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ABSTRACT: An interrelation is expected between the charge–bond order matrix and
the relevant representation matrix of noncanonical (localized) molecular orbitals
(NCMOs) of perturbed alternant hydrocarbons (PAHs), as was the case with parent
AHs. Accordingly, a single procedure is developed to obtain these matrices directly on
the basis of solution of respective noncanonical one-electron problems in the framework
of the simple Hückel model, i.e., of the commutation equation for the one-electron
density matrix and of the block-diagonalization problem for the Hamiltonian matrix,
the latter originating from the Brillouin theorem. The procedure consists of three
principal steps: (i) an initial passing to the basis of NCMOs of parent AHs by means of
the nonperturbative block diagonalization of the relevant common Hamiltonian matrix
(H) represented in the basis of 2pz AOs of carbon atoms; followed by (ii) application of
the noncommutative Rayleigh–Schrödinger perturbation theory to solve the above-
specified noncanonical problems; and (iii) subsequent retransformation of the power
series obtained into the initial basis of 2pz AOs. Rederivation of the classical results
concerning the charge and bond order redistributions in AHs due to perturbation
(including the rule of the alternating polarity for one-center perturbations) following
from the above-described procedure indicates that these results are actually part of the
noncanonical theory of MOs for PAHs. The principal achievement of the study,
however, consists of obtaining general algebraic expressions for the common NCMO
representation matrix of PAHs in terms of submatrices (blocks) of the relevant charge–
bond order matrix. These expressions permit not only investigation of the effect of
perturbation on the shapes of localized MOs, but also demonstrate the relationship
between the given reshaping of these MOs and the respective charge redistribution. For
local perturbations of a specific Coulomb parameter, reshaping of a single NCMO is
shown to reflect the rule of the alternating polarity, namely of NCMO whose principal
AO coincides with the site of perturbation. Moreover, the overall reshaping pattern of
NCMOs was found in line with predictions of the simple resonance theory about
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increased contributions of certain quinoidal structures to the electronic structures of
PAHs due to perturbations. NCMOs of pyridine and biphenyl molecules are studied in
detail as examples. © 2005 Wiley Periodicals, Inc. Int J Quantum Chem 105: 232–245, 2005
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1. Introduction

T he chemical classification of molecules is
known to be based on the presumed different

extents of localization of electron pairs relevant to
individual bonds in real space [1, 2]. In some cases,
passing from one class of compounds to another is
assumed to be accompanied by a stepwise and
significant alteration in the extent of localization of
electrons (cf. the formation of cyclic [aromatic] hy-
drocarbons from aliphatic ones [3]). Alternatively,
changes in both structure and localization are con-
sidered small perturbations. This case may be ex-
emplified by turning from aromatic hydrocarbons
to their nitrogen-containing derivatives (heterocy-
cles), i.e., from benzene to pyridine molecules [4].

Quantum chemical representation of the above-
described differences in localization, however, is
met with considerable difficulties. Indeed, the
unique standard (canonical) molecular orbitals
(MOs) usually embrace the whole molecule under
study, whatever its chemical structure (see, e.g.,
Ref. [5]), and, consequently, exhibit no substantial
differences for different classes of compounds. In
contrast, the alternative (noncanonical) MOs are not
unique [6, 7]. In this connection, various “external”
localization criteria are usually invoked when look-
ing for the so-called localized molecular orbitals
(LMOs) [8]. When comparing molecules of different
classes, however, the adequacy of a single localiza-
tion criterion is hardly self-evident.

In this context, a direct method of obtaining non-
canonical molecular orbitals (NCMOs) [9–17] on
the basis of the Brillouin theorem [7, 8] deserves
particular attention. The point is that invoking of
“external” localization criteria may be avoided in
this approach (e.g., by starting with a specific set of
initially localized orbitals and determining their
“tails” [10–12]). As a result, the actual extent of
localization of NCMOs may be expected to depend
only on the “internal” factors, including the chem-
ical constitution of the given compound. Another
attractive feature of the Brillouin theorem consists
of its relation to the commutation equation for the

relevant one-electron density matrix (DM) [13–15].
This, in turn, offers as an alternative method of
looking for NCMOs that are related to the unique
DM of the same system as closely as possible, and
thereby allows us to remove the usual ambiguity in
defining these orbitals. The resulting NCMOs and
the interrelated charge–bond order matrix may
then be considered as alternative noncanonical
ways of describing electronic structures.

Among particular forms of the Billouin theorem,
there is a zero value requirement for an off-diago-
nal element of the Fockian operator referring to an
occupied and a vacant off-diagonal block (subma-
trix) of the total Fockian matrix in the basis of
NCMOs being sought [10–16]. As a result, the
block-diagonalization problem for the same matrix
is obtained. The latter was shown to be solvable in
the form of power series, provided that a zero-order
matrix of a block-diagonal constitution may be re-
vealed in the total Fockian (or Hamiltonian) matrix
of the system(s) under study [13–17]. The same
refers to the commutation equation for the one-
electron DM. In other terms, perturbative solutions
of noncanonical one-electron problems proved to
exist for systems representable by weakly inter-
acting subsets of basis functions separated by
substantial energy gaps. The approach used to
obtain these solutions was referred to as the non-
commutative Rayleigh–Schrödinger perturbation
theory (NCRSPT) [16 –18].

