yields quantum chemical analogs for the classic concepts and
thereby gives an additional insight into their nature. The scope of validity of these concepts
also is discussed. Applicability of the approach suggested to specific chemical problems is
illustrated by a brief consideration of the SN2 and AdE2 reactions. © 2003 Wiley Periodicals,
Inc. Int J Quantum Chem 94: 302–316, 2003
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1. Introduction

O rganic molecules are usually considered as
consisting of separate fragments (functional

groups) that undergo characteristic reactions. This
fundamental principle of the classic chemistry
forms the basis of classification of both chemical
compounds and their reactions [1–6]. The main
point here is that certain types of reactions are
expected to be a distinctive feature of the whole
class of molecules containing the same functional
group(s).

An alternative form of this principle consists of
ascribing different roles for separate fragments of a
certain compound in the given reaction. Thus, a
definite functional group is regarded as taking part
in the given process directly and it is usually re-
ferred to as the reaction center [1]. The direct par-
ticipation implies that some bonds are broken and
new bonds are formed just within this fragment.
Moreover, a local spatial contact only between the
relevant reaction centers of two molecules is ex-
pected to be sufficient for the given reaction to
begin. So far as the remaining parts of molecules are
concerned, these are supposed to participate in the
process indirectly by exerting certain electron-do-
nating or -accepting effects upon the respective re-
action centers, and the extents of these effects are
usually considered to be different at various stages
of the reaction [2, 6, 7]. As a result, the relative rate
of the process is expected to be altered but not the
mechanism of the reaction. Extinction of the indi-
rect influence when the distance between the given
fragment and the reaction center grows also is
among the expectations. The above-described local
point of view to chemical reactivity forms the basis
of the well-known powerful LFER method based on
the linear free energy relationship [3, 4, 6].

Among quantum chemical approaches to reac-
tivity, however, the concept of a nonlocal interac-
tion between entire molecules proves prevalent.
This equally refers both to the pioneering contribu-
tions based on the simple Hückel theory [8–18] and
to the perturbative approaches of a considerably
higher level of sophistication developed later [19–
28] and involving exact many-electron Hamiltonian
operators. Mathematically, the above-mentioned
point of view is represented by passing to the basis
of delocalized (canonical) molecular orbitals
(CMOs) either of initial molecules or of a supposed
transition state [1, 29–32]. The popular qualitative

HOMO/LUMO concept [22, 30, 33, 34] also reflects
the same delocalized point of view.

Despite their popularity, however, the delocal-
ized approaches could not entirely supplant the
intuition-based idea about the direct and indirect
participation of separate fragments in chemical pro-
cesses, especially in those between nonconjugated
molecules. For example, simple local models are
used for interpretation of SN2 processes between
nucleophiles and substituted alkanes [1, 6, 29], viz.
a local interaction is considered between the elec-
tron-donating orbital of nucleophile and the anti-
bonding orbital of the nucleofuge-containing bond.
The influence of the remaining bonds of both par-
ticipants of the reaction is entirely ignored in these
models.

In this article, we are about to suggest a semilo-
calized perturbative approach to investigate chem-
ical reactivity, which is intended for filling the gap
between the standard delocalized approaches and
their oversimplified strictly localized alternatives.
At the same time, we seek to obtain the quantum
chemical analogs for the above-discussed classic
concepts (especially for the direct and indirect par-
ticipation of certain fragment in a chemical process)
and thereby give an additional insight into the na-
ture of these concepts and establish the scope of
their validity.

In this connection, an intermolecular interaction
is studied directly in terms of orbitals localized on
separate fragments of participating molecules (frag-
mental orbitals) without passing to the basis of
CMOs. As opposed to the simple local models,
however, orbitals of all fragments of reacting sys-
tems are included in the basis set.

Passing to the basis of CMOs of isolated mole-
cules underlying the standard approaches implies
an initial diagonalization of respective Fockian (or
Hückel-type Hamiltonian) matrices and thereby an
exact taking into account of the intramolecular in-
teractions. The intermolecular interactions, how-
ever, are treated perturbatively in the second step
of the theory. By contrast, both intra- and intermo-
lecular interactions between fragmental orbitals
(FOs) are considered perturbatively in our ap-
proach.

The standard approaches are usually based on
investigation of total energies of two interacting
molecules. This characteristic, however, is hardly
the most suitable one for revealing local conse-
quences of an intermolecular contact. In this con-
nection, electron density redistributions among FOs
due to an intermolecular contact are studied in this
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article instead of alterations in the total energies. A
simple interrelation between these two characteris-
tics established recently [35] may be invoked when
comparing our approach to those based on total
energies.

When analyzing the most important peculiarities
of the above-specified electron density redistribu-
tions, it is advisable to use some algebraic expres-
sions for the relevant one-electron density matrix
(DM). For a Hückel-type model Hamiltonian matrix
represented in the basis of FOs, the expressions for
the DM of a general nature have been derived by
means of a direct solution of the so-called commu-
tation equation in the form of power series without
invoking CMOs [36–43]. Moreover, no specifying
either of the number of FOs or of their constitution
was required there. As a result, numerous common
features of charge redistributions were found for
particular types of molecules [38, 41, 43]. As an
initial step of the theory, we confine ourselves here
to application of these expressions to the case of
two interacting molecules. General results concern-
ing chemical reactivity also are anticipated to fol-
low from this study.

The only condition imposed in Refs. [36–43] on
the initial basis set was the possibility of revealing
two subsets of basis functions containing the ini-
tially occupied and initially vacant FOs, respec-
tively, so that the energy intervals between orbitals
of different subsets exceed the intersubset interac-
tions considerably. For saturated organic mole-
cules, it is the basis of localized two-center bond
orbitals along with lone pair orbitals that was
shown to satisfy this requirement [37, 38]. In the
case of the �-electron subsystems of aliphatic con-
jugated compounds, two-center bond orbitals of the
initially double bonds meet the same condition
fairly well [40]. Finally, if the system under study
contains aromatic (or heteroaromatic) fragments
(e.g., the phenyl ring in substituted benzenes) [41,
43] the CMOs of respective aromatic hydrocarbons
(of benzene, respectively) may be used to represent
them.

The above-enumerated groups of atoms (the sin-
gle and double bonds, phenyl rings, etc.) coincide
with the smallest quasitransferable fragments of
organic molecules, which will be further referred to
as elementary fragments. The respective orbitals
(FOs) will be in general defined as eigenfunctions of
separate Hamiltonian matrix blocks corresponding
to subsets of atomic orbitals (AOs) localized on
these fragments.

