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ABSTRACT: An expression for the total energies of molecules E was derived using the
power series for the one-electron density matrix (DM) P obtained previously in the basis of
bond orbitals (BOs) [Gineityte, V. J Mol Struct (Theochem) 1995, 343, 183] and the
well-known relation between the energy E and the DM P [E = Trace(PH), where H is the
Hamiltonian matrix]. Inasmuch as the power series for the DM P is based on a certain
generalization of the usual Rayleigh–Schrödinger perturbation theory (RSPT), namely, on
the so-called non-commutative RSPT [Gineityte, V. Int J Quantum Chem 1998, 68, 119], the
new expression for total energies of molecules proved to be a generalization of the
well-known Dewar formula obtained using the usual RSPT in the framework of the
Hückel model. The generalization consists of passing to the case of zero-order resonance
parameters between pairs of bonding BOs (BBOs) and/or of antibonding BOs (ABOs).
Comparative analysis of the Dewar formula and of its generalized version was carried out,
and some new interpretations of the former are suggested. In particular, the negative
second-order correction within the Dewar energy is shown to be made up of a difference
between the stabilization energy due to the formation of bond orders between BBOs and
ABOs and the destabilization energy describing the intramolecular charge transfer. The
case of alkanes, in general, and a model system of two interacting C—C(C—H) bonds, in
particular, are discussed as examples. c© 2000 John Wiley & Sons, Inc. Int J Quant Chem 77:
534–543, 2000
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Introduction

P erturbation theory (PT) is among the most
powerful approximate methods in quantum

mechanics [1 – 4]. In particular, the well-known
Rayleigh–Schrödinger PT (RSPT) for eigenvalues
and eigenfunctions of operators [1 – 3] and an alter-

native PT based on the resolvent formalism [4] may
be mentioned here.

Various forms of the perturbation theory are
widely used in quantum chemistry as well. To ob-
tain the many-electron wave functions of molecules,
the so-called Møller–Plesset (MP) partitioning of the
total Hamiltonian operator is now generally ap-
plied [5, 6]. In our context, the MP partitioning
for localized orbitals [7 – 9] and its generalization
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for any type of reference function [6] are notewor-
thy.

The self-consistent version of the RSPT (or,
otherwise, the coupled RSPT) [10 – 13] forms the
basis of the perturbed Hartree–Fock calculations.
Self-consistent perturbative approaches for Green’s
functions [13] and for density matrices [14 – 16]
instead of one-electron orbitals also have been
developed.

The Hückel-type model Hamiltonian matrices of
molecules may be diagonalized algebraically if the
matrix form of the usual RSPT is applied [17 – 20].
It is noteworthy that perturbative approaches al-
low general results to be obtained for entire series
and classes of molecules in the framework of the
Hückel-type model. For example, algebraic expres-
sions for various types of polarizabilities of conju-
gated hydrocarbons (atom–atom, atom–bond, etc.)
have been derived [19 – 21]. Moreover, an important
rule about alternating signs of atom–atomic polar-
izabilities along the chain has been established for
alternant conjugated hydrocarbons [21].

The Dewar formula for total energies of mole-
cules [17, 18, 22, 23] also is among the most popular
direct results of the RSPT. Although this expres-
sion was originally intended for investigation of
unsaturated hydrocarbons [22], it proved to be even
more applicable to saturated molecules in the ba-
sis of bond orbitals (BOs). The point is that the
mean value of the energy gap between the bond-
ing BOs (BBOs) and antibonding BOs (ABOs) of
these molecules always exceeds the average reso-
nance parameter considerably [23].

From the Dewar formula derived in [22], it fol-
lows that the zero-order correction E(0) to the total
energy E contains a sum of energies of isolated
bonds, while the first-order correction E(1) vanishes.
The second-order correction E(2) always takes a neg-
ative value and, consequently, it describes the sta-
bilization energy of the given molecule versus the
relevant set of isolated bonds.

Furthermore, the second-order correction E(2)
contains a sum of increments, each of them depend-
ing on the direct interaction (resonance parameter)
between a BBO of a particular bond and an ABO
of another bond (let us call them the intersub-
set resonance parameters). On the other hand, the
intrasubset interactions (i.e., resonance parameters
between two BBOs or those between two ABOs)
do not contribute to the correction E(2), and these
may be actually ignored when deriving the expres-
sion for stabilization energy of molecules [17, 18].
It should be noted here that both intra- and inter-

subset resonance parameters were assumed to be
first-order terms when deriving the Dewar formula
[22, 23].

