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ABSTRACT: The block-diagonalization problem originating from the Brillouin
theorem and determining the noncanonical molecular orbitals (NCMOs) has been
formulated and solved for the common Hamiltonian matrix H of alternant
hydrocarbons in the framework of the simple Hückel model. The well-known way of
partitioning of the total basis set of 2pz AOs of carbon atoms of these molecules into
two subsets allowed the problem to be solved nonperturbatively in terms of entire
subsets of atomic orbitals (AOs), and thereby of respective submatrices (blocks) of the
matrix H, without specifying either the internal structures or dimensions of the latter.
As a result, the NCMOs of alternant hydrocarbons proved to be characterized by
common peculiarities, including uniform total extents of delocalization. A close
relationship has been established between the block-diagonalization problem under
study and the commutation equation determining the respective one-electron density
matrix (DM) directly without invoking the canonical molecular orbitals (CMOs). In
particular, the off-diagonal blocks both of the NCMO representation matrix C and of
the DM P were shown to follow from the same matrix condition originally suggested
by G. G. Hall on the basis of structures of CMOs of alternant hydrocarbons. The
relationship between the two fundamental noncanonical problems gave an additional
insight into the origin of the observed similarity between constitutions of matrices C
and P. It has been concluded on this basis that the common DM of alternant
hydrocarbons (the charge-bond order matrix) is among noncanonical (localized) ways of
describing electronic structures whatever the actual method of its derivation. © 2004
Wiley Periodicals, Inc. Int J Quantum Chem 101: 274–282, 2005
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1. Introduction

T he most popular standard method of molecu-
lar orbitals (MOs) is based on solution of the

canonical Hartree–Fock (HF) equation [1–3], ac-
cordingly called the canonical molecular orbital
(CMO) method. Owing to the relation of eigenval-
ues of the Fockian matrix to ionization potentials of
molecule (cf. the Koopmans theorem [4]), canonical
MOs may be regarded as the most appropriate
orbitals for representing one-electron energies, and
thereby the spectral properties of molecular sys-
tems.

Instead of energy levels, however, the supposed
different extents of localization of electrons in the
real space form the basis of the chemical classifica-
tion of molecules. For example, three principal
classes of hydrocarbons are usually distinguished
[5–7], viz. the saturated hydrocarbons, their unsat-
urated aliphatic analogues, and the aromatic hydro-
carbons; these are assumed to be characterized by
increasing extents of delocalization of electron pairs
pertinent to individual chemical bonds. As far as
the CMOs are concerned, these orbitals usually em-
brace the whole molecule under study whatever its
chemical structure (see e.g., Ref. [8]) and, conse-
quently, exhibit no substantial differences for dif-
ferent classes of compounds. That is why CMOs are
hardly the optimum orbitals for reflecting chemical
structures and their alterations when passing from
one type of compound to another. In this connec-
tion, the development of alternative approaches to
the CMO method becomes important.

In contrast to the unique canonical HF equation,
various forms of the noncanonical one-electron
problem are possible [1, 3]. In our context, the direct
way of obtaining the noncanonical molecular orbit-
als (NCMOs) [9–17] on the basis of the Brillouin
theorem [3, 18] deserves particular attention. The
point is that no “external” localization criteria are
invoked in this approach, and thereby the actual
extents of localization of NCMOs may be expected
to depend only on the “internal” factors, including
the chemical constitution of the given compound.

Among particular forms of the Brillouin theo-
rem, there is a zero value requirement for an off-
diagonal element of the Fockian operator referring
to an occupied MO and a vacant MO [3]. In its
matrix form, this requirement resolves itself into
the zero matrix condition for the occupied–vacant
off-diagonal block (submatrix) of the total Fockian
matrix in the basis of NCMOs being sought [10–16].

As a result, the block-diagonalization problem for
the Fockian matrix is obtained.