Note that members of the power series for the
DM P to within the fourth order inclusive prove to
be essential when describing electron density redis-
tribution among localized basis orbitals [40, 43–45]
in contrast to the case of delocalized orbitals
(CMOs) of initial molecules, where confinement to
terms of second order is sufficient [29, 46]. In this
connection, a brief summary of corrections P(k) to
within k � 4 is given in Section 2 along with dis-
cussing a convenient way of representing charge
redistribution in terms of partial transferred popu-
lations between FOs of opposite initial occupation.
Thereupon, we apply the general expressions for
P(k) to the case of two interacting molecules and
prove an important additivity relation for the total
DM with respect to intra- and intermolecular con-
tributions (Section 3). This relation forms the basis
of further derivation of expressions for alterations
in the partial transferred populations between FOs
due to an intermolecular contact (Section 4). Anal-
ysis of these expressions also is carried out in the
same section. Specific examples of applicability of
the approach suggested are discussed briefly in
Section 5.

2. General Expressions for the
One-Electron DM: Two-Orbital Nature
of Charge Redistribution

Let the total basis set of FOs {�} to be divided
into two subsets {�(�)} and {�(�)} containing the
initially occupied and initially vacant orbitals, re-
spectively [36], further abbreviated as IOFOs and
IVFOs. The intersubset resonance parameters are
assumed to be first-order terms vs. the intersubset
energy intervals. The actual number of molecules is
not essential here.

Then, the Hückel-type one-electron Hamiltonian
matrix H of our molecular system may be expressed
as a sum of first- and second-order matrices, i.e.,

H � H�0� � H�1�, (1)

where

H�0� � �E��� 0
0 �E���

�, H�1� � � S R
R� Q�. (2)

The diagonal blocks (submatrices) E(�) � S and
�E(�) � Q of the matrix H contain intrasubset
interactions (resonance parameters) along with
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one-electron energies of FOs, while the off-diagonal
block R involves intersubset interactions. The mi-
nus sign in front of E(�) is introduced for conve-
nience, and the superscript � designates the trans-
posed matrix. It is also seen that zero-order
intrasubset interactions are in general allowed in
Eq. (2) and these are included into submatrices E(�)
and E(�).

The one-electron DM P corresponding to the
Hamiltonian matrix H of Eqs. (1) and (2) has been
obtained in Refs. [36–43] as a sum over k of correc-
tions P(k) of the following constitution:

P�k� � �2�X�k�� G�k�

G�k�
� �X�k��

�, (3)

where k � 0, 1, 2 . . . stands for the order parameter.
The submatrices �2X(k)� and 2X(k)� of the matrix
P(k) contain the kth-order corrections to occupation
numbers of basis orbitals and intrasubset bond or-
ders, while the off-diagonal blocks �2G(k) involve
the respective corrections to intersubset bond or-
ders. Moreover, the blocks X(k)� and X(k)� have
been expressed in Refs. [36–43] in terms of matrices
G(k�1), G(k�2), etc., taking the off-diagonal positions
in the previous corrections P(k�1), P(k�2), etc. Thus,
the first four blocks X(k)� and X(k)� take the form

X�0�� � �I, X�0�� � 0, X�1�� � X�1�� � 0,

X�2�� � G�1�G�1�
� , X�2�� � G�1�

� G�1�,

X�3�� � G�1�G�2�
� � G�2�G�1�

� , X�3�� � G�1�
� G�2� � G�2�

� G�1�,

X�4�� � G�1�G�3�
� � G�3�G�1�

� � G�2�G�2�
� � G�1�G�1�

� G�1�G�1�
� ,

X�4�� � G�1�
� G�3� � G�3�

� G�1� � G�2�
� G�2�

� G�1�
� G�1�G�1�

� G�1�, (4)

where I is the unit matrix. The off-diagonal blocks
G(k), in turn, meet the matrix equations of the form

E���G�k� � G�k�E��� � W�k� � 0, (5)

where

W�1� � R, W�2� � SG�1� � G�1�Q,

W�3� � SG�2� � G�2�Q � �RG�1�
� G�1� � G�1�G�1�

� R�,

W�4� � SG�3� � G�3�Q � �R�G�1�
� G�2� � G�2�

� G�1��

� �G�1�G�2�
� � G�2�G�1�

� � R�. (6)

The solution of Eq. (6) takes the form of an
integral [36, 39, 42, 47]:

G�k���
0

�

exp�E���t�W�k�exp�E���t�dt � �E����W�k��E����,

(7)

where the last expression represents a simplified
notation of the same integral.

Given that the zero-order blocks E(�) and E(�) are
diagonal matrices, algebraic expressions for partic-
ular elements G(k)il may be obtained [36, 37], viz.

G�k�il � �
W�k�il

E���i � E���l
, (8)

where E(�)i 	 E(�)ii and E(�)l 	 E(�)ll. The first-order
element G(1)il follows from Eq. (8) straightforwardly
after replacing W(1)il by the relevant resonance pa-
rameter Ril. This element describes the direct
(through-space) interaction between the IOFO �(�)i
and the IVFO �(�)l. Accordingly, the second-order
element G(2)il takes the form

G�2�il �
1

E���i � E���l

� � �
j

IOFOs SijRjl

E��� j � E���l
� �

r

IVFOs RirQrl

E���i � E���r
� (9)

and represents the indirect interaction of the
same orbitals by means of a single mediator (ei-
ther an IOFO �(�) j or an IVFO �(�)r). Nonzero
values of resonance parameters between the me-
diator and the interacting orbitals are required to
ensure a significant value of the indirect interac-
tion G(2)il.

Similarly, the third-order element G(3)il de-
scribes an analogous indirect interaction by
means of two mediators. Because of the cumber-
some form of the relevant expression [43], it is not
given here. Instead, we confine ourselves to the
notation that a pair of basis orbitals of any initial
occupation (e.g., certain FOs �x and �y) is able to
contribute to the total matrix element G(3)il con-
siderably if resonance parameters between pairs
of orbitals (�(�)i, �x), (�x, �y), and (�y, �(�)l) take
significant values.

If E(�) and E(�) are arbitrary negative definite
matrices [42], no local relations like that of Eq. (8)
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may be established between elements G(k)il and
W(k)il. Hence, any element G(k)il (including G(1)il)
describes a nonlocal interaction in this case. Never-
theless, particular basis functions (viz. �(�)i and
�(�)l) correspond to the subscripts i and l of an
element G(k)il.

The populations of an IOFO �(�)i and of an IVFO
�(�)p may be evidently defined as sums over k of
respective diagonal elements of matrices �2X(k)�

and 2X(k)�. The latter, in turn, consist of sums of
products, each of them containing two matrices G(k)

[see Eq. (4)]. This implies that the elements X(k)�,ii

and X(k)�,pp and thereby the above-mentioned pop-
ulations (x(�)i and x(�)p) may be expressed as sums
of increments of individual orbitals of the opposite
subset. After summing up these expressions over k,
we then obtain

x���i � 2 � �
p

IVFOs

x���i,��� p, x���m � �
i

IOFOs

x��� p,���i, (10)

where 2 represents the initial occupation number of
the IOFO �(�)i and

x���i,��� p � x��� p,���i

� 2��G�1�ip�
2 � 2G�1�ipG�2�ip � 2G�1�ipG�3�ip

� �G�2�ip�
2 � G�1�ip�G�1�G�1�

� G�1��ip � . . .�.