The above-described solution of the block-diago-
nalization problem in the form of power series has
been applied primarily to saturated molecules [10–
15, 18–21], as well as to aliphatic conjugated hydro-
carbons [22] in the basis of bond orbitals. As a
result, LMOs of the bond-orbital-and-tail constitu-
tion have been obtained and analyzed. The princi-
pal achievements of these studies are as follows.
First, conditions that ensure the very existence of
LMOs of the above-specified type have been ex-
plored [10]. Second, more significant tails of LMOs,
and thereby a larger extent of their delocalization,
were found for aliphatic unsaturated hydrocarbons
as compared with respective saturated analogues
[22], in accordance with the expectation of the clas-
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sical chemistry. Finally, the inductive effect of het-
eroatom in nonaromatic hydrocarbons was shown
to be interpretable in terms of LMOs that have
changed shape relative to those of the parent sys-
tem [20].

As opposed to aliphatic hydrocarbons, their ar-
omatic analogues do not belong to systems repre-
sentable by weakly-interacting subsets of basis
functions. Quite the reverse, the so-called alternant
hydrocarbons (that embrace the majority of the ar-
omatic ones) are characterized by two strongly in-
teracting subsets of AOs [3, 7, 22, 23]. That is why a
nonperturbative solution of the block-diagonaliza-
tion problem has been suggested for the common
Hückel-type Hamiltonian matrix of alternant hy-
drocarbons, and the relevant NCMOs have been
studied [24]. The results obtained allowed us to
support the hypothesis of the classical chemistry
about a stepwise increase of delocalization when
passing from aliphatic hydrocarbons to aromatic
ones, as well as to prove the interpretation of the
relevant charge–bond order matrix as a part of the
noncanonical theory of MOs.

Numerous organic compounds are known to be
representable as perturbed alternant hydrocarbons
(PAHs) [3]. This primarily refers to aromatic het-
erocycles (e.g., pyridine) that may be qualitatively
described by small alterations in Coulomb param-
eters corresponding to the site(s) of substitution [4]
(cf. the so-called one-center perturbations [3]).
Moreover, breaking and/or formation of new
bonds inside and/or between AHs may be repre-
sented accordingly by changes in resonance param-
eters. It is also worth mentioning that the PAHs are
used as model systems when studying various as-
pects of chemical reactivity. To this end, the concept
of topological equivalence of different molecular
systems is invoked as well [3].

Rules governing the charge and bond order re-
distributions in AHs due to perturbation are among
the classical results of quantum chemistry [3, 25–
32]. The rule of the alternating polarity [26, 32] for
the case of a one-center perturbation may be men-
tioned as the most outstanding example. In our
context, these rules are likely to build up a part of
the noncanonical theory of perturbed AHs.

The aim of the present study is to verify the
above-expressed expectation and to develop the
remaining part of the same theory describing the
effects of perturbations on the shapes of NCMOs of
alternant hydrocarbons. To this end, we are about
to formulate a general noncanonical formalism for
PAHs embracing derivations of both the NCMO

representation matrix and the related charge–bond
order matrix directly without invoking the canoni-
cal MOs. On this basis, we will look for a relation
between charge and bond-order redistributions due
to perturbation, as well as the respective reshapings
of NCMOs.

As was noted above, the common Hückel Ham-
iltonian matrix of AHs represented in the basis of
2pz AOs of carbon atoms may be transformed into a
block-diagonal form [24]. This implies that a block-
diagonal zero-order term reveals itself in the total
Hamiltonian matrix of perturbed AHs in the basis
of NCMOs of parent hydrocarbons. As a result, the
NCRSPT of Ref. [16] may be applied to solve the
relevant block-diagonalization problem and the re-
spective commutation equation that are expected to
yield the NCMO representation matrix of PAHs in
the basis of NCMOs of the parent AHs and the
corresponding one-electron DM. To turn to the
more convenient initial representations of the same
characteristics, separate terms of the power series
obtained should then be retransformed into the
basis of 2pz AOs again. Precisely this scheme will be
accomplished in this study.

We start with the most general formalism of the
noncanonical theory for PAHs referring to pertur-
bation matrix of an arbitrary structure. Thereupon,
we specify the latter and analyze the resulting ex-
pressions for NCMOs. Finally, we will consider
particular molecules as examples.

2. General Formalism of the
Noncanonical Theory of MOs for
Perturbed AHs

Let us begin with the simple Hückel model for
AHs [7, 22, 23, 31]. The basis set {�} of any AH
consisting of 2pz AOs of carbon atoms is known to
be divisible in this model into two subsets {�1} and
{�2} so that the intrasubset resonance parameters
take zero values. Given that the Coulomb parame-
ters (�) are also assumed to be uniform and the
equality � � 0 is accepted for convenience, the
model Hamiltonian matrices of AHs acquire a com-
mon form containing zero submatrices (blocks) in
its diagonal positions:

H�0� � � 0 B
B� 0�, (1)

where B and B� are off-diagonal blocks containing
intersubset resonance parameters. Nonzero values
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of the latter represent the neighboring pairs of AOs.
The mean value of these resonance parameters (�)
will serve as a (negative) energy unit in our study;
i.e., the equality � � 1 will be accepted. Super-
script � is used in Eq. (1) and below for transposed
(Hermitian–conjugate) matrices. The Hamiltonian
matrix of Eq. (1) will serve as the zero-order matrix
of the perturbed AHs. That is why it is additionally
supplied with subscript (0).

The expression for the unique charge–bond or-
der matrix of AHs (P(0)) was originaly derived by
G. G. Hall [33] and rederived in Ref. [24] on the
basis of solution of the commutation equation for
the one-electron DM. Two alternative forms of this
expression have been obtained:

P�0� � � I RB
B�R I �, P�0� � � I BQ

QB� I �, (2)

where

R � �BB���1/ 2, Q � �B�B��1/ 2, (3)

RB � BQ (4)

and I here and below stands for the unit matrix.
The block-diagonalization transformation for the

same matrix H(0) takes the form

H̃�0� � C�H�0�C � �E�0�1 0
0 �E�0�2

�, (5)

where C is a unitary matrix [24] containing the
vectors of coefficients of NCMOs being sought in its
columns, and E(0)1 and �E(0)2 are the so-called
eigenblocks of the matrix H(0). [The minus sign in
front of E(0)2 is introduced for convenience.]