As compared with the more popular diagonal-
ization problem that results from the canonical HF
equation, methods of solution of the block-diago-
nalization problem are considerably less devel-
oped. That is why the actual search for NCMOs on
the basis of the Brillouin theorem [9–17] was
restricted to applications of various forms of the
perturbation theory. Nevertheless, the principal
achievements of these contributions (enumerated
below) are promising for further developments in
this field. First, conditions that ensure the existence
of NCMOs of the desired type (viz. of NCMOs of
the bond-orbital-and-tail structure) have been ex-
plored [10]. Second, general solutions of the block-
diagonalization problem have been obtained in
terms of entire submatrices (blocks) of the initial
matrix without specifying either the internal consti-
tution or the dimensions of these submatrices [13–
17]. (Solutions of this type refer to definite classes of
initial matrices, and thereby of molecules.) The
third, and most important, achievement, however,
consists of the establishment of a close relationship
between perturbative solutions of the block-diago-
nalization problem and of the noncanonical prob-
lem that determines the respective one-electron
density matrix (DM) [13–15], and thereby between
the resulting NCMO representation matrix and the
unique DM of the given molecule. The latter may be
obtained either indirectly by summing up coeffi-
cients of occupied CMOs or directly on the basis
of solution of the so-called commutation equa-
tion [19].

The one-electron DM of the molecule (the
charge-bond order matrix) is among the most fun-
damental quantum chemical characteristics related
to numerous observed properties [1, 2]. This en-
sures an increased significance of NCMOs related
to the DM, as closely as possible. Again, the above-
mentioned principal relationship between the
NCMO representation matrix and the DM allowed
the latter to be considered as a part of the nonca-
nonical (localized) description of electronic struc-
tures [15].

In this context, an important question arises
about the validity of the above-enumerated conclu-
sions beyond the scope of applicability of perturba-
tive methods. To be able to explore this point, non-
perturbative solutions of the block-diagonalization
problem are evidently required; expressing them in
terms of entire submatrices of the initial matrix also

BLOCK-DIAGONALIZATION OF HAMILTONIAN MATRIX

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 275



is highly desirable. This study is devoted to the
development of methods of just this type.

We will consider the so-called alternant hydro-
carbons [3, 19–25] that embrace most aromatic hy-
drocarbons characterized by the divergence of per-
turbative solutions of the block-diagonalization
problem [20]. Within the framework of the simple
Hückel model, these systems may be represented
by a common model Hamiltonian matrix H consist-
ing of four blocks (submatrices) and reflecting the
relevant chemical structures directly [23]. More-
over, the existence of expressions for the charge-
bond order matrix of alternant hydrocarbons in
terms of entire blocks of the matrix H [23, 24] gives
us a hint that an analogous form of the NCMO
representation matrix is also feasible. These circum-
stances allowed us to formulate the respective com-
mon block-diagonalization problem and to suggest
its general solution (Section 2). Thereupon, we will
demonstrate the feasibility of a related solution of
the commutation equation for the charge-bond or-
der matrix (Section 3). Finally, we turn to a discus-
sion of the results obtained (Section 4).

2. Solution of the
Block-Diagonalization Problem

Let us begin with the most common case of even
alternant hydrocarbons containing 2n carbon at-
oms. The basis set {�} of such a system consists of 2n
2pz AOs of these atoms, and may always be divided
into two n-dimensional subsets so that the intrasub-
set resonance parameters take zero values [20, 23,
24]. It happens in this way because the neighboring
pairs of AOs characterized by nonzero resonance
parameters in the Hückel model get into different
subsets. Moreover, the Coulomb parameters repre-
senting AOs usually are assumed to take uniform
values �, and the equality � � 0 is accepted for
convenience.

As a result, the one-electron Hamiltonian matri-
ces of our systems acquire a common form contain-
ing zero submatrices (blocks) in its diagonal posi-
tions:

H � � 0 B
B� 0�. (1)

Again, B and B� are n � n-dimensional off-diago-
nal blocks containing intersubset resonance param-
eters. Nonzero elements of these blocks represent

the neighboring pairs of 2pz AOs. The mean value
of the latter � will be used here as a (negative)
energy unit by accepting the equality � � 1. The
superscript � of Eq. (1) designates the transposed
matrix B. Note that B � B� in the general case.