(11)

The expression for x(�)i of Eq. (10) indicates that
the increment x(�)i,(�)p describes the partial popu-
lation donated by the IOFO �(�)i to the IVFO �(�)p.
Similarly, x(�)p,(�)i represents the partial population
acquired by the IVFO �(�)p from the IOFO �(�)i,
whereas the first relation of Eq. (11) is nothing more
than the charge conservation condition.

Therefore, the charge redistribution between FOs
due to their interaction may be represented in terms
of partial contributions, each of them referring to a
pair of FOs of opposite initial occupation, i.e., an
IOFO and an IVFO. It should be emphasized, how-
ever, that any partial increment x(�)i,(�)p defined by
Eq. (11) in general is a nonlocal characteristic. In-
deed, it contains indirect interactions of orbitals
�(�)i and �(�)p and thereby depends implicitly of
the whole set of FOs.

3. Additivity of Intra- and
Intermolecular Contributions
to the One-Electron DM of Two
Interacting Molecules

The above-described form of the DM may be
easily applied to the case of two interacting mole-
cules A and B. To this end, the subset of IOFOs
{�(�)} will be further subdivided into two parts
{�(�)

(a) } and {�(�)
(b) } referring to molecules A and B,

respectively. Similarly, the subset of IVFOs will
consist of two parts {�(�)

(a) } and {�(�)
(b) }. As a result, the

total basis set may be represented in terms of four
subsets, i.e., {�} � {{�(�)

(a) }, {�(�)
(b) }, {�(�)

(a) }, {�(�)
(b) }}.

The blocks (submatrices) of matrices H(0) and
H(1) will be subdivided accordingly. Thus, the zero-
order blocks E(�) and E(�) take the form

E��� � �E���
�a� 0
0 E���

�b� � � E���
�a� � E���

�b� ,

E��� � �E���
�a� 0
0 E���

�b� � � E���
�a� � E���

�b� , (12)

where the symbol Q designates the direct sum of
matrices. For the first-order submatrices S, R, and Q
we obtain

S � Sa � Sb � �S,

R � Ra � Rb � �R,

Q � Qa � Qb � �Q. (13)

The blocks of Eqs. (12) and (13) denoted by sub-
and superscripts (a) and (b) contain interactions
(resonance parameters) inside the molecules A and
B, respectively. The remaining parts of matrices S,
R, and Q (supplemented by the symbol �) consist of
intermolecular interactions and take an antiblock-
diagonal form as follows:

�S � � 0 M
M� 0 �, �R � �0 K

L 0�, �Q � � 0 T
T� 0�. (14)

Equations (12)–(14) also involve an additional as-
sumption that intermolecular resonance parameters
are first-order terms comparable to those contained
within the matrices Ra and Rb.

Let us prove first the following property of ma-
trices G(k):
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G�k� � G�k�
�a� � G�k�

�b� � �G�k�, (15)

where G(k)
(a) and G(k)

(b) are purely monomolecular
terms and �G(k) is a correction describing the incre-
ment of the intermolecular interaction. The latter
vanishes if the intermolecular resonance parame-
ters contained within matrices �S, �R, and �Q turn
to zero.

Let us start with first-order terms (k � 1). The
block-diagonal structure of matrices E(�) and E(�)
seen from Eq. (12) implies that matrices exp(E(�)t)
and exp(E(�)t) are block-diagonal too, e.g.,

exp�E���t� � exp�E���
�a� t� � exp�E���

�b� t�. (16)

Then, from Eqs. (6) and (7) it follows that the
matrix G(1) complies with the form shown in Eq.
(15), where

G�1�
�a� � �E���

�a� �Ra�E���
�a� �, G�1�

�b� � �E���
�b� �Rb�E���

�b� �. (17)

Moreover, the intermolecular increment �G(1) also
is of the antiblock-diagonal constitution like that of
Eq. (14) and contains matrices G(1)

(K) and G(1)
(L) defined

as follows:

G�1�
�K� � �E���

�a� �K�E���
�b� �, G�1�

�L� � �E���
�b� �L�E���

�a� � (18)

in its off-diagonal positions. It is seen that blocks of
Eq. (18) turn into zero matrices if the intermolecular
resonance parameters contained within matrices K
and L vanish. Thus, the above-formulated property
is proven for the first-order matrix G(1).

Let us turn now to the second-order matrix G(2).
To this end, the above-derived form of the matrix
G(1) should be used when constructing the matrix
W(2) in accordance with Eq. (6). As a result, an
increment of the form W(2)

(a) Q W(2)
(b) will be obtained

from the intramolecular terms Sa Q Sb, Qa Q Qb, and
G(1)

(a) Q G(1)
(b). On the other hand, contributions con-

taining both one and two � symbols yield an inter-
molecular increment �W(2), which turns into a zero
matrix if M � T � K � L � 0. Hence, the matrix G(2)
also complies with the form of Eq. (15) if Eq. (16)
along with its counterpart for exp(E(�)t) are in ad-
dition taken into consideration.

As opposed to the first-order intermolecular
term �G(1), however, the second-order term �G(2)
contains four nonzero submatrices. Let the sub-
scripts aa, bb, ab, and ba be ascribed to individual
blocks of the matrix �G(2) as follows:

�G�2� � ��G�2�aa �G�2�ab

�G�2�ba �G�2�bb
� . (19)

We then obtain

�G�2�aa � �E���
�a� ��MG�1�

�L� � G�1�
�K�T���E���

�a� �,

�G�2�bb � �E���
�b� ��M�G�1�

�K� � G�1�
�L�T��E���

�b� �,

�G�2�ab � �E���
�a� ���SaG�1�

�K� � G�1�
�K�Qb�

��MG�1�
�b� � G�1�

�a�T�]�E���
�b� ),

�G�2�ba � �E���
�b� ���SbG�1�

�L� � G�1�
�L�Qa�

��M�G�1�
�a� � G�1�

�b�T��]�E���
�a� ), (20)

where notations like those of Eq. (7) are used for
integrals.