The noncommutative version of the RSPT in
the framework of the non-canonical MO (NCMO)
method suggested recently [24 – 26] was shown to
be a generalization [24] of the usual RSPT [1, 3]. In
this connection, new possibilities for interpretation
of the Dewar formula and for its generalization may
be anticipated if we turn to this new perturbation
theory.

In its matrix representation, the NCMO approach
resolves itself into a block-diagonalization problem
for the respective Fockian or Hückel-type Hamil-
tonian matrix [24 – 31]. Moreover, a block-diagonal
zero-order matrix is allowed in this case [24 – 26].

It should be noted that diagonalility condition for
zero-order matrices and/or operators is not impera-
tive when applying perturbative approaches. Thus,
in the resolvent-based PT [4], the zero-order opera-
tor is such that its eigenvalues and eigenfunctions
can be easily determined. Similarly, the Fock op-
erator of [7 – 9] is not necessarily diagonal in the
orbital space. In this context, the distinctive feature
of the noncommutative RSPT [24 – 26] consists of
the feasibility of a general form of power series for
entire blocks (submatrices) of both zero and first-
order Hamiltonian matrices whatever their actual
dimensions and internal structures. Just the latter
peculiarity of the noncommutative RSPT makes it
possible to generalize the Dewar formula to the case
of zero-order intrasubset resonance parameters.

An interest in the generalization of the above-
mentioned type originates from the results of esti-
mations of relative values of intra- and intersubset
resonance parameters. Thus, in the well-studied
case of alkanes, the direct interactions between two
nearest-neighboring BBOs exceed the intersubset
resonance parameters considerably [32 – 34]. Such a
conclusion may be traced back to the fact that res-
onance parameters between BOs of different types
contain differences in the resonance parameters of
separate pairs of sp3-hybrid AOs (HAOs) and 1s
AOs, whereas those between two BBOs may be ex-
pressed as sums of four negative parameters in the
HAO basis (BBOs and ABOs are assumed to be
defined as normalized sums and differences, respec-
tively, of pairs of HAOs and 1s AOs belonging to the
same bond).

An additional insight into the content of the De-
war formula itself is also likely to follow from a
derivation of the total energy E on the basis of
the general expression for the one-electron den-
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sity matrix (DM) P [26] instead of summing up
the eigenvalues of the Hamiltonian matrix H cor-
responding to occupied canonical MOs. This way
of obtaining the total energy becomes feasible if we
invoke the power series for the DM P obtained in
[26] and being actually based on the noncommu-
tative RSPT [24, 25] and the well-known general
relation between the total energy and the matrices
H and P (E = Trace(PH) [16]). The reason why just
the above-described way of derivation of the total
energy seems to be worthwhile consists of the direct
relation of the DM P and, thereby, of the total en-
ergy E to particular blocks of the initial Hamiltonian
matrix representing the intra- and intersubset inter-
actions.

Therefore, the main aim of this article consisted
of deriving and analyzing the generalized expres-
sion for total energies of molecules corresponding
to zero-order intrasubset interactions. To this end,
the power series for the DM P obtained in [26] will
be used. Thereupon, we will analyze the particular
case of the first-order intrasubset interaction corre-
sponding to the Dewar formula.

The Generalized Expression for
Total Energies

Let us start with the Hückel-type model Hamil-
tonian matrix suggested in [26]. To construct this
matrix, two bond orbitals were ascribed to each
chemical bond in a molecule. These orbitals may
be defined as eigenfunctions of separate two-
dimensional Hamiltonian matrix blocks associated
with pairs of sp3-hybrid AOs (HAOs) or of HAOs
and 1s AOs pertinent to the same bond. It should
be noted, however, that the definition of BOs is not
essential when deriving the general expression for
the one-electron DM of saturated organic molecules.
Hence, pairs of 2pz AOs of carbon atoms of the ini-
tially double bonds also may be used when defining
BOs if we consider a conjugated compound. Or-
bitals referring to lone electron pairs (if any) also
may be included into the initial basis set [24, 26]. The
whole set of basis functions {φ} has been assumed to
be orthogonal. This set will be further referred to as
the BO basis.