In accordance with the Brillouin theorem [10–
17], turning from the above-specified basis of AOs
{�} to the set of NCMOs being sought {�} may be
carried out by transforming the initial matrix H of
Eq. (1) into the following block-diagonal form:

H� � C�1HC � �E1 0
0 E2

�, (2)

where C is the transformation matrix, and E1 and E2
are n � n-dimensional submatrices (blocks) that
may be referred to as eigenblocks of the matrix H
[14]. As in Refs. [13–17], let us also impose a uni-
tarity requirement for the matrix C, i.e.,

C�C � I�2n�, (3)

where I(2n) stands for a 2n-dimensional unit matrix.
Let us look for the solution of our problem of the

following constitution:

C �
1

�2
� I Z
X �I�, (4)

where I coincides with an n-dimensional unit ma-
trix and X and Z are n � n-dimensional submatrices
to be found. Equation (4) and the equality C�1 � C�

resulting from Eq. (3) should then be substituted
into zero-matrix conditions for off-diagonal blocks
of the product C�1HC. As a result, we obtain the
following requirement

B � X�B�Z (5)

and its transposed counterpart. Again, Eq. (3) yields

X�X � I, Z�Z � I, X � Z�. (6)

The coincidence of matrices X and Z� shown in
Eq. (6) implies that the matrix C is both unitary and
Hermitian. Using the last relation of Eq. (6) within
Eq. (5), the latter may be rewritten in the form

B � ZB�Z. (7)

This square matrix problem, in turn, may be
reformulated as a symmetry requirement for the
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matrix either BZ� or B�Z, provided that the uni-
tarity condition for the matrix Z shown in Eq. (6) is
also used. The above-expected alternative require-
ments are

BZ� � �BZ��� � ZB� (8)

B�Z � �B�Z�� � Z�B (9)

and coincide with those used in Ref. [24] when
obtaining the one-electron DM of alternant hydro-
carbons. In this connection, let us call the relations
of Eqs. (8) and (9) the Hall conditions. The expres-
sions for the matrix Z in terms of matrices B and B�

may also be found as described in Ref. [24]. Instead,
we will invoke here the concept of the left and right
polar decomposition of matrices [25, 26]. To this
end, let us introduce the notations

BZ� � S, Z�B � T, (10)

where S and T are Hermitian matrices, as indicated
in Eqs. (8) and (9). These relations may be multi-
plied by the matrix Z from their right- and left-hand
sides, respectively, and the unitarity condition for Z
shown in Eq. (6) may be used. The result then takes
the form of two alternative expressions for the ma-
trix B, viz.:

B � SZ, B � ZT. (11)

These relations correspondingly represent the
left and right polar decompositions of the matrix B,
where S and T are the respective unique Hermitian
components, defined as follows:

S � �BB��1/ 2, T � �B�B�1/ 2 (12)

(see Theorem 7.3.2 and Corollary 7.3.3 of Ref. [25]).
Given that B is a nonsingular matrix, the common
unitary component of these decompositions, i.e.,
matrix Z, is also a unique matrix, which may be
correspondingly expressed in the form

Z � RB, Z � BQ, (13)

where

R � �BB���1/ 2, Q � �B�B��1/ 2 (14)

and

RB � BQ. (15)

It is also noteworthy that the products BB� and
B�B are positive-definite matrices under the same
condition of nonsingularity of matrix B (cf. Theo-
rem 7.2.7 of Ref. [25]).

As compared with the solution of the matrix
problem of Eqs. (8) and (9) suggested in Ref. [24],
the above-outlined alternative is based on more
general results of the matrix algebra.

Using Eqs. (4), (6), and (13)–(15), the NCMO
representation matrix C may be expressed in two
ways, viz.:

C �
1

�2
� I RB
B�R �I�, C �

1

�2
� I BQ
QB� �I �. (16)

The expressions for eigenblocks E1 and E2 may
be derived using the diagonal blocks of the product
C�1HC. We then obtain

E1 �
1
2 �X�B� � BX	, E2 � � 1

2 �Z�B � B�Z	. (17)

The first expression of Eq. (17) may easily be
reformulated in terms of Z and Z�, after substitut-
ing the last relation of Eq. (6). Comparison of the
final formulae for E1 and E2 with those for S, S�, T,
and T� shown in Eqs. (8), (9), and (10) indicates that
the eigenblocks of the Hamiltonian matrix of even
alternant hydrocarbons are directly related to the
Hermitian components of the off-diagonal blocks B,
i.e.,

E1 � S � �BB��1/ 2, E2 � �T � ��B�B�1/ 2. (18)

Squares of the eigenblocks in Eq. (18) coincide
with matrices BB� and B�B obtained in Ref. [27],
when reformulating the eigenvalue problem for the
2n � 2n-dimensional matrix H of Eq. (1) into two
n � n-dimensional problems. It should also be
noted that unique positive-definite square roots
may always be defined for Hermitian positive-
definite matrices BB� and B�B [25].