The third-order correction G(3) also may be
treated similarly, and the relation of Eq. (15) for k �
3 may be verified without difficulties. Moreover,
submatrices of the relevant intermolecular part
(�G(3)) may be denoted by subscripts as shown in
Eq. (19) and examplified by the following two ex-
pressions:

�G�3�aa � �E���
�a� ���Sa�G�2�aa � �G�2�aaQa�

� �M�G�2�ba � �G�2�abT�� � �KG�1�
�K��G�1�

�a�

� KG�1�
�b��G�1�

�L� � G�1�
�a�G�1�

�L��L � G�1�
�K�G�1�

�b��L

� RaG�1�
�L��G�1�

�L� � G�1�
�K�G�1�

�K��Ra)]�E���
�a� ), (21)

�G�3�ab � �E���
�a� ���Sa�G�2�ab � �G�2�abQb�

� �M�G�2�bb � �G�2�aaT� � �RaG�1�
�a��G�1�

�K�

� RaG�1�
�L��G�1�

�b� � G�1�
�a�G�1�

�L��Rb

� G�1�
�K�G�1�

�b��Rb � KG�1�
�K��G�1�

�K�

� G�1�
�K�G�1�

�K��K)]�E���
�b� ). (22)

Given that E(�) and E(�) are diagonal matrices,
elements of corrections �G(2) and �G(3) may be in-
terpreted as indirect interactions of basis orbitals as
discussed in Section 2. Moreover, the emergence of
nonzero intramolecular blocks �G(2)aa, �G(2)bb,
�G(3)aa, and �G(3)bb may be accounted for in this case
by new indirect interactions arising between orbit-
als of the same molecule owing to additional me-
diators offered by another molecule. For example,
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the element �G(2)aa,ip defined by Eq. (20) takes the
form

�G�2�aa,ip �
1

E���i
�a� � E��� p

�a�

� � �
j

IOFOs�B� MijLjp

E��� j
�b� � E��� p

�a� � �
q

IVFOs�B� KiqTqp

E���i
�a� � E���q

�b� � (23)

and describes the indirect interaction between the
IOFO �(�)i

a and the IVFO �(�)p
a of molecule A by

means of a single mediator among orbitals of mol-
ecule B.

The specific structure of the principal matrices
G(k) for two interacting molecules shown in Eq. (15)
has important implications for corrections of the
one-electron DM P(k). Thus, products of monomo-
lecular matrices G(k)

(a) and G(k)
(b) yield the direct sums

of monomolecular intrasubset population matrices
X(k)�

(a) Q X(k)�
(b) and X(k)�

(a) Q X(k)�
(b) within the total

matrices X(k)� and X(k)�. As a result, the latter take
the form

X�k�� � X�k��
�a� � X�k��

�b� � �X�k��,

X�k�� � X�k��
�a� � X�k��

�b� � �X�k��. (24)

The relations of Eqs. (3), (15), and (24), in turn,
allow us to conclude that any correction P(k) to the
one-electron DM of two interacting molecules P
takes the form

P�k� � P�k�
�a� � P�k�

�b� � �P�k� (25)

and thereby the total DM P may be represented as
follows:

P � P�a� � P�b� � �P. (26)

Therefore, the DM of two interacting molecules
consists of a sum of two matrices, the first contain-
ing the direct sum of DMs of isolated molecules and
the second being a correction originating from the
intermolecular interaction. This implies that inter-
molecular contributions to this characteristic may
be studied independently from intramolecular
ones.

4. Expressions for Occupation
Numbers of FOs of Two Interacting
Molecules: Analysis of the Charge
Redistribution

Consider the population x(�)i of a certain IOFO
�(�)i

a of molecule A. In accordance with the additiv-
ity relation of Eq. (26), the expression for x(�)i also
contains a sum of two terms, namely, the purely
monomolecular term (x(�)i

(a) ) and the population al-
teration due to interaction (�x(�)i), just the latter
representing the charge redistribution under inter-
est. To derive the expression for �x(�)i, the additive
form for matrices G(k) of Eq. (15) should be substi-
tuted into Eq. (4) and the purely monomolecular
terms should be omitted.

The final form of �x(�)i contains a sum of the
second-, third-, and fourth-order increments, here
and below designated by superscripts (2), (3), and
(4), respectively. These increments may be ex-
pressed as follows:

�x���i
�2� � �2 �

q

IVFOs�B�

�G�1�iq
�K� �2 (27)

�x���i
�3� � �4 �

p

IVFOs� A�

G�1�ip
�a� �G�2�aa,ip

� 4 �
q

IVFOs�B�

G�1�iq
�K� �G�2�ab,iq (28)

�x���i
�4� � �4 �

p

IVFOs� A�

G�1�ip
�a� �G�3�aa,ip � 4

� �
p

IVFOs� A�

G�2�ip
�a� �G�2�aa,ip � 2

� �
p

IVFOs� A�

��G�2�aa,ip�
2 � 4

� �
q

IVFOs�B�

G�1�iq
�K� 
G�3�ab,iq

� 2 �
q

IVFOs�B�

��G�2�ab,iq�
2, (29)

where the matrix 
G(3)ab is
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G�3�ab � �G�3�ab � G�1�
�a�G�1�

�a��G�1�
�K� � G�1�

�a�G�1�
�L��G�1�

�b�

� G�1�
�K�G�1�

�b��G�1�
�b� �

1
2 G�1�

�K�G�1�
�K��G�1�

�K�. (30)

Before turning to analysis of these principal ex-
pressions, let us introduce some definitions. Let the
directly contacting fragments of molecules A and B
be called the reaction centers and be denoted by
RC(A) and RC(B), respectively (the direct contact
implies that the intermolecular resonance parame-
ters Mij, Kiq, Ljp, and Tpq for pairs of orbitals of only
these fragments take nonzero values). Further, the
fragments of molecules A and B, the orbitals of
which interact directly only with those of reaction
centers of their own molecules (but not with orbit-
als of the opposite molecule), will be referred to as
the nearest-neighboring fragments and denoted by
NN(A) and NN(B), respectively. Finally, the re-
maining parts of our systems, the orbitals of which
interact directly only with those of respective NN
fragments, will be called the next-nearest-neighbor-
ing fragments and acquire the notations NNN(A)
and NNN(B) (Fig. 1).

It is evident that any of the above-defined frag-
ments may contain either one or several elementary
fragments defined in Section 1. In this connection,

the terms for an elementary and an extended RC,
NN, and NNN fragment will be accordingly used.
Further, an assumption that both RC(A) and RC(B)
are elementary reaction centers implies that only
two elementary fragments of molecules A and B
actually come into contact. This case may be re-
ferred to as the case of a local intermolecular con-
tact [Fig. 1(a)]. Alternatively, we have to do with a
nonlocal contact [Fig. 1(b)]. Finally, nonzero direct
intrafragmental interactions G(1)ip

(a) are peculiar only
to extended fragments, in particular to extended
reaction centers. Indeed, zero resonance parameters
and thereby zero direct interactions correspond to
orbitals of the same elementary fragment in accor-
dance with the definition of FOs (Section 1).