Let the first n BOs φ(+)i, i = 1, 2 . . .n corre-
spond to both the bonding BOs and the lone pair
orbitals (if any), whereas the remaining BOs φ(−)i,
i = n+1, n+2 . . .N will coincide with the antibond-
ing BOs. Then, the matrix H may be conveniently
represented in terms of four submatrices (blocks)

containing resonance parameters inside subspaces
of BBOs and ABOs (the diagonal blocks) and those
between BOs of different types (the off-diagonal
blocks). First-order magnitude of the latter versus
the differences between the BBO and ABO energies
will be accepted [26]. This implies first-order mag-
nitude of the off-diagonal blocks of the matrix H
(denoted by R) versus the diagonal ones. The above-
mentioned assumptions were borne out in [32 – 38]
by the relevant estimations.

Let the diagonal blocks of the matrix H be repre-
sented as sums of respective zero-order terms E(+)

and E(−) and of the respective first-order terms T
and Q, the subscripts “+” and “−” here and be-
low referring to BBOs φ(+)i and ABOs φ(−)i. Then,
the total matrix H takes the form of a sum of the
zero-order and first-order Hamiltonian matrices:

H = H(0) + λH(1), (1)

where λ is a formal perturbation parameter and

H(0) =
∣∣∣∣E(+) 0

0 −E(−)

∣∣∣∣, H(1) =
∣∣∣∣ T R
R+ Q

∣∣∣∣. (2)

The superscript “+” of the block R designates the
Hermitian-conjugate (transposed) matrix, and the
minus sign in front of E(−) is introduced for con-
venience. It is also seen that zero-order intrasub-
set resonance parameters are allowed within the
Hamiltonian matrix of Eqs. (1) and (2), and these
take the off-diagonal positions within the blocks E(+)

and E(−).
The bond-order matrix P corresponding to the

Hamiltonian matrix H of Eq. (1) was obtained in [26]
in the form of the power series

P = P(0) + λP(1) + λ2P(2) + · · · , (3)

and the first three terms of this series are

P(0) =
∣∣∣∣ 2I 0

0 0

∣∣∣∣, P(1) = −2
∣∣∣∣ 0 G(1)
G+(1) 0

∣∣∣∣
P(2) = −2

∣∣∣∣G(1)G+(1) G(2)

G+(2) −G+(1)G(1)

∣∣∣∣. (4)

(An idempotence requirement for the matrix 1
2 P was

among the initial conditions determining the matrix
P [26].) The principal matrices G(1) and G(2) of Eq. (4)
meet the following equations:

E(+)G(1) + G(1)E(−) + R = 0 (5)
E(+)G(2) + G(2)E(−) + V = 0, (6)

where

V = TG(1) − G(1)Q. (7)

536 VOL. 77, NO. 2



DEWAR’S FORMULA FOR TOTAL ENERGIES OF MOLECULES

The relevant total energy may be defined as fol-
lows [16]:

E = Tr(PH), (8)

where Tr here and below stands for a Trace of matrix.
After substituting Eqs. (1), (3), and (4) into Eq. (8),
the expression for the total energy may also be ob-
tained in the form of a power series:

E = E(0) + λE(1) + λ2E(2) + · · · , (9)

where the first two corrections are

E(0) = Tr(P(0)H(0)) = 2TrE(+) (10)
E(1) = Tr(P(0)H(1) + P(1)H(0)) = 2TrT. (11)

The sum of these corrections coincides with the
total one-electron energy of isolated BBOs. Given
that the one-electron energy of any BBO is included
into the respective diagonal element of the matrix
E(+) (this may be evidently done without any restric-
tion), the first-order correction E(1) takes a zero value
as it was established in [22, 23].

The second-order correction E(2) may be conve-
niently expressed in the form of a sum

E(2) = Einter
(2) + Eintra

(2) , (12)

where

Einter
(2) = Tr(H(1)P(1)) = −2Tr

(
G(1)R+ + G+(1)R

)
(13)

and

Eintra
(2) = Tr(P(2)H(0))

= −2Tr
(
G(1)G+(1)E(+) + G+(1)G(1)E(−)

)
. (14)

The first term of the sum (Einter
(2) ) evidently de-

scribes the contribution of the intersubset bond
orders represented by matrices G(1) and G+(1) to
the total correction E(2), whereas the second term
(Eintra

(2) ) contains the increment of the intrasubset
bond orders along with populations of basis or-
bitals. This does not imply, however, that Einter

(2) is
determined only by the intersubset resonance pa-
rameters and/or Eintra

(2) is conditioned solely by in-
trasubset ones. Indeed, the principal matrix G(1)

involved within both parts of the correction E(2) de-
pends on both types of resonance parameters. [Note
that three matrices E(+), E(−), and R are contained
within Eq. (5) determining the matrix G(1).]