As may be expected on the basis of ambiguity in
determining NCMOs in general (Section 1), the
transformation matrix C of Eq. (5) is not unique.
The criterion underlying the choice of this matrix
made in Ref. [24] consists of maximal similarity of
its constitution to that of the charge–bond order
matrix P(0) of Eq. (2). The resulting matrix C has
been alternatively expressed as follows:

C �
1

�2
� I RB
B�R �I�, C �

1

�2
� I BQ
QB� �I �. (6)

The relevant formulae for the eigenblocks of the
matrix H(0) take the form

E�0�1 � R�1 � �BB��1/ 2, E�0�2 � Q�1 � �B�B�1/ 2.

(7)

Finally, the unitarity condition for the matrix C
yields the following useful relations:

RBB�R � QB�BQ � BQQB� � BRRB� � I, (8)

where Eq. (4) is also invoked. In addition, it should
be noted that proportionality between separate
submatrices of matrices P(0) and C seen from com-
parison of Eqs. (2) and (6) ensures the actual coin-
cidence between vectors of coefficients of occupied
NCMOs of AHs and the respective columns (rows)
of the charge–bond order matrix (up to the normal-
ization factor 1/�2).

Let us turn now to the case of perturbed AHs.
The respective first-order (perturbation) matrix H(1)
may also be divided accordingly into separate
submatrices:

H�1� � �A�1� W�1�

W�1�
� D�1�

�. (9)

No specification of these submatrices is undertaken
in this section. It is evident that the first-order ma-
trix H(1) of Eq. (9) may be transformed into the basis
of NCMOs of parent hydrocarbons. As a result, the
total transformed Hamiltonian matrix

H̃ � C�HC � C�H�0�C � C�H�1�C � H̃�0� � H̃�1�

(10)

complies with the requirements of the NCRSPT; i.e.,
it contains a block-diagonal zero-order term H̃(0) of
Eq. (5). For matrices of this particular constitution,
both the block-diagonalization problem and the
commutation equation for the relevant DM P̃ have
been analyzed in Ref. [15]. Thus, the matrix T de-
rived in Ref. [15] may be invoked to transform the
total matrix H̃ into a block-diagonal form. We then
obtain

H̃� � T�H̃T � �E1 0
0 �E2

�, (11)

where E1 and �E2 are the eigenblocks of the total
Hamiltonian matrix of perturbed AHs. The unitary
matrix T of Ref. [15] consists of a sum of corrections
T(k) of various orders (k). The zero-order term of
this series coincides with the unit matrix [T(0) � I],
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while the first-order correction T(1) has been chosen
to resemble the relevant unique correction P̃(1) as
closely as possible. As a result, proportionality be-
tween separate submatrices of matrices P̃(1) and T(1)
has been achieved:

P̃�1� � �2� 0 G�1�

G�1�
� 0 �, T�1� � � 0 G�1�

�G�1�
� 0 �, (12)

where the common principal matrix G(1) of both
expressions meets the equation

G�1�Q � RG�1� � RH̃�1�12Q � 0, (13)

and H̃(1)12 stands for the off-diagonal block of the
first-order matrix H̃(1) defined by Eq. (10). The ex-
pressions for eigenblocks E(0)1 and E(0)2 in terms of
matrices R and Q shown in Eq. (7) are also used
when deriving Eq. (13).

Now, no more is required than to go back to the
initial basis of 2pz AOs {�}. Retransformation of the
correction [P̃(1)] to the charge–bond order matrix
yields

P�1� � CP̃�1�C� � �X�1� N�1�

N�1�
� Z�1�

�. (14)

The diagonal blocks of correction P(1) are Hermitian
(symmetric) matrices:

X�1� � �BQG�1�
� � G�1�QB�,

Z�1� � G�1�
� BQ � QB�G�1�, (15)

while the off-diagonal block N(1) may be alterna-
tively expressed as

N�1� � �BQ��1� � ���1�BQ, (16)

where

��1� � G�1�
� BQ � QB�G�1�,

��1� � BQG�1�
� � G�1�QB� (17)

are skew-Hermitian (skew-symmetric) matrices. Fi-
nally, the following useful relations between the
above-introduced matrices

X�1� � �BQZ�1�QB�, ��1� � BQ��1�QB� (18)

deserve mention. It is evident that elements of the
matrix P(1) of Eqs. (14)–(17) represent the charge

and bond order redistribution in AHs due to per-
turbation.

Again, the final NCMO representation matrix for
perturbed AHs (U) coincides with the total trans-
formation matrix of the initial Hamiltonian matrix
H into the block-diagonal form. To derive the rele-
vant expression, the product of C�HC should be
substituted for H̃ into Eq. (11) in accordance with
Eq. (10). We then obtain

U � CT � C � CT�1� � CT�2� � . . . , (19)

where equality T(0) � I [15] is used. Matrix U evi-
dently contains vectors of the coefficients of
NCMOs of PAHs represented in the basis of AOs
{�} in its separate columns. It is also seen that zero-
order NCMOs of PAHs coincide with those of par-
ent AHs, whereas their reshaping pattern due to
perturbation is expected to be described mainly by
the first-order correction U(1) of the power series for
matrix U. The expression for this correction easily
follows from Eqs. (6), (12), and (19):

U�1� � CT�1� �
1

�2
��BQG�1�

� G�1�

G�1�
� QB�G�1�

�, (20)

where the Q representation of the matrix C is used.
Comparison of Eqs. (14)–(17) and (20) shows that

similar matrix products (e.g., BQG(1)
� ) arise within

first-order matrices U(1) and P(1). The overall extent
of their similarity, however, is reduced versus that
observed when comparing the matrices of Eqs. (2)
and (6), as well as those of Eq. (12). As a result, no
coincidence may be generally expected between
vectors of coefficients of NCMOs of PAHs and the
respective columns (rows) of the relevant charge–
bond order matrix in the basis of AOs. Neverthe-
less, the localized nature of NCMOs [24] remains
(see Section 4).