4.1. SECOND- AND THIRD-ORDER
CONTRIBUTIONS TO OCCUPATION NUMBERS

The second-order increment �x(�)i
(2) to the popu-

lation alteration of the orbital �(�)i
a defined by Eq.

(27) contains only the direct intermolecular interac-
tions G(1)iq

(K) . Using Eqs. (10), (11), and (27), the re-
spective partial transferred population between the
IOFO �(�)i

a and a certain IVFO �(�)q
b of molecule B

may be defined as follows:

�x���i,���q
�2�,inter � 2�G�1�iq

�K� �2. (31)

It is seen that nonzero values of �x(�)i,(�)q
(2),inter corre-

spond only to pairs of orbitals described by non-
zero resonance parameters Kiq [see Eq. (18)]. Thus, a
second-order intermolecular charge redistribution
may be expected to take place only between orbitals
of reaction centers RC(A) and RC(B). Moreover, no
intramolecular charge transfer due to an intermo-
lecular contact follows from the second-order
terms. Hence, taking into account terms of power
series to within the second order inclusive actually
yields the local models of reactions discussed in
Ref. [48] and Section 1.

Let us turn now to the third-order increment
�x(�)i

(3) of Eq. (28). The first sum of this expression
describes the population transferred from the or-
bital �(�)i

a to IVFOs of the same molecule (intramo-
lecular charge redistribution), whereas the second
sum represents the intermolecular charge transfer
between the orbital �(�)i

a and IVFOs of the opposite
molecule B. Let us start with the first of these con-
tributions.

The third-order intramolecular partial trans-
ferred population between the IOFO �(�)i

a and the
IVFO �(�)p

a takes the form

FIGURE 1. Scheme reflecting the constitution of two
interacting molecules A and B. RC, NN, and NNN stand
for the reaction center of a molecule, its nearest-neigh-
boring fragment, and its next-nearest-neighboring frag-
ment, respectively. Intermolecular contacts are denoted
by double-headed arrows. (a) Case of a local intermo-
lecular contact when both RC(A) and RC(B) are ele-
mentary fragments. (b) Example of a nonlocal contact
when both RC(A) and RC(B) consist of two elementary
fragments.

SEMILOCALIZED APPROACH TO INVESTIGATE CHEMICAL REACTIVITY

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 309



�x���i,��� p
�3�,intra � 4G�1�ip

�a� �G�2�aa,ip (32)

and contains a product of the direct interaction of
the above-mentioned orbitals (G(1)ip

(a) ) and of their
indirect interaction by means of an orbital of the
opposite molecule B (�G(2)aa,ip) [see Eq. (23)]. Non-
zero values of both factors evidently are required
for a nonzero value of �x(�)i,(�)p

(3),intra to arise.
A considerable value of the indirect interaction

�G(2)aa,ip may be expected if both the IOFO �(�)i
a and

IVFO �(�)p
a belong to the reaction center of molecule

A [Fig. 2(a)]. To ensure a nonzero direct interaction
G(1)ip

(a) between the same orbitals, however, localiza-
tion of the latter on different elementary fragments
of the RC(A) fragment is imperative. Hence, a

third-order intramolecular charge redistribution
may be expected to take place only inside an ex-
tended reaction center RC(A) provided that such a
center is present in molecule A.

Let us turn now to the intermolecular part of the
third-order population alteration �x(�)i

(3) . The rele-
vant partial transferred population between the
IOFO �(�)i

a and the IVFO �(�)q
b may be expressed as

follows:

�x���i,���q
�3�,inter � 4G�1�iq

�K� �G�2�ab,iq, (33)

where orbitals of both molecules are able to play the
role of the only mediator of the indirect intermolec-
ular interaction �G(2)ab,iq. Nonzero values of both
factors of the right side of Eq. (33) and thereby of
the partial transferred population �x(�)i,(�)q

(3),inter is en-
sured if both �(�)i

a and �(�)q
b belong to the reaction

centers of molecules A and B and at least one of
these fragments is an extended RC in addition.
{Given that both RC(A) and RC(B) are elementary
reaction centers, a zero value is expected for the
indirect interaction �G(2)ab,iq. Indeed, orbitals �(�)p

a

and �(�) j
b [Fig. 2(a)] are not able to play the role of

mediators of this interaction because of zero values
of resonance parameters for pairs of orbitals (�(�)i

a ,
�(�)p

a ) and (�(�) j
b , �(�)q

b ) that are contained within the
definition of the second-order interaction shown in
Eq. (9).} Hence, no third-order charge redistribution
arises in the case of a local intermolecular contact.
Otherwise, a third-order charge transfer both inside
and between extended reaction centers may be ex-
pected.

On the whole, the results of this subsection indi-
cate the primary role of the reaction center(s) in
chemical reactions. Moreover, the second- and
third-order local charge redistributions may be re-
garded as the quantum chemical analog of the sup-
posed direct participation of the RC(A) and RC(B)
fragments in certain processes.

4.2. ANALYSIS OF SEPARATE FOURTH-
ORDER INCREMENTS TO OCCUPATION
NUMBERS

Let us dwell now on the fourth-order increment
�x(�)i

(4) shown in Eq. (29). It is seen that the first three
sums of the right side of this expression describe
intramolecular charge redistributions owing to the
indirect influence of the opposite molecule,
whereas the last two terms represent the intermo-
lecular charge transfer. Let us consider these incre-
ments separately.

FIGURE 2. Diagram representing the energy levels of
FOs corresponding to separate fragments of molecules
A and B (RC, NN, and NNN are defined as in Fig. 1). (a)
Both the electron-donating orbital �( � )i

a and the elec-
tron-accepting orbitals �( � )p

a and �( � )q
b are localized

within the reaction centers. (b) Orbital �( � )p
a is localized

on the nearest-neighboring fragment of molecule A.
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The first increment of Eq. (29) evidently is the
fourth-order analog of the first (intramolecular)
term of Eq. (28). Let the respective intramolecular
partial transferred population acquire an additional
superscript 1, viz.

�x���i,��� p
�4�1,intra � 4G�1�ip

�a� �G�3�aa,ip. (34)

This population coincides with that defined by Eq.
(32) except for the number of mediators of the in-
direct intramolecular interaction: The third-order
interaction �G(3)aa,ip takes place by means of two
mediators, at least one of them being localized on
the opposite molecule B.

Let us assume first that the orbital �(�)i
a belongs

to the RC(A) fragment [Fig. 2(a)]. Given that it is an
extended reaction center in addition, the orbital
�(�)p

a also may be localized on the same fragment so
that G(1)ip

(a) � 0. Then, the partial transferred popu-
lation of Eq. (34) represents a fourth-order charge
redistribution inside an extended reaction center
due to the intermolecular contact. So far as an ele-
mentary RC(A) is concerned, a zero value of
�x(�)i,(�)p

(4)1,intra follows owing to the equality G(1)ip
(a) � 0.