Inasmuch as the diagonal blocks of the second-
order correction P(2) of the DM P (intrasubset bond
orders) are made up of the off-diagonal blocks G(1)

and G+(1) of the relevant first-order correction P(1)

(intersubset bond orders), an interdependence may

be expected between the two parts of the total en-
ergy E.

To find this interrelation, let us use the cyclic
transposition of matrices inside the Trace sign of
Eq. (14) and invoke the Hermitian-conjugate coun-
terpart of the relation shown in Eq. (5). We then
obtain an expression for Eintra

(2) in terms of intersubset
bond orders, namely:

Eintra
(2) = 2Tr

(
G(1)R+

)
. (15)

On the other hand, from Eq. (13), a similar expres-
sion for Einter

(2) follows:

Einter
(2) = −4Tr

(
G(1)R+

)
. (16)

Comparison of Eqs. (15) and (16) shows that

Einter
(2) = −2Eintra

(2) . (17)

As a result, the total correction E(2) is

E(2) = −Eintra
(2) (18)

or to

E(2) = 1
2

Einter
(2) (19)

for any molecule described by the Hamiltonian ma-
trix H of Eqs. (1) and (2). Equation (17) indicates that
contributions of the intra- and intersubset bond or-
ders to the total correction E(2) are of opposite signs.
Moreover, the absolute value of the intersubset term
exceeds twice the relevant value of the intrasubset
contribution.

Substituting Eqs. (15) and (16) into Eq. (12) yields
the following simple expression for the total correc-
tion E(2):

E(2) = −2Tr
(
G(1)R+

)
. (20)

Equation (20) may be regarded as a generalization of
the Dewar formula for total energies of molecules as
discussed below. An alternative form of this expres-
sion is

E(2) = −2
∑

i,j

G(1)ijRij. (21)

It is seen that the second-order correction to the to-
tal energy is additive with respect to contributions
of pairs of bonds. (Note that any element G(1)ij may
be ascribed to a pair of bonds I and J [26].) It should
be emphasized, however, that the element G(1)ij does
not describe a local interbond interaction in the gen-
eral case in contrast to the resonance parameter Rij.
Indeed, the solution of Eq. (5) may be represented
as an integral [24, 26, 39]:

G(1) =
∫ ∞

0
eE(+)tReE(−)t dt. (22)
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It is seen that the element G(1)ij, of the matrix G(1) de-
pends on the whole set of elements of three matrices
(exp[E(+)t], exp[E(−)t], and R), and the contribution
G(1)ijRij of Eq. (21) ascribed to the pair of bonds (I, J)
is nonlocal in nature.

Using Eqs. (14) and (18), an alternative form of
the total correction E(2) may be obtained, namely:

E(2) = 2Tr
(
G(1)G+(1)E(+) + G+(1)G(1)E(−)

)
. (23)

This expression allows us to study the sign of the
second-order term E(2) of the power series for the
total energy E as shown in the next section.

Investigation of the Sign of the
Second-order Energy

Let us start with Eq. (23) and note that the Her-
mitian (symmetric) matrices E(+) and E(−) may be
expressed in terms of diagonal matrices of eigen-
values ‖ε(+)i‖ and ‖ε(−)k‖ and the respective unitary
(orthogonal) diagonalizing matrices U and W [39]:

E(+) = U+‖ε(+)i‖U, E(−) =W+‖ε(−)k‖W. (24)

Substituting Eq. (24) into Eq. (23) yields

E(2) = 2Spur
{
G(1)G+(1)U

+‖ε(+)i‖U
+G+(1)G(1)W+‖ε(−)k‖W

}
. (25)

After a cyclic transposition of factors within the
Trace sign of Eq. (25), the following expression for
the correction E(2) results:

E(2) = 2
∑

i,j

{
(UG(1))ij

}2
ε(+)i

+ 2
∑
l,k

{(
WG+(1)

)
lk

}2
ε(−)k. (26)

It is seen that negative values of both ε(+)i and
ε(−)k are sufficient for a negative value of the to-
tal correction E(2). Thus, the second-order correction
yields stabilization of the system versus the set of
isolated bonds if E(+) and E(−) are negative-definite
matrices [39, 40]. Otherwise, the sign of the correc-
tion E(2) is not evident a priori.