No zero eigenvalues are known to arise in the
spectra of Hamiltonian matrices of even alternant
hydrocarbons of a finite size [24]. (The unusual
systems containing isolated 2pz AOs are excluded
here.) Consequently, an assumption that the prod-
ucts BB� and B�B are positive-definite matrices
appears appropriate for these systems. Given that
this is the case, the spectra of the relevant eigen-
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blocks E1 and E2 do not overlap one with another in
addition.

Let us define now two n-dimensional row-matri-
ces (�1) and (�2) containing the subsets of AOs
underlying the blocks of the initial matrix H of Eq.
(1). The relevant row-matrices (�(�)) and (�(�)) will
consist of the occupied and vacant NCMOs, respec-
tively. Using Eq. (16), the latter may be expressed as
follows:

������ �
1

�2
���1� � ��2�B�R	,

������ �
1

�2
���1�RB � ��2�	, (19)

where the R� representation of the matrix C is
used. The occupied NCMO �(�)i may be given here
as an example

����i �
1

�2 ��1,i � �
k

�2�

�2,k�B�R�ki�, (20)

where the sum over k embraces AOs of the second
subset and

�
k

�2�

��B�R�ki	
2 � 1. (21)

Thus, the noncanonical MOs proposed in Refs.
[11, 12] acquire a very natural form shown in Eq.
(20) in the case of even alternant hydrocarbons. The
relation of Eq. (21) follows from the unitarity con-
dition for the matrix Z � RB [cf. Eqs. (6) and (13)]
and represents the normalization condition for NC-
MOs.

As shown in Eqs. (19) and (20), the occupied and
vacant NCMOs are attached to subsets {�1} and {�2},
respectively. Equivalence of both subsets of AOs
allows us, then, to expect that an alternative solu-
tion of our problem is feasible, wherein the subsets
{�1} and {�2} are interchanged.

To make sure that it is the case, no more is
required than to choose the initial solution of the
form

C� �
1

�2
��I Z

X I � (22)

instead of Eq. (4). Substituting this matrix into Eqs.
(2) and (3) yields the same principal relations for
the matrix Z shown in Eqs. (5)–(9). As a result, the
derivation represented by Eqs. (10)–(15) is also
valid, and we obtain

C� �
1

�2
� �I RB
B�R I �, C� �

1

�2
� �I BQ
QB� I � (23)

and

��
���� �
1

�2
���1�RB � ��2�	, ��
���� �

1

�2
����1�

� ��2�B�R	 (24)

instead of Eqs. (16) and (19), respectively. It is seen
that the occupied NCMOs prove to be attached to
the second subset {�2} in this case, e.g.,

�
��� p �
1

�2 ��2,p � �
q

�1�

�1,q�RB�qp�. (25)

Finally, the stabilization energy of our system
may be found on the basis of Eq. (18) and takes the
form

�Estab � 2TraceE1 � 2Trace��BB��1/ 2	. (26)

Before finishing this section, let us consider the
feasibility of extending the above results to ions of
odd alternant hydrocarbons involving an even total
number of �-electrons (2n). For cations of these
hydrocarbons characterized by 2n � 1 AO, the first
and second subset will contain n and n � 1 basis
functions, respectively. As a result, blocks B and Z
become n � (n � 1)-dimensional matrices, whereas
BZ�, B�Z, BB�, R, and Q remain square matrices
of corresponding dimensions. This implies that the
n � n-dimensional eigenblock E1 and the (n � 1) �
(n � 1)-dimensional block E2 refer to occupied and
vacant NCMOs, respectively. In the case of anions,
the subset of the higher dimension will be attrib-
uted accordingly to occupied NCMOs. However,
the presence of a zero eigenvalue in the spectra of
odd alternant hydrocarbons [21, 22] requires that
we confine ourselves to the n � n-dimensional
products, viz. to BB� and B�B for cations and
anions, respectively. Correspondingly, this actually
implies confinements to definitions of only R� and
Q� representations of NCMOs.