As opposed to the third-order increment
�x(�)i,(�)p

(3),intra of Eq. (32), however, the orbital �(�)p
a may

be alternatively localized on the NN(A) fragment of
the same molecule [Fig. 2(b)] and a nonzero value
of the partial transferred population �x(�)i,(�)p

(4)1,intra may
be obtained. For example, a significant increment to
the third-order indirect interaction �G(3)aa,ip may be
ensured if the first mediator of this interaction
(�(�) j

b ) belongs to RC(B), whereas the second one
(�(�)r

a ) coincides with an IVFO of molecule A local-
ized on its reaction center RC(A). Again, situating
the orbital �(�)p

a on the NNN(A) fragment does not
yield any contribution to the partial transferred
population �x(�)i,(�)p

(4)1,intra. Hence, this population may
be concluded to describe an intramolecular charge
transfer from the reaction center RC(A) toward its
nearest-neighborhood [NN(A)] owing to the indi-
rect influence of the approaching molecule B. Sim-
ilarly, the orbital �(�)i

a may be assumed to belong to
the NN(A) fragment, whereas �(�)p

a may be situ-
ated within RC(A). As a result, the partial trans-
ferred population of Eq. (34) describes an intramo-
lecular charge transfer from the nearest-
neighborhood NN(A) toward the reaction center
RC(A).

Thus, the partial transferred population
�x(�)i,(�)p

(4)1,intra may be concluded to represent an elec-
tron-donating or -accepting effect of the nearest

neighborhood of molecule A upon its own reaction
center owing to the indirect influence of molecule B.

Let us turn now to the second intramolecular
increment of Eq. (29). The respective partial trans-
ferred population takes the form

�x���i,��� p
�4�2,intra � 4G�2�ip

�a� �G�2�aa,ip (35)

and contains no direct interaction of the two in-
volved orbitals �(�)i

a and �(�)p
a in contrast to the

above-discussed first sum. Inasmuch as the only
mediator of the indirect interaction �G(2)aa,ip neces-
sarily belongs to molecule B, localization of both
�(�)i

a and �(�)p
a on RC(A) is imperative for a nonzero

value of this partial transferred population to arise.
On the other hand, a considerable value of the
monomolecular indirect interaction G(2)ip

(a) is possible
also for two orbitals of an elementary reaction cen-
ter RC(A) provided that an efficient mediator of
this interaction may be found among orbitals of the
NN(A) fragment. Hence, the partial transferred
population of Eq. (35) describes an intramolecular
charge redistribution within the reaction center
RC(A) (including an elementary one) under influ-
ence of the opposite molecule, and orbitals of the
nearest-neighboring fragment [NN(A)] participate
in this redistribution indirectly as mediators of the
indirect interaction G(2)ip

(a) .
Similarly, the third sum of Eq. (29) and the rele-

vant partial transferred population

�x���i,��� p
�4�3,intra � 2��G�2�aa,ip�

2 (36)

represents an intramolecular charge redistribution
inside the reaction center of molecule A mediated
by orbitals of the opposite reaction center RC(B).

Let us consider now the last two sums of Eq. (29).
Let us define the relevant partial transferred popu-
lations

�x���i,���q
�4�4,inter � 4G�1�iq

�K� 
G�3�ab,iq (37)

and

�x���i,���q
�4�5,inter � 2��G�2�ab,iq�

2. (38)

It is seen that a nonzero value of the direct in-
teraction G(1)iq

(K) is required for the charge redistribu-
tion described by Eq. (37) to take place. This, in
turn, implies that orbitals �(�)i

a and �(�)q
b are neces-

sarily localized on the RC(A) and RC(B) fragments.
It is also evident that orbitals of the nearest neigh-
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borhoods of these reaction centers [NN(A) and
NN(B)] may be among mediators of the third-order
indirect interaction �G(3)ab,iq and thereby of its mod-
ified version 
G(3)ab,iq [see Eq. (30)]. For example,
the orbitals �(�)p

a and �(�)r
a shown in Figure 2(b) are

able to play this role. Orbitals of the NNN(A) and
NNN(B) fragments, however, are not efficient me-
diators for the above-mentioned interaction [if we
take an orbital of the NN(A) fragment as the first
mediator of the indirect interaction �G(3)ab,iq and an
orbital of the NNN(A) fragment as a second one,
the latter does not interact with the orbital �(�)q

b and
thereby the final value of �G(3)ab,iq turns to zero].
Thus, Eq. (37) represents an additional charge re-
distribution between the two reaction centers under
indirect participation of their neighboring frag-
ments.

The last partial transferred population �x(�)i,(�)q
(4)5,inter

of Eq. (38) contains the square of the indirect inter-
action between orbitals �(�)i

a and �(�)q
b by means of

a single mediator. A significant value of �x(�)i,(�)q
(4)5,inter is

ensured if either �(�)i
a belongs to the RC(A) and

�(�)q
b is localized on the NN(B) fragment or �(�)i

a is
localized within the NN(A) fragment and �(�)q

b be-
longs to RC(B). Hence, this partial population de-
scribes an indirect charge transfer between one of
the two reaction centers and the nearest neighbor-
hood of the opposite reaction center. Moreover,
orbitals of the remaining reaction center situated
between the electron-donating and -accepting frag-
ments play the role of mediators for this charge
redistribution.

It is seen, therefore, that an indirect participation
of certain neighboring fragment in a chemical pro-
cess is represented by fourth-order terms in con-
trast to the direct participation of the reaction center
(Section 4.1). In the case of a still more remote
fragment, terms of even higher orders evidently are
required to describe the relevant effects. Thus, ex-
tinction of an indirect influence may be expected
when the distance between the given fragment and
the respective reaction center grows.

The last prediction based on the above results is
as follows: At the early stage of the reaction when
the intermolecular resonance parameters are rela-
tively small, the lower-order terms and thereby the
structures of the reaction centers are likely to play
the decisive role. When the process goes on, how-
ever, the higher-order terms and thereby the influ-
ence of the neighboring fragments become rela-
tively more important.

5. Applicability of the Approach
Suggested to Specific Chemical
Problems

Comparison of partial transferred populations of
Eqs. (31)–(38) referring to alternative routes of cer-
tain reaction may serve to demonstrate the above-
expected applicability. To this end, a specific model
of the given process is required, including particu-
lar structures both of the participating fragments
(RC, NN, and NNN) and of FOs along with respec-
tive energy levels. Moreover, confinement to certain
number of principal FOs and their interactions (res-
onance parameters) also is advisable, especially
when looking for qualitative conclusions. For exam-
ple, a single initially occupied (vacant) orbital
�(�)N(�(�)E) may be successfully used to represent
a nucleophilic (electrophilic) reagent B [44, 49]
when comparing different directions of its attack
upon the same reactant A [such a one-orbital model
implies that the reagent B consists only of an ele-
mentary reaction center RC(B)].