It may be concluded, therefore, that signs of
eigenvalues of matrices E(+) and E(−) serve as a
criterion for stabilization (or destabilization) of the
system versus the respective set of isolated bonds.
This does not imply, of course, that only the intra-
subset resonance parameters contained within these
matrices determine the sign of the second-order en-
ergy E(2). The above-established relation between

the sign of the correction E(2) and those of eigen-
values of matrices E(+) and E(−) may be accounted
for by interdependence between the intra- and inter-
subset contributions of this correction and, thereby,
by the possibility of expressing the total correction
second-order energy E(2) via its intrasubset part as
shown in Eqs. (18) and (23).

To illustrate the above conclusions, let us turn
again to the case of alkanes [23, 26, 30, 31, 35 –
37, 41 – 45]. One-electron energies of BBOs of these
molecules represented by diagonal elements of ma-
trices E(+) are known to be of similar values for C—C
and C—H bonds [41 – 43], and the same is likely to
be true for ABOs as well. If the energy reference
point is chosen in the middle of the energy gap be-
tween BBOs and ABOs, the diagonal elements of
both matrices E(+) and E(−) take negative values.
[The minus sign in front of E(−) within Eq. (2) also
should be taken into consideration.] Then, E(+) and
E(−) may be expected to be negative-definite matri-
ces if their off-diagonal elements (intrasubset reso-
nance parameters) are not too large as compared to
the above-mentioned energy gap and thereby their
eigenvalues also are negative.

The off-diagonal elements of matrices E(−) of
alkanes prove to be small because of different signs
of their four components in the HAO basis. By
contrast, the resonance parameters between two
nearest-neighboring (geminal) BBOs are of consid-
erable values approximately equal to β ' −3 eV
[41 – 43]. In this connection, the highest eigenvalues
of matrices E(+) should be compared to the energy
reference point to establish the signs of former.

The energy gap between BBOs and ABOs, in
turn, is determined by the double mean value of res-
onance parameters for pairs of HAOs and Is AOs
belonging to the same C—C(C—H) bond. The aver-
aged value of these resonance parameters has been
established to be equal to −6.7 eV [44]. Hence, the
diagonal elements of matrices E(+) of alkanes should
be taken equal to −6.7 eV with respect to the above-
defined energy reference point.

Analysis of spectra of matrices E(+) of alkanes
carried out in [45, 46] showed that the above-
mentioned highest eigenvalue does not exceed
−2β ' 6 eV with respect to diagonal elements of
these matrices. Hence, all the eigenvalues of matri-
ces E(+) may be assumed to be negative, if we revert
to the former energy reference point. This conclu-
sion is in line with the observed stability of alkanes
(the experimental heats of formation may be found
in [47]). Furthermore, the results of this section yield
a more profound accounting for stability of alkanes.
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Indeed, the usual explanation of this fact con-
sists in an assumption that resonance parameters
between pairs of BBOs are sufficiently small and
thereby the Dewar formula is adequate [17, 18,
23]. The results of the above-discussed evaluations,
however, make us question this point of view. This
implies that peculiarities of the spectra of matrices
E(+) should be considered when discussing the ori-
gin of the stability of alkanes.

In this context, the whole spectra of matrices
E(+) (and not only their highest eigenvalues) are of
interest. Comparison of the approximate limits to lo-
cation of the highest eigenvalue (−2β) and of the
lowest one (equal to 5β ' −15 eV) to diagonal
elements of matrices E(+) indicates an asymmetric
nature of these spectra. Just this asymmetry is able
to ensure a negative sign of the second-order energy
E(2) even if the off-diagonal elements of matrices E(+)
(intrasubset resonance parameters) are sufficiently
large.

Constitution of matrices E(+) determining
their spectra and thereby conditioning the
above-mentioned asymmetry depends on spa-
cial arrangement of BOs and thereby of bonds.
Therefore, the tetrahedral spatial arrangement
of quartets of bonds at the same carbon atom
(molecular topology) may be considered as the
main origin of stability of alkanes versus the
respective sets of isolated bonds.