Before completing this discussion, let us dwell
on the relationship between the above-obtained
corrections for the charge–bond order matrix of
PAHs and the classical perturbation theory in the
Hückel method in terms of various types of polar-
izabilities (e.g., atom–atom, atom–bond) [4, 25–31].
The latter are known to be definable in terms of
derivatives of particular elements of the charge–
bond order matrix of the perturbed system with
respect to separate elements of matrix H(1) [4, 30].
The zero-order contribution of our series (P(0)) evi-
dently yields no increments to these derivatives.
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Hence, the analogues of the classical polarizabilities
take the form

�i, j
�11� �

�X�1�ii

�A�1� jj
, �k, j

�21� �
�Z�1�kk

�A�1� jj
, �ik, j �

�N�1�ik

�A�1� jj
, etc.,

(21)

where �i, j
(11) and �k, j

(21) are atom–atom polarizabilities
for pairs of AOs (atoms) of the first subset and for
those of different subsets, respectively, and �ik, j is
an example of polarizability of the type bond atom.

3. Consideration of Specific
Perturbation Matrices

3.1. BLOCK-DIAGONAL PERTURBATION
MATRIX

Let us begin with the block-diagonal perturba-
tion matrix defined as

H�1�
��� � �A�1� 0

0 D�1�
�, (22)

and corresponding to case W(1) � 0 in Eq. (9).
Inasmuch as this matrix embraces the most popular
local perturbation of the Coulomb parameter, it is
supplied with the superscript (�). The relevant off-
diagonal block H̃(1)12

(�) contained within the principal
matrix equation of Eq. (13) takes the form

H̃�1�12
��� �

1
2 �A�1�BQ � BQD�1�	. (23)

Use of these particular expressions within Eqs.
(14)–(17) and (20) allows us to derive the respective
matrices P(1)

(�) and U(1)
(�) and to study their specific

interrelations. Before doing this, however, we will
consider the properties of the respective principal
matrix G(1)

(�) defined by Eqs. (13) and (23).
Let us begin with the proof of the following

relations:

G�1�
����BQ � QB�G�1�

���, BQG�1�
���� � G�1�

���QB�. (24)

The initial stage of this proof consists of eliminating
the matrix R from Eq. (13) by multiplying this re-
lation by B� from the left-hand side and replacing
the product B�R by QB� in accordance with Eq.
(4). We then obtain

B�G�1�
���Q � QB�G�1�

��� � QB�H̃�1�12
��� Q � 0. (25)

Let Eq. (25) be subsequently multiplied by Q
from the left-hand side. Accordingly, the complex–
conjugate counterpart of the same relation will be
multiplied by Q from the right-hand side. After
subtracting the resulting relations and invoking the
expression for H̃(1)12

(�) of Eq. (23), we obtain

Q�G�1�
����BQ � QB�G�1�

���	

� �G�1�
����BQ � QB�G�1�

���	Q � 0. (26)

The relation of Eq. (26) coincides with the specific
case of matrix equations of the form AX � XB �
C � 0 [34], where C � 0. The latter equality is
known to yield a zero solution of these equations
(X � 0). Thus, coincidence of the total matrix witin
the braces of Eq. (26) to the zero matrix follows, and
thereby the first relation of Eq. (24) is obtained. By
multiplying the latter by BQ and QB� from its left-
and right-hand sides, respectively, and by the sub-
sequent use of Eq. (8), the second result of Eq. (24)
may easily be derived.

The principal relations of Eq. (24) have important
consequences. In particular, equalities �(1)

(�) � �(1)
(�) �

0 and thereby N(1)
(�) � 0 follow immediately from

Eqs. (16), (17), and (24). Consequently, the first-
order correction P(1)

(�) takes the form

P�1�
��� � �X�1�

��� 0
0 Z�1�

����. (27)

It is seen that intersubset bond orders are not influ-
enced by the perturbation H(1)

(�) of Eq. (22). This
result may be considered as the matrix generaliza-
tion of the classical conclusion regarding zero val-
ues of polarizabilities of the type of bond atom for
AHs [26, 27, 30], the latter being defined by the last
relation of Eq. (21).

Furthermore, use of Eq. (24) within the defini-
tions of matrices X(1)

(�) and Z(1)
(�) shown in Eq. (15)

yields the following expressions for the latter:

X�1�
��� � �2BQG�1�

���� � �2G�1�
���QB�,

Z�1�
��� � 2G�1�

����BQ � 2QB�G�1�
���. (28)

Finally, Eqs. (8) and (28) yield the following alter-
native formulae for the matrix G(1)

(�):

G�1�
��� �

1
2 BQZ�1�

��� � � 1
2 X�1�

���BQ. (29)

LMOs OF PERTURBED ALTERNANT HYDROCARBONS

INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 237



Use of Eq. (29) within Eq. (20) allows the first-order
correction U(1)

(�) to the NCMO representation matrix
to be expressed in terms of matrices X(1)

(�) and Z(1)
(�):

U�1�
��� �

1

2�2
� X�1�

��� �X�1�
���BQ

Z�1�
���QB� Z�1�

��� �. (30)

It is seen that nonzero off-diagonal blocks are
present in the correction U(1)