For illustration, let us dwell first on the extended
model of the SN2 reaction between a substituted
alkane (ZOC�H2OC	H2O . . . ) and nucleophile
(Nu) suggested recently [44], where Z stands for a
heteroatom (nucleofuge). As opposed to the above-
discussed local model [1, 6, 29], intermolecular res-
onance parameters between the orbital of the re-
agent (�(�)N) and orbitals of the C�OC	 and/or
C�OH bonds of the reactant also are taken into
account here. This evidently implies an assumption
about an extended reaction center RC(A) contain-
ing four bonds (viz. the C�OZ bond and its three
geminal neighbors) and thereby about a nonlocal
intermolecular contact. Application of this new
model allowed us to distinguish between the effi-
ciencies of the frontal and back attacks of nucleo-
phile even if the respective direct intermolecular
interactions between the orbital �(�)N and the anti-
bonding orbital of the C�OZ bond (�(�)1) take co-
inciding absolute values. The point is that the indi-
rect interactions between orbitals �(�)N and �(�)1 by
means of orbitals of the C�OC	 (C�OH) bonds
playing the role of mediators contribute signifi-
cantly to a greater efficiency of the back attack of
nucleophile as compared to the frontal one (it is the
back attack that is commonly assumed to give rise
to a subsequent reaction [1–6, 29, 30]).

The immediate reasons for such a result are as
follows: The above-mentioned assumption of coin-
cidence between absolute values of direct interac-
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tions (G(1)iq
(K) ) for the frontal and back attacks of

nucleophile evidently implies an equality between
respective second-order partial transferred popula-
tions defined by Eq. (31) and thereby makes a com-
parison of indirect increments to relative efficien-
cies of both attacks easier (that is why the
assumption of uniform direct interactions was in-
voked). Further, the correction �x(�)N,(�)1

(3),inter of Eq. (33)
describing the indirect intermolecular charge trans-
fer between orbitals �(�)N and �(�)1 by means of
orbitals of the C�OC	 (C�OH) bonds proved to be
of the largest absolute value among the third-order
partial transferred populations of Eqs. (32) and (33).
The most important aspect, however, consists of
opposite signs of the above-mentioned principal
correction for alternative directions of the attack,
namely, a positive (negative) sign of correction
�x(�)N,(�)1

(3),inter corresponds to the back (frontal) attack
of nucleophile (different signs of direct interactions
G(1)N1

(K) along with coinciding signs of indirect inter-
actions �G(2)ab,N1 give rise to this result). Conse-
quently, the third-order increment �x(�)N,(�)1

(3),inter is
added (subtracted) to (from) the positive second-
order partial transferred population �x(�)N,(�)1

(2),inter and
thereby a larger (smaller) value of the total popu-
lation acquired by the ZOC� bond is obtained for
the back (frontal) attack of nucleophile. It is natural
to assume that the more population the nucleofuge
acquires, the easier it leaves. Hence, a greater effi-
ciency of the back attack due to indirect increments
has been concluded.

Let us turn now to the electrophilic addition
(AdE2) reaction of substituted ethenes (H2C	AC�

HX). In the simplest qualitative model of the pro-
cess [49], the electron-donating or -accepting sub-
stituent X (XAD,A) may be represented by a single
IOFO (�(�)d) or a single IVFO (�(�)a). The ethene
fragment may be accordingly described by the
bonding and antibonding �-orbitals of the C�AC	

bond, further referred to as �(�)e and �(�)e. The
electrophilic reagent (E�) may be represented by a
single IVFO �(�)E as previously. The initial attacks
of this reagent upon the C	 and C� atoms present
the two routes of the process under comparison,
and these will be called a terminal and an internal
attack, respectively. Coincidence of the second-or-
der corrections of Eq. (31) for these alternative di-
rections of the attack may be ensured by choice of
uniform values for intermolecular resonance pa-
rameters between the orbital �(�)E and the 2pz AO
of the carbon atom under attack. Similarly to the
above-discussed SN2 reaction, such an assumption
allows us to reveal the dependence of charge redis-

tribution among the three fragments of the system
(viz. the C�AC	 bond, the substituent X, and the
reagent E�) only upon their mutual spatial arrange-
ment. As opposed to the SN2 reaction, however, a
local intermolecular contact may be assumed to be
peculiar to the AdE2 process (resonance parameters
between the orbital �(�)E and that of the substituent
X take small values and may be ignored). Thus, our
reactant A (the substituted ethene) contains an ele-
mentary reaction center RC(A) consisting of the
C�AC	 bond only. Consequently, the third-order
partial transferred populations of Eqs. (32) and (33)
vanish and thereby the AdE2 reaction proves to be
governed by fourth-order corrections defined by
Eqs. (34)–(38).

For the case of an electron-donating substituent
(XAD), the following principal fourth-order correc-
tions have been revealed: (1) the partial transferred
population �x(�)d,(�)e

(4)1,intra defined by Eq. (34) and de-
scribing the alteration in the electron-donating ef-
fect of the substituent D upon the C�AC	 bond
under an indirect participation of electrophile (the
orbital �(�)E is among the mediators of the indirect
interaction �G(3)aa,de); (2) the increment �x(�)e,(�)E

(4)4,inter

following from Eq. (37) and representing the alter-
ation in the electron-donating effect of the C�AC	

bond toward electrophile under an indirect partic-
ipation of the orbital �(�)d of the substituent D [the
latter is among the mediators of the third-order
interaction 
G(3)ab,eE of Eq. (30)]; and (3) the partial
transferred population �x(�)d,(�)E

(4)5,inter defined by Eq.
(38) and describing the indirect charge transfer be-
tween the orbital of the substituent (�(�)d) and that
of electrophile (�(�)E).

Comparative studies of these increments for the
internal and terminal position of electrophile with
respect to the substituent D showed that positive
(negative) corrections �x(�)d,(�)e

(4)1,intra and �x(�)e,(�)E
(4)4,inter and

a large (small) positive value of the remaining cor-
rection �x(�)d,(�)E

(4)5,inter are peculiar to the terminal (in-
ternal) position of the reagent. Thus, it is the termi-
nal attack of electrophile upon the molecule
H2C	AC�HD that is accompanied by more ex-
tended transferred population between any pair of
fragments of the whole reacting system and thereby
a larger stabilization energy [35]. This result is in-
line with the observed higher reactivity of the ter-
minal position of the molecule H2C	AC�HD with
respect to electrophile (cf. the so-called Markovni-
kov rule [1–4, 6]).