GINEITYTE

278 VOL. 101, NO. 3



3. Relation Between the
Block-Diagonalization Problem and
the Commutation Equation for the
One-Electron DM

As was mentioned, the charge-bond order ma-
trix of alternant hydrocarbons P has been expressed
in Ref. [24] in terms of entire blocks B and B�, using
the symmetry requirements for matrices BZ� and
B�Z of Eqs. (8) and (9). It is no surprise, in this
connection, that the final expressions for the matrix
P obtained there, viz.:

P � � I RB
B�R I �, P � � I BQ

QB� I � (27)

are highly similar to those representing the NCMOs
and shown in Eqs. (16) and (23).

The Hall conditions of Eqs. (8) and (9) were
originally derived [24] by invoking the structures of
CMOs of alternant hydrocarbons. Our aim consists
of an independent derivation of the same condi-
tions without any reference to CMOs.

To this end, let us begin with the fundamental
problem for the DM, consisting of three equations
[15, 19], viz.:

�H, Y	� � 0, (28)

Y2 � I, (29)

Trace Y � 0, (30)

where Y stands for the so-called residual charge
matrix connected to P by the relation Y � P � I and
the notation [. . , . .]� indicates a commutator of
matrices.

The commutation condition of Eq. (28) coincides
with the main physical requirement determining
the DM P and may be traced back to Dirac’s equa-
tion for the time-independent Hamiltonian [19]. In
turn, Eqs. (29) and (30) are additional system–struc-
ture-independent restrictions that follow from the
idempotence requirement ��2 � �� for the projector
�� � 1

2 P and from the charge conservation condition,
respectively.

Let the Hermitian matrix Y being sought be di-
vided into four n � n-dimensional submatrices as
follows:

Y � � V U
U� W�. (31)

Substituting Eq. (31) into Eq. (28) yields the fol-
lowing matrix equations:

UB� � BU�, U�B � B�U, (32)

VB � BW, WB� � B�V. (33)

Similarly, from Eq. (29) we obtain

V2 � UU� � I, W2 � UU� � I, (34)

VU � UW � 0, U�V � WU� � 0. (35)

It is seen that choice of zero diagonal blocks of
the matrix Y, i.e.,

V � W � 0 (36)

meets Eqs. (30) and (32)–(35). At the same time, Eqs.
(32) and (34) yield the Hall conditions for the off-
diagonal blocks U of the DM P and the relevant
unitarity requirement, respectively. This implies a
coincidence between matrices U and Z for this par-
ticular case, where Z is defined by Eqs. (13)–(15).

Thus, the Hall conditions follow directly from
the commutation relation of Eq. (28), provided that
Eq. (36) is accepted. The zero matrix requirements
for blocks V and W, in turn, prove to be equivalent
to confinement to the charge-bond order matrix P,
corresponding to the ground state of our system, in
which n lowest-energy levels are occupied. Note
that the noncanonical problem for the DM P repre-
sented by Eqs. (28)–(30) possesses numerous solu-
tions corresponding to various ways of allocating
the electrons in pairs to one-electron energy levels
[19, 24].

To demonstrate the above-expected nature of Eq.
(36), let us consider the stabilization energy of an
alternant hydrocarbon, which may be alternatively
defined as follows [19, 28]:

�Estab � Trace�HY�. (37)

Substituting the expressions for Y following
from Eq. (27) and containing zero diagonal blocks
into Eq. (37) yields the expression for �Estab shown
in Eq. (26) and corresponding to occupation of one-
electron states of the first eigenblock E1. The follow-
ing additional remark should be made in this con-
nection. Owing to zero diagonal blocks of the initial
matrix H of Eq. (1), the submatrices V and W of the
matrix Y do not contribute directly to the Trace of
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the product HY, even if these are chosen to be
nonzero matrices. In the latter case, however, the
off-diagonal blocks U do not coincide with the ma-
trix Z, because the unitarity condition for the
former (UU� � I) is then replaced by more in-
volved conditions of Eq. (34).

It may be concluded that the same Hall condi-
tions for off-diagonal blocks of the matrix being
sought arise as intermediate steps of the solution of
both the block-diagonalization problem and the
commutation equation for the DM. This fact indi-
cates a deep interrelation between the two funda-
mental noncanonical problems for alternant hydro-
carbons and gives us an additional insight into the
origin of similarity of matrices C and P.