(�), in contrast to P(1)
(�) of

Eq. (27).
The final step of this study consists of the deri-

vation of equations for matrices X(1)
(�) and Z(1)

(�). The
definitions of these matrices shown in Eq. (15) differ
from those for matrices �(1) and �(1) of Eq. (17) only
in signs of some matrix products. For example, the
expression for Z(1) differs from that for �(1) only in
the sign in front of the product QB�G(1). Thus, the
procedure like that used when deriving Eq. (26)
should be performed when looking for the above-
expected equations, only subtracting of relations
should be replaced by their summation. The result
is as follows:

QZ�1�
��� � Z�1�

���Q � �Q2B�A�1�BQ2 � QD�1�Q	 � 0

(31)

and belongs to matrix problems of the above-cited
form (AX � XB � C � 0) [34], where C coincides
now with the total matrix within the brackets. The
solution may then be represented in the form

Z�1�
��� � ��

0




e�Qt�Q2B�A�1�BQ2 � QD�1�Q	e�Qtdt. (32)

Note that Q is assumed to be a positive-definite
matrix [24], and the relation of Eq. (31) is multiplied
by �1 to obtain a negative-definite matrix required
for expressing the solution in the form of an inte-
gral. Given that matrix Z(1)

(�) is obtained, the relevant
matrix X(1)

(�) follows from Eq. (18).
The integral of Eq. (32) easily yields the famous

rule of the alternating polarity [26, 29–32]. Indeed,
the expressions for particular elements Z(1)kl

(�) follow-
ing from Eq. (32) contain additive increments of
separate elements A(1)ij and D(1)mn. As a result, each
derivative of Eq. (21), and thereby the relevant po-
larizability may be found independently. For the
intersubset polarizability of the atom–atom type
�k, j

(21), a negative sign results immediately from Eq.
(32):

�k, j
�21� �

�Z�1�kk
���

�A�1� jj
� ��

0




��BQ2e�Qt�jk	
2dt � 0. (33)

Thus, the population of any AO (�k) of the second
subset is reduced after introducing a more electro-
negative heteroatom into the jth position of the first
subset (A(1) jj � 0 in our negative energy units in this
case). For the intrasubset polarizability �i, j

(11) of Eq.
(21), a positive sign may be established similarly
after invoking Eq. (18); accordingly, an increased
population of any AO of the same subset is ob-
tained. These results are nothing more than the rule
of the alternating polarity.

Before finishing this subsection, let us note that
application of the matrix H(1)

(�) of Eq. (22) is not
restricted to modeling of substitution of carbon at-
oms by heteroatoms: This matrix may be also used
to represent passing to more sophisticated models
of hydrocarbons themselves, wherein resonance pa-
rameters between all pairs of AOs are explicitly
included along with allowance for first-order alter-
ations in Coulomb parameters. Indeed, resonance
parameters between nonneighboring pairs of AOs
of the intersubset type may be successfully incor-
porated into the zero-order matrix H(0) of Eq. (1).
(Application of the latter is not restricted to taking
into account resonance parameters between neigh-
boring pairs of AOs only.) Accordingly, the addi-
tional parameters of the intrasubset type may be
included in the perturbation matrix H(1)

(�), the latter
then describing the deviation of the actual model
from that of an alternant hydrocarbon. This, in turn,
implies that the results of this section are applicable
to represent consequences of the above-specified
extension of the model. In particular, Eq. (27) then
indicates a certain invariance of the intersubset
bond orders with respect to taking into account the
additional parameters of the intrasubset type.

3.2. ANTI-BLOCK-DIAGONAL PERTURBATION
MATRIX

Let us now turn to the perturbation matrix of the
form

H�1�
��� � � 0 W�1�

W�1�
� 0 � (34)

representing alterations in resonance parameters of
the intersubset type. The relevant perturbed system
evidently remains one of alternant hydrocarbons.
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Analysis of expressions for respective correc-
tions U(1)

(�) and P(1)
(�) resembles that of the previous

section. Thus, the new block H̃(1)12
(�) takes the form

H̃�1�12
��� �

1
2 BQ�W�1�

� BQ � QB�W�1�	. (35)

After substituting this expression into the matrix
equation for G(1)

(�) like that of Eq. (13), and perform-
ing an analogous procedure, we obtain the relations

BQG�1�
���� � �G�1�

���QB�, G�1�
����BQ � �QB�G�1�

���

(36)

instead of those shown in Eq. (24). As a result, zero
matrices stand for Z(1)

(�) and for X(1)
(�) in the new

correction P(1)
(�):

P�1�
��� � � 0 �BQ��1�

���

��1�
���QB� 0 � � � 0 ���1�

���BQ
QB���1�

��� 0 �.
(37)

Again, the interrelated matrices �(1)
(�) and �(1)

(�) (see
Eq. (18)) meet matrix equations of the above-con-
sidered form, e.g.,

Q��1�
��� � ��1�

���Q � Q�QB�W�1� � W�1�
� BQ�Q � 0, (38)

and thereby these are expressible in the form of
integrals like that of Eq. (32). From Eq. (37), it
follows that no intrasubset corrections arise in the
matrix P(1)

(�), in accordance with the alternant nature
of the perturbed system. The result of Eq. (37) may
be alternatively regarded as the matrix generaliza-
tion of the classical conclusion regarding zero val-
ues for polarizabilities of the type of atom bond in
AHs [26, 27, 30].