For an electrophilic attack upon an A-substituted
ethene (H2C	AC�HA), two partial transferred pop-
ulations determine the difference in reactivities of
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carbon atoms, namely, �x(�)e,(�)E
(4)4,inter and �x(�)e,(�)a

(4)1,intra. The
first of these increments describes the alteration in
the electron-accepting effect of electrophile upon
the C�AC	 bond owing to the presence of the elec-
tron-accepting substituent A, whereas the second
one represents an analogous alteration in the elec-
tron-accepting effect of the orbital �(�)a. Moreover,
an internal (terminal) attack of electrophile was
shown to be characterized by positive (negative)
values of these principal corrections and thereby by
more (less) extended electron-accepting effects of
both acceptors. This result indicates an internal ad-
dition of electrophile and also is inline with exper-
imental facts [2–4, 6].

Hence, different relative reactivities of carbon
atoms in substituted ethenes proved to be related to
dissimilar indirect influences of the substituent for
alternative directions of an electrophilic attack.
Moreover, the larger reactivities of the terminal
(internal) carbon atoms vs. the remaining ones for
the cases XAD(XAA) are accompanied by more
(less) efficient indirect influencies of the substituent
D(A).

On the whole, the above-discussed two exam-
ples demonstrate applicability of the approach sug-
gested to specific chemical problems and its possi-
bilities to predict relative reactivities for alternative
routes of reactions.

6. Conclusions

The electron density redistributions among sep-
arate fragments of interacting molecules studied in
this article are expressed algebraically in terms of
fragmental orbitals and their direct and indirect
interactions. At the same time, our final results are
in-line with the principal concepts of the classic
chemistry concerning reactivity. Thus, the follow-
ing classic intuition-based hypotheses acquire an
additional quantum chemical support:

1. The assumption about different roles of the
reaction center and of its nearest neighbor-
hood in a chemical process.

2. The expectation about extinction of the indi-
rect influence of the given fragment upon the
reactivity of the whole compound when the
distance between this fragment and the re-
spective reaction center grows.

3. The assumption about a variable relative im-

portance of the neighboring fragments vs. that
of the reaction center during the process.

Further, the above-obtained results yield quan-
tum chemical representations of the direct and in-
direct participation of separate fragments in a
chemical process. Thus, local redistributions of elec-
tron density among fragmental orbitals inside and
between the supposed reaction centers describe the
consequences of their direct participation in the
given reaction. Alternatively, an indirect influence
of certain nearest-neighboring (NN) fragment (e.g.,
of a substituent) upon the reactivity of the whole
compound is shown to consist of three principal
quantum chemical components:

1. The NN fragment exerts an additional elec-
tron-donating or -accepting effect upon the
reaction center of its own molecule under in-
fluence of the approaching reaction center of
the opposite molecule because the latter offers
its orbitals as mediators for certain indirect
intramolecular interaction.

2. The NN exerts an analogous effect upon the
reaction center of the opposite molecule ow-
ing to an ability of orbitals of its own reaction
center to mediate some indirect intermolecu-
lar interactions.

3. The NN fragment offers its orbitals as medi-
ators for indirect interorbital interactions that
give rise to additional electron density redis-
tributions both inside the reaction center of its
own molecule and between the two reaction
centers.

It is also noteworthy that both the local charge
redistributions representing consequences of direct
participation of the reaction centers in the given
process and the above-enumerated three principal
components of the indirect influence of a substitu-
ent depend on the spatial arrangement of the re-
agent with respect to reactant. Thus, relative effi-
ciencies of alternative routes of the process (if any)
may be predicted on the basis of comparison of
extents of these effects (see, e.g., [44, 49]).

The scope of validity of the approach suggested
evidently is determined by the range of conver-
gence of the power series for the DM. For particular
types of molecules, the rates of convergence of this
series have been studied in Refs. [36–38, 40, 41, 43].
It turned out that a rapid convergence is primarily
ensured for molecules consisting of weakly inter-
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acting (quasitransferable) elementary fragments,
e.g., substituted alkanes [37, 38], aliphatic conju-
gated hydrocarbons of small and medium size
along with their derivatives [40], as well as substi-
tuted benzenes [41, 43]. Hence, reactions of just
these compounds are likely to be studied most suc-
cessfully using the semilocalized approach. The re-
sults concerning an SN2 reaction of substituted al-
kanes [44] and an AdE2 reaction of substituted
ethenes [49] overviewed in Section 5 support this
expectation. Finally, the above-discussed parallel-
ism between our results and the classic concepts
promotes an expectation that the same scope of
validity refers to these concepts as well.

The direct way of obtaining the one-electron
density matrix on the basis of solution of the com-
mutation equation [36–43] used in this article is
closely related [36] to the matrix form of the Bril-
louin theorem, underlying the direct method of
derivation of noncanonical (localized) MOs (LMOs)
without invoking CMOs [36, 39, 47, 50–54]. This
relation, in turn, allows the relevant two problems
to be considered as parts of the same noncanonical
method of MOs (NCMO method) [39, 40, 47]. More-
over, the one-electron DM and the respective LMO
representation matrix have been expressed in terms
of the same submatrices (blocks) and thereby
proved to be alternative forms of the localized de-
scription of electronic structures of molecules [36].
In this context, the above-obtained results may be
regarded as an extension of the NCMO method and
thereby of the localized description to investigation
of chemical reactivity.

The latter conclusion allows us to reformulate
the scope of validity of the approach suggested and
thereby of the above-discussed classic chemical
concepts in terms of LMOs. Indeed, the power se-
ries for the DM and that for the LMO representation
matrix are expected to converge (or diverge) simul-
taneously [40]. Convergence of these series, in turn,
implies existence of LMOs of the basis-orbital-and-
tail structure for the given compound(s), i.e., of
LMOs characterized by a large extent of localiza-
tion. Inasmuch as LMOs are alternatively obtain-
able by transforming the set of CMOs using various
localization criteria [54], localizability of CMOs of
certain molecule(s) also is a criterion of applicability
of the concept of the reaction center and its neigh-
borhood when discussing the relevant reactions.

The NCMO and CMO methods have been con-
sidered as complementary approaches for investi-
gation of electronic structures of molecules [40].
The same conclusion is likely to refer to the relevant

studies of chemical reactivity as well: In the stan-
dard perturbative approaches based on CMOs [1,
29–32], emphasis is laid on search of that charac-
teristic of the reactant molecule as a whole that
determines its subsequent reactivity (cf. the so-
called reactivity indices [31, 32]). When turning to
the above-suggested approach, emphasis is re-
placed on studies of roles of separate fragments of
both participants of the reaction in the given pro-
cess. General results concerning the role of the re-
action center and its neighborhood are obtained is
this case.
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