The Particular Case of the First-order
Intrasubset Interaction

The Dewar case follows from the relations of the
second section if E(+) and E(−) are diagonal matri-
ces containing elements E(+)i and E(−)j. Then, the
elements G(1)ij of the principal matrix G(1) take the
form [26]

G(1)ij = − Rij

E(+)i + E(−)j
(27)

and describe the direct (through-space) interactions
between BBOs and ABOs [φ(+)i and φ(−)j]. If we sub-
stitute Eq. (27) into Eq. (21), the Dewar formula for
the second-order correction to the total energy fol-
lows [17, 18, 22, 23]:

E(D)
(2) = 2

∑
i,j

(Rij)2

E(+)i + E(−)j
< 0. (28)

The negative sign of the Dewar energy is obvious as
E(+)i < 0 and E(−)j < 0.

Derivation of the total energy on the basis of the
DM P as discussed in the second section allows also
certain conclusions to be drawn about the internal
constitution of E(D)

(2) . Indeed, the relations shown in
Eqs. (12) and (17)–(19) hold true for the Dewar case
as well. Using Eqs. (16) and (27), the intersubset part
of the Dewar energy may be expressed in the form

E(D)inter
(2) = 4

∑
i,j

(Rij)2

E(+)i + E(−)j
< 0. (29)

This contribution describes the total stabilizing ef-
fect of the intersubset bond orders arising between
BBOs and ABOs. It is evident that this effect exceeds
twice the final second-order correction E(D)

(2) shown
in Eq. (28). Hence, the remaining part of the Dewar
energy [E(D)intra

(2) ] may be expected to represent cer-
tain destabilization of the system. The latter effect
proves to be related to the intramolecular charge
transfer.

To demonstrate this, let us define the following
matrices:

Q(+) = −2G(1)G+(1), Q(−) = 2G+(1)G(1). (30)

From Eq. (4), it follows that diagonal elements of
these matrices describe alterations in occupation
numbers of BOs after building up the molecule.
Thus, Q(+)i represents the population lost by the
initially double-occupied BBO φ(+)i, while Q(−)i co-
incides with the population acquired by the initially
vacant ABO φ(−)i, and Q(+)i < 0 while Q(−)i > 0. Sub-
stituting Eq. (30) into Eq. (14) yields the intrasubset
contribution to the Dewar energy:

E(D)intra
(2) =

bonds∑
i∈I

(Q(+)iE(+)i −Q(−)iE(−)i) > 0, (31)

which may be alternatively called the charge-
transfer energy. The positive sign of E(D)intra

(2) may be
accounted for by the fact that charge is being trans-
ferred from the orbitals of the lower energy (BBOs)
to those of the higher energy (ABOs) when build-
ing up the molecule, and this effect causes certain
destabilization of the system. Therefore, the final
second-order correction of the Dewar formula E(D)

(2)
actually describes a difference between the stabiliza-
tion energy due to the formation of the intersubset
bond orders [E(D)inter

(2) ] and the destabilization energy
being related to the intramolecular charge transfer
[E(D)intra

(2) ].

From Eq. (31) it is seen that E(D)intra
(2) is additive

with respect to contributions of separate bonds. If
we invoke Eq. (18) in addition, the total correction
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E(D)
(2) also may be represented in an additive form,

namely:

E(D)
(2) = −

bonds∑
i∈I

(Q(+)iE(+)i −Q(−)iE(−)i). (32)

Therefore, the Dewar energy E(D)
(2) proves to be ad-

ditive with respect to increments of separate bonds
whatever the approximations used within the initial
Hamiltonian matrix. In [23], an analogous addi-
tivity of the energy E(D)

(2) was established provided
that resonance parameters Rij between the nearest-
neighboring (geminal) bonds only are taken into
consideration. It should be also mentioned here that
the extents of transferability of increments of partic-
ular bonds to the energy E(D)

(2) are evidently related
to those of occupation numbers of BOs.