4. Discussion of the Results Obtained

Constitution of NCMOs of alternant hydrocar-
bons follows from Eqs. (19)–(21), (24) and (25). Co-
incidence of diagonal blocks of matrices C and C�
with unit matrices (I) ensures one-to-one corre-
spondence between NCMOs and basis functions
(AOs), as well as zero intrasubset delocalization of
the former. Moreover, occupied and vacant NC-
MOs originate from different subsets of AOs.

Let the relative weights of basis functions within
NCMOs be defined as squares of respective coeffi-
cients in linear combinations like that of Eqs. (20)
and (25). It may then be concluded that each
NCMO contains a principal basis orbital, the rela-
tive weight of which always coincides with 1/2.
Furthermore, any NCMO may be characterized by
the set of n partial delocalization coefficients [14, 15]
defined in terms of relative weights of basis orbitals
of the opposite subset. For example, the partial
delocalization coefficient (d(�)i,(2)k) of the NCMO
�(�)i of Eq. (20) over the kth AO of the second subset
takes the form

d���i,�2�k �
1
2 ��B�R�ki	

2. (38)

Moreover, the total delocalization coefficients of
NCMOs [14, 15] may be defined, e.g.,

D���i � �
k

�2�

d���i,�2�k �
1
2 �

k

�2�

��B�R�ki	
2. (39)

From the normalization condition for NCMOs
shown in Eq. (21), we then obtain

D���i � D��� j �
1
2 , (40)

whatever the number of the NCMO. The same re-
sult also refers to NCMOs of Eq. (25).

Therefore, uniform total delocalization coeffi-
cients are peculiar to NCMOs of alternant hydro-
carbons; these coincide with the relative weight of
the principal AO. This also implies that partial de-
localization coefficients of NCMOs cannot exceed
the relative weight of the principal AO. Thus, NC-
MOs of alternant hydrocarbons are actually of the
principal-orbital-and-tail constitution.

The final conclusion consists of the existence of
common features of NCMOs of alternant hydrocar-
bons, as was the case with CMOs [21–23].

Let us turn now to the interrelation between
NCMOs of alternant hydrocarbons and the respec-
tive charge-bond order matrix. Comparison of the
relevant expressions of Eqs. (16), (23), and (27)
shows that the vectors of coefficients of NCMOs
coincide with the respective columns (rows) of the
DM P (up to the normalization factor 1/
2). This
implies that the shapes of particular NCMOs may
be predicted on the basis of bond orders that are
formed by the respective principal AO and the AOs
of the opposite subset.

Substantial positive bond orders of conjugated
hydrocarbons are known to arise for neighboring
pairs of 2pz AOs corresponding to chemical bonds,
while those for other (non-neighboring) pairs are at
least two times smaller [20, 24, 29]. These trends in
the relative values of bond orders allow us to expect
that the shape of a specific NCMO (�k) depends
decisively on the number of the nearest neighbors
for the carbon atom (Ck), the respective principal
AO (�k) is pertinent to. In particular, two-center
NCMOs of the bond-orbital-and-tail structure may
be anticipated for the terminal carbon atoms of
polyenes; three-center NCMOs are likely to be pe-
culiar to atoms of cyclic hydrocarbons character-
ized by two neighbors; and so forth.

To illustrate the above general expectations, let
us consider the occupied NCMOs of butadiene un-
der an assumption about uniform resonance pa-
rameters for all neighboring pairs of 2pz AOs, viz.
(�1, �2), (�2, �3), and (�3, �4). Bond orders of the
terminal (C1OC2 and C3OC4) and of the internal
(C2OC3) bonds are not uniform in this system [24,
29] in spite of the coincidence of resonance param-
eters, and we obtain
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����1 �
1

�2
��1 � 0.895�2 � 0.447�4�,

����2 �
1

�2
��3 � 0.895�4 � 0.447�2�. (41)

The alternative set of occupied NCMOs follow-
ing from Eq. (24), and attached to AOs �2 and �4,
respectively, takes the form

�
���1 �
1

�2
��2 � 0.895�1 � 0.447�3�,

�
���2 �
1

�2
��4 � 0.895�3 � 0.447�1�. (42)

NCMOs of Eqs. (41) and (42) closely resemble the
bond orbitals of the terminal bonds. It should also
be noted that analogous NCMOs were obtained for
butadiene on the basis of solution of the block-
diagonalization problem in the form of power se-
ries [20].