For the correction U(1)
(�) to the NCMO representa-

tion matrix U(�), we obtain

U�1�
��� �

1

2�2
� ���1�

��� �BQ��1�
���

QB���1�
��� ���1�

��� �. (39)

It is seen that nonzero contributions of the intra-
subset type emerge within matrix U(1)

(�). This implies
that the diagonal blocks of the total NCMO repre-
sentation matrix C � U(1)

(�) are no longer propor-
tional to unit matrices, as is the case with matrix C
of Eq. (6) referring to any alternant system. It may
easily be shown, however, that zero matrices may
be restored in the diagonal positions of the correc-
tion under study by turning to an alternative set of

NCMOs. Indeed, the total Hamiltonian matrix H̃� of
Eq. (11) remains of a block-diagonal structure after
applying an additional unitary transformation of
the same constitution:

H̃� � M�H̃�M � M�T�H̃TM � �E�1 0
0 �E�2

�, (40)

where

M � �M1 0
0 M2

�, M1M1
� � I, M2M2

� � I (41)

and M1 and M2 are arbitrary unitary submatrices.
As a result, the matrix

U� � CTM � UM (42)

is also an NCMO representation matrix. Using this
rather self-evident result as a basis, we will then
look for blocks M1 and M2 such that the diagonal
blocks of the new matrix U� coincide with matrices
(1/�2)I and �(1/�2)I, as was the case with matrix
C of Eq. (6). This condition is resolved into follow-
ing requirements:

�I �
1
2 ��1�

����M1 � I, ��I �
1
2 ��1�

����M2 � �I, (43)

which yield the solution of the form

M1 � I �
1
2 ��1�

���, M2 � I �
1
2 ��1�

���. (44)

At the same time, the skew-symmetric (skew-Her-
mitian) nature of the first-order matrices �(1)

(�) and
�(1)

(�) ensures unitarity of submatrices M1 and M2. [It
is worth mentioning that an analogous procedure
fails for the case of the block-diagonal perturbation
matrix of Eq. (22) just because of symmetric (Her-
mitian) nature of matrices X(1)

(�) and Z(1)
(�).] The off-

diagonal blocks of the new matrix U(�)� may easily
be obtained from Eqs. (6), (39), (41), (42), and (44).
The final result takes the form

U���� �
1

�2
� I BQ�I � ��1�

���	
QB��I � ��1�

���	 �I �. (45)

The new NCMO representation matrix U(�)� resem-
bles the sum of matrices P(0) and P(1)

(�).
Let us now consider the case of an anti-block-

diagonal matrix of Eq. (34) that describes the for-
mation of weak intermolecular bond(s) between
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initially isolated AHs. The new bond(s) are as-
sumed to be representable by resonance parame-
ter(s) of the first-order magnitude. For simplicity,
let us confine ourselves to two identical AHs, I and
II (cf. the formation of biphenyl by bonding of two
benzene molecules [3]). The subsets of AOs of the
total system ({�1} and {�2}) may be conveniently
subdivided in this case into parts that refer to sep-
arate parent AHs, e.g., the subset {�1} will consist of
two parts {�1,I} and {�1,II}. As a result, the relevant
total matrices B and Q of Eqs. (1) and (3) will
contain nonzero submatrices of lower dimensions:

B � �Bp 0
0 Bp

�, Q � �Qp 0
0 Qp

�, (46)

where the blocks referring to individual parent hy-
drocarbons are denoted by subscript p. Let us in-
troduce an additional assumption that the new
bond(s) emerge between pairs of AOs of subsets
{�1,I} and {�2,II} (For the case of a single bond, this
assumption does not imply any restriction.) As a
result, submatrix W(1) of our first-order Hamilto-
nian matrix H(1)

(�) takes the form

W�1� � �0 K�1�

0 0 �, (47)

where K(1) is a specific nonzero block. For the total
matrices �(1)

(�) and �(1)
(�), we accordingly obtain

��1�
��� � � 0 ��1� p

���

���1� p
���� 0 �,

��1�
��� � � 0 BpQp��1� p

��� QpBp
�

�BpQp��1� p
����QpBp

� 0 �, (48)

where

��1� p
��� � ��

0




e�Qpt � Qp
2Bp

�K�1�Qp � e�Qptdt. (49)

[The solution of Eq. (38) for matrix W(1) of Eq. (47)
is used when deriving Eqs. (48) and (49).] These
expressions should be then substituted into Eqs.
(37) and (45). As a result, the relevant corrections
P(1)

(�) and U(1)
(�)� become expressed in terms of subma-

trices Bp, Qp, and �(1)p
(�) referring to the parent hy-

drocarbon.

4. Analysis of Expressions for
Noncanonical MOs of PAHs

As in Refs. [16, 17], let us define the row matrices
(�1) and (�2) containing the subsets of AOs under-
lying the blocks of the initial Hamiltonian matrix H
of Eqs. (1) and (9), as well as the total row matrix
containing (�1) and (�2) as subrows. Passing from
the basis of AOs to that of NCMOs may be then
described as follows:

��1��2�	 � ���1���2�	U, (50)

where the transformation matrix U coincides with
that of either Eq. (19) or Eq. (42), and (1) and (2)
are row matrices of occupied and vacant NCMOs,
respectively.

Let us begin with the case of the block-diagonal
perturbation matrix of Eq. (22). To derive the cor-
responding NCMOs, the matrix U(0) � C and U(1)

(�)

defined by Eqs. (6) and (30), respectively, should be
substituted into Eq. (50). Therefore, the row matrix
(1

(�)) containing the occupied NCMOs takes the
form

�1
���	 �

1

�2
���1��I �

1
2 X�1�

���	 � ��2��I �
1
2 Z�1�

���	QB��.