In [26, 31], the population alterations Q(+)i and
Q(−)i were related to total delocalization coefficients
D(+)i and D(−)i of noncanonical MOs (NCMOs) 9(+)i

and 9(−)i, corresponding to BOs φ(+)i and φ(−)i, re-
spectively. (Correspondence implies here that just
this BO makes the principal contribution to the
NCMO under discussion.) The coefficients D(+)i

and D(−)i describe the extents of delocalization of
NCMOs 9(+)i and 9(−)i versus the respective BOs
and the above-mentioned relations take the form

Q(+)i = −2D(+)i, Q(−)i = 2D(−)i. (33)

If we substitute Eq. (33) into Eq. (32), an expression
for the energy E(D)

(2) in terms of delocalization coeffi-
cients of NCMOs follows, namely:

E(D)
(2) = 2

bonds∑
i∈I

(D(+)iE(+)i +D(+)iE(+)i). (34)

Therefore, stabilization of the molecule versus the
set of isolated bonds may be concluded to be di-
rectly related to the extent of interbond delocaliza-
tion.

Before finishing this section, let us revert again
to the general form of the second-order correction
to the total energy corresponding to the zero-order
intrasubset interaction [E(2)] and shown in Eqs. (20)
and (23). Two points may be mentioned here:

First, the correction E(2) may be represented as a
sum of the Dewar energy E(D)

(2) and of an additional
increment of the intrasubset bond orders Q(+)ij and
Q(−)ij (i 6= j). Indeed, using Eqs. (23) and (30), the
energy E(2) may be represented in the form

E(2) = −Spur(Q(+)E(+) −Q(−)E(−)). (35)

On the basis of Eqs. (32) and (35), we then obtain

E(2) = E(D)
(2) −

∑
i 6= j

(Q(+)ijE(+)ij −Q(−)ijE(−)ij). (36)

The increment of the intrasubset bond orders rep-
resented by the second term of the right side of
Eq. (36) evidently turns to zero if the zero-order
intrasubset resonance parameters E(+)ij and E(−)ij

(i 6= j) vanish. In the general case, it is this increment
that is able to cause destabilization of the system.

Second, a self-consistent version of Eq. (20) also
seems to be feasible. The power series for the DM
P underlying Eq. (20) and shown in Eq. (3) may
be obtained either using the solutions of the block-
diagonalization problem [25] originating from the
Brillouin theorem [24 – 30] or from a direct solution
of the commutation equation for matrices H and
P [26]. Thus, the self-consistent analog of Eq. (20)
is likely to be obtainable on the basis of both
the known self-consistent versions of the above-
mentioned two matrix problems [16, 48, 49] and the
experience of deriving the self-consistent version of
the Dewar formula. (The latter evidently coincides
with the second-order correction for the total energy
within the coupled RSPT [10 – 13].)

Comparison of Relative Accuracies
of the Dewar Formula and of Its
Generalized Version: A Model System
of Two Interacting Bonds

A simple model system containing two interact-
ing bonds served many times as an illustrative ex-
ample when studying electronic structures of both
alkanes and their derivatives [33, 35, 38, 50]. Thus,
we will invoke this model for comparison of relative
accuracies of Eqs. (20) and (28).

Let γ and δ stand for resonance parameters de-
scribing the interaction between the two BBOs φ(+)1

and φ(+)2 of the two-bond system and that between
a BBO and an ABO, respectively. The interaction be-
tween ABOs φ(−)1 and φ(−)2 is assumed to take a
zero value for simplicity of the model. The formal
parameter λ of Eq. (1) is supposed to be incorpo-
rated into parameters γ and δ so that the equality
γ = 1 may be accepted. Finally, the energy unit will
coincide with the averaged resonance parameter be-
tween HAOs belonging to the same bond.

Let us start with the Dewar case. Then, both, γ
and δ will be considered as first-order terms ver-
sus the energy difference between BBOs and ABOs
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equal to 2. As a result, the submatrices of Eq. (2) take
the form

E(+) = E(−) = I, T =
∣∣∣∣ 0 γ

γ 0

∣∣∣∣ ,

Q = 0, R =
∣∣∣∣ 0 δ

δ 0

∣∣∣∣ . (37)

Application of Eqs. (10), (11), and (28) yields an
expression

E(D) = 4+ 2δ2, (38)

where 4 corresponds to the zero-order energy. It is
seen that the intrasubspace interaction γ does not
contribute to the Dewar energy in accordance with
the expectation [17, 18].