The benzene molecule may be considered as an-
other illustrative example. Three occupied NCMOs
of similar structure will be obtained in this case,
owing to the uniform constitution of the chain. For
instance, the NCMO �(�)1 attached to the AO �1
takes the form

����1 �
1

�2
��1 �

2
3 ��2 � �6� �

1
3 �4	

�
1

�2
��1 � 0.667��2 � �6� � 0.333�4	, (43)

where 2/3 � 0.667 coincides with the neighboring
bond order of this molecule [29]. It is seen that the
NCMO of Eq. (43) is a three-center orbital that
involves an additional contribution of the AO �4,
the latter taking the para-position with respect to
the principal AO �1.

The structure of the NCMO �(�)1 reflects the
well-known nonequivalence between meta- and or-
tho/para-positions, with respect to the given car-
bon atom C1 (cf. the weak and strong influences of
a substituent upon meta- and ortho/para-posi-
tioned carbon atoms, respectively, in mono-substi-
tuted benzenes [5–7, 21, 22], as well as small and
significant hyperfine splittings for the correspond-
ing positions in the electron spin resonance (ESR)
spectra of the benzyl radical [23]). Although the
nonequivalence under discussion actually mani-

fests itself only in substituent-containing systems,
the result of Eq. (43) allows us to trace it back to the
imminent peculiarities of electronic structures of
the very benzene molecule.

Comparison of NCMOs of Eq. (43) to other types
of noncanonical one-electron orbitals of benzene is
also of interest. Thus, the translational-symmetry-
determined Wannier orbitals [30] may be found for
the benzene-like ring of six AOs [31]. As with our
NCMOs, these may also be ascribed to separate 2pz

AOs, so that the relevant coefficients take larger
values as compared with the remaining ones. In
contrast to NCMOs of Eq. (43), however, any Wan-
nier orbital embraces all basis functions, and its
signs alternate when passing from even- to odd-
numbered AOs. The same features also refer to the
Löwdin’s natural orbitals of benzene (the so-called
alternant orbitals) [32, 33] that are defined beyond
the limits of the one-determinant approximation for
the total wave function of �-electrons. These dis-
similarities between our orbitals and those of Refs.
[31–33] cause no surprise, as an unlimited number
of different sets of NCMOs are known to exist for
the benzene molecule [34].

Before completing this discussion, some possible
fields of application of the results obtained may be
mentioned. In general outline, these evidently co-
incide with respective fields for other types of lo-
calized orbitals [18]. The specific possibilities may
be examplified by the use of NCMOs derived in this
study as basis orbitals for separate fragments of
molecules in the semilocalized approach to chemi-
cal reactivity [35]. Moreover, the NCMOs suggested
along with the respective matrix H� of Eqs. (2) and
(18) are able to play the role of a zero order approx-
imation in the noncommutative Rayleigh–Schröd-
inger perturbation theory [16, 28] aimed at dealing
with block-diagonalization problems for matrices.

5. Summary

The contribution of the results obtained to the
theory of electronic structures of molecules in gen-
eral may be summarized as follows:

1. The results contribute to the development of
direct ways of obtaining NCMOs of molecules
without invoking CMOs and thereby provide
us with an indirect support of equivalence of
the localized and delocalized approaches to
electronic structures.

2. The results demonstrate possibilities of the
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NCMO method in reflecting chemical struc-
tures of molecules and their alterations when
passing from one class of compounds to an-
other. Along with the well-known achieve-
ments of the CMO method in describing
energy levels, these possibilities serve to sub-
stantiate the complementary nature of the two
alternative methods of MOs [20].

3. The solution of the block-diagonalization
problem for alternant hydrocarbons proposed
in this article presents a new example of com-
mon quantum mechanical problems for entire
classes of molecules [14, 15].

4. The solution suggested supplements the non-
commutative Rayleigh–Schrödinger perturba-
tion theory [16] with the case of two degener-
ated subsets of basis functions.
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