(51)

The particular NCMO 1,i
(�) may be then ex-

pressed as follows:

1,i
��� �

1

�2 ��1,i�1 �
1
2 X�1�ii

��� � �
1
2 �

j��i�

�1�

�1, jX�1� ji
���

� �
k

�2�

�2,k��1 �
1
2 Z�1�kk

��� �(QB�)ki �
1
2 �

l��k�

�2�

Z�1�kl
��� (QB�)li	
,

(52)

where the first sum embraces the AOs of the first
subset, while the remaining two sums involve the
orbitals of the second subset.

A one-to-one correspondence is observed be-
tween individual orbitals of subsets (1

(�)) and (�1)
in Eq. (52), i.e., between the occupied NCMO 1,i

(�)

and AO �1,i. Moreover, it is this AO that plays the
role of the principal basis function of the given
NCMO. The latter conclusion is based on the fact
that elements (QB�)ki referring to parent AHs do
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not exceed 1 [24]. Accordingly, the vacant NCMOs
become related to the AOs of the second subset {�2}.
The conclusion that occupied and vacant NCMOs
of PAHs are attached to subsets of AOs {�1} and
{�2}, respectively, causes no surprise if we recall the
analogous relationship for parent AHs underlying
the matrix C of Eq. (6) [24]. (An alternative solution
of the block-diagonalization problem for the matrix
H(0) of Eq. (1) was also shown to be possible,
wherein the subsets {�1} and {�2} are interchanged,
and a somewhat different matrix C� was obtained
in this case [24]. Use of this new matrix C� instead
of matrix C of Eq. (6) would evidently yield an
alternative form of NCMOs of PAHs, wherein the
occupied NCMOs are attached to the second subset
of AOs.)

The influence of perturbation on the shapes of
NCMOs is represented by elements of submatrices
X(1)

(�) and Z(1)
(�), as indicated by Eqs. (51) and (52). The

same submatrices are also contained within the rel-
evant correction P(1)

(�) of Eq. (27). This implies a
certain interrelation between the reshaping of
NCMOs of PAHs versus those of parent AHs and
the relevant charge and bond order redistribution.

The above-expected relationship is especially ev-
ident if we consider the alteration in the extent of
localization of the NCMO 1,i

(�) over the respective
principal AO �1,i. Indeed, the correction of Eq. (52)
describing the above-specified alteration proves to
be proportional to the population [X(1)ii

(�) ] lost (ac-
quired) by the basis orbital �1,i due to perturbation.
As a result, the extent of localization of the NCMO
1,i

(�) over its principal AO is predicted to be in-
creased if the latter acquires an additional popula-
tion, i.e., X(1)ii

(�) � 0, and vice versa. In other terms,
concentration of a population on a specific AO (if
any) is shown to be accompanied by an increase of
localization of the respective NCMO.

Furthermore, the perturbation under discussion
gives rise to emergence of additional delocalization
of NCMOs. In particular, the occupied NCMO 1,i

(�)

also becomes delocalized over the AO �1, j, and the
relevant increment is proportional to the respective
bond order X(1) ji

(�) . As far as the changing contribu-
tions of the AOs of the opposite subset are con-
cerned, these are determined by coefficients con-
tained within the curly braces in Eq. (52). It is seen
that both the population alterations (Z(1)kk

(�) ) and the
changing bond orders (Z(1)kl

(�) ) are present there.
Thus, a more involved relation between reshapings
of tails of NCMOs over the opposite subset and
charge–bond order redistributions may be ex-
pected.

For the perturbation H(1)
(�) of Eq. (34), the ana-

logue of Eq. (51) takes the form

�1
���� �

1

�2
���1�I � ��2�QB��I � ��1�

���	�, (53)

where the correction U(1)
(�)� of Eq. (45) is invoked. It

is seen that corrections to NCMOs are determined
by elements of matrix QB��(1)

(�) in this case. Conse-
quently, reshapings of NCMOs of AHs due to per-
turbation H(1)

(�) prove to be related to alterations in
bond orders of the intersubset type [see Eq. (37)].

Given that the perturbation matrix H(1)
(�) describes

the formation of intermolecular bond(s) between
two identical initially isolated AHs I and II, we
obtain

�1
���I� �

1

�2
���1

I �I � ��2
I �QpBp

� � ��2
II���1� p

����QpBp
�	,

(54)

where (1
(�)I) contains the reshaped occupied

NCMOs of the first AH after including it into the
final compound. The effect of perturbation is rep-
resented by the last term of Eq. (54) determining
some increments of AOs from subset {�2

II}. Hence,
the occupied NCMOs of the first parent AH at-
tached to AOs of the first subset acquire additional
tails only over AOs of the opposite AH belonging to
the second subset.

5. Studies of Individual Molecules as
Examples

5.1. PYRIDINE MOLECULE

Let us consider the pyridine molecule in this
subsection. Numbering of respective 2pz AOs (see
Scheme 1) is chosen to ensure the anti-block-diag-
onal structure of the relevant Hamiltonian matrix of
the parent AH (benzene) as assumed in Eq. (1).
[Nonezero resonance parameters referring to chem-

SCHEME 1. Numbering of 2pz AOs of pyridine and
biphenyl.
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ical bonds were found in the off-diagonal blocks of
the matrix H(0) in this case.] Passing from benzene
to pyridine is modeled by a local perturbation (�) in
the Coulomb parameter at the site of substitution,
the latter coinciding with the AO �1, i.e., A(1)11 � �.

Matrices B, Q, and QB� of the parent benzene
take the form

B � �1 0 1
1 1 0
0 1 1

�, Q �
1
6 � 5 �1 �1

�1 5 �1
�1 �1 5

�,
QB� �

1
3 � 2 2 �1

�1 2 2
2 �1 2

�. (55)

Matrix exp[�Qt] contained within the expression
for Z(1)

(�) of Eq. (32) may be easily obtained by diago-
nalizing matrix Q. Accordingly, for the diagonal
and off-diagonal elements of the matrix exp[�Qt]
we obtain

�exp��Qt	�ii �
1
3 �exp�� 1

2 t� � 2 exp��t�	,

�exp��Qt	�ij �
1
3 �exp�� 1

2 t� � exp��t�	. (56)

Substituting these expressions into Eq. (32) al-
lows us to derive the following integral formulae
for particular elements of matrix Z(1)

(�):

Z�1�44
��� � Z�1�66

��� � Z�1�46
��� � �

�

36

�
0


 �exp��
1
2 t
 � 2 exp(�t)�2

dt,

Z�1�45
��� � Z�1�56

��� � �
�

36 �
0


 �exp��
1
2 t
 � 4 exp(�t)�

	 �exp��
1
2 t
 � 2 exp(�t)�dt, Z�1�55

���

� �
�

36 �
0


 �exp��
1
2 t
 � 4 exp(�t)�2

dt, (57)

and the final matrices Z(1)
(�) and X(1)

(�) are

Z�1�
��� � �

�

108 � 17 �13 17
�13 11 �13

17 �13 17
�,

X�1�
��� �

�

108 � 43 �5 �5
�5 1 1
�5 1 1

�, (58)

where Eq. (18) is used to obtain the second matrix.
The orbital–orbital polarizabilities of benzene may
be obtained from elements of these matrices after
taking the relevant derivatives with respect to pa-
rameter �, as shown in Eq. (21), and the relevant
numerical values coincide with those obtained by
traditional methods [30]. At the same time, Eq. (57)
yields a new integral representation of these polar-
izabilities.

Let us turn now to the NCMOs of pyridine fol-
lowing from Eq. (52) after substituting Eqs. (55) and
(58). Thus, the occupied NCMO 1,1 attached to the
site of substitution, takes the form

1,1 �
1

�2 ���1 �
2
3 (�4 � �6) �

1
3 �5� � �� 43

216 �1

�
5

216 (�2 � �3) �
27

216 (�4 � �6) �
21

216 �5�	 ,

(59)

where the first square brackets contain the zero-
order terms referring to benzene [24], while the
second ones involve the corrections due to substi-
tution. It is seen that the extent of localization of the
NCMO 1,1 over the principal AO �1 is increased in
accordance with the increased occupation number
of this basis orbital due to perturbation. Thus, re-
shaping of the NCMO 1,1 reflects the trend toward
formation of a lone pair orbital belonging to the
nitrogen atom. Furthermore, negative increments
referring to meta positions 2 and 3 with respect to
the heteroatom arise in the perturbed NCMO. The
most important feature of the orbital 1,1, however,
consists of reduction of absolute values of incre-
ments corresponding to both ortho- and para-posi-
tions with respect to heteroatom. Consequently, a
certain parallelism is observed between reshaping
of the NCMO 1,1 and the rule of the alternating
polarity; viz. withdrawal of population from the
ortho/para-positions is accompanied by reduction
of contribution of respective AOs in the NCMO,
whereas emergence of additional population at the
meta position is accordingly accompanied by new
increments within the same NCMO. Certain com-
ments of this conclusion should be added. From Eq.
(58) it is seen that all the elements of matrix Z(1)

(�) of
benzene have comparable absolute values. The
same refers also to elements of the matrix QB� of
Eq. (55). This implies that the alterations in the
intersubset delocalization of NCMOs are condi-
tioned not only by occupation numbers [Z(1)kk

(�) ] of
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AOs of the second subset, but also by bond orders
between the latter [Z(1)kl

(�) ]. In this context, the above-
observed parallelism between the reshaping pat-
tern of the NCMO 1,1 and alterations in the pop-
ulations of AOs is even more surprising.

Let us now consider the remaining occupied
NCMOs of pyridine. Thus, the orbital 1,2 attached
to the AO �2 takes the form

1,2 �
1

�2 ���2 �
2
3 (�4 � �5) �

1
3 �6� � �� 1

216 �2

�
5

216 �1 �
1

216 �3 �
3

216 (�4 � �5) �
3

216 �6�	 .

(60)

It is seen that the extent of localization of this
NCMO over the principal AO �2 is also increased
due to perturbation. The absolute value of this al-
teration, however, is considerably smaller as com-
pared with that referring to the NCMO 1,1 of Eq.
(59). This result is in line with relative values of the
corresponding population alterations. The remain-
ing corrections of Eq. (60) give rise to a certain
desymmetrization of the NCMO 1,2. In particular,
dissimilar contributions of AOs �1 and �3 may be
mentioned, where a larger absolute value of the
increment corresponds to the site of substitution.
Moreover, the total increments of AOs �4 and �5
also become dissimilar in the final NCMO 1,2 ow-
ing to different signs of the relevant first-order cor-
rections, i.e., the contribution of the AO �4 proves to
be increased, whereas that of the AO �5 is reduced
compared with the respective values for the parent
molecule. Thus, the reshaping pattern of the
NCMO 1,2 is such that a trend toward the forma-
tion of a double bond between AOs �2 and �4 is
observed along with weakening of the bond
C2OC5. This result is in line with the emergence of
a certain contribution of the para-quinoidal struc-
ture for pyridine.

Comparison of Eqs. (59) and (60), in turn, dem-
onstrates that the total extent of reshaping of the
NCMO 1,2 is less significant relative to that of 1,1.
In other terms, it is the NCMO 1,1 that is influ-
enced by the given perturbation most substantially.
That is why the NCMO 1,1 is primarily responsi-
ble for the relevant charge redistribution. Just this
fact may be considered as the origin of the above-
discussed parallelism between the reshaping pat-
tern of this NCMO and the population alterations
due to perturbation.

5.2. BIPHENYL MOLECULE