Let us turn now to the generalized approxima-
tion for total energies shown in Eq. (20). Application
of this formula implies that the parameter γ is in-
cluded into the zero-order submatrix E(+), that is:

E(+) =
∣∣∣∣ 1 γ

γ 1

∣∣∣∣ , E(−) = I,

T = Q = 0, R =
∣∣∣∣ 0 δ

δ 0

∣∣∣∣ . (39)

To find the relevant matrix G(1), the equation of
Eq. (5) should be solved for submatrices E(+), E(−),
and R taken from Eq. (39). We then obtain

G(1) = δ

4− γ 2

∣∣∣∣ γ −2
−2 γ

∣∣∣∣ (40)

and the new expression for total energies of two in-
teracting bonds takes the form

E(N) = 4+ 8δ2

4− γ 2 . (41)

It is seen that both δ and γ determine the interbond
interaction energy in this case, in contrast to Eq. (38).
Moreover, the new formula turns into Eq. (38) if the
equality γ = 0 is assumed. This result promotes an
expectation that the relative accuracy of Eqs. (38)
and (41) depends on the actual value of γ as com-
pared to δ.

To verify this expectation, the expression for the
exact energy of two interacting bonds also is re-
quired. The latter follows after summing up the two
highest eigenvalues of the total Hamiltonian matrix

H =

∣∣∣∣∣∣∣
1 γ 0 δ

γ 1 δ 0
0 δ −1 0
δ 0 0 −1

∣∣∣∣∣∣∣ (42)

FIGURE 1. Dependence of the total energy of two
interacting bonds (E) on the resonance parameter γ
describing the interaction between the two BBOs. The
resonance parameter δ representing an interaction
between a BBO and an ABO is taken equal to 0.3. The
exact expression for the energy defined by Eq. (43) is
displayed by curve 1, whereas the approximate formulas
are represented by curves 2 and 3: The former
corresponds to the Dewar formula [Eq. (28)] and the
latter describes its generalized version suggested in this
article [(Eq. (20)].

obtained without invoking any power series. Thus,
the exact interbond interaction energy takes the
form

E =
√
γ 2 + 4(1+ γ + δ2)+

√
γ 2 + 4(1− γ + δ2).

(43)

The dependencies of E(D), E(N), and E on reso-
nance parameter γ are displayed in Figure 1. It is
seen that the Dewar approximation is more accurate
for small γ values (0 < γ < 0.4) being compara-
ble to the δ value (δ = 0.3). This result evidently
causes no surprise. For large γ values, however,
the generalized formula of Eq. (20) becomes consid-
erably more accurate. Moreover, the total interval
of γ values, wherein the approximation of Eq. (41)
is valid, exceeds the relevant region of adequacy
of the Dewar formula, and it actually includes all
the reasonable γ values. Therefore, the validity of
Eq. (20) for large intrasubset resonance parameters
as compared to the intersubset ones is beyond any
doubt.
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Conclusions

Application of the noncommutative RSPT al-
lowed us to generalize the Dewar formula for total
energies of molecules to the case of zero-order in-
trasubset resonance parameters. It is noteworthy
that some essential features of the Dewar formula
are inherent in the generalized expression as well,
namely, the zero value of the first-order correction
E(1) and additivity of the second-order correction
E(2) with respect to increments of separate pairs of
bonds.

Again, the general case proves to be character-
ized by a nonlocal nature of increments of bond
pairs in contrast to the Dewar formula. Moreover,
the sign of the second-order correction E(2) is not
defined a priori, whereas the relevant correction of
the Dewar expression is known to be negative. The
sign of the generalized correction E(2) proved to be
determined by both the relative values of the in-
trasubset resonance parameters versus the energy
gap between BBOs and ABOs and by the spa-
tial arrangement of bonds (molecular topology) of
molecules under study.

Certain conclusions about the content of the De-
war formula itself also may be drawn on the basis of
the present study. Thus, the negative second-order
correction E(D)

(2) describing the stabilization energy of
a molecule versus the relevant set of isolated bonds
is actually made up of a difference between the sta-
bilization energy due to intersubset bond orders and
the destabilization energy related to the intramole-
cular charge transfer. Furthermore, the absolute
value of the former contribution exceeds twice the
relevant value of the latter. Also, finally, the second-
order correction E(D)

(2) within the Dewar formula may
be alternatively interpreted as the interbond delo-
calization energy. Additivity of the correction E(D)

(2)
with respect to increments of separate bonds was es-
tablished whatever the approximations used within
the initial Hamiltonian matrix.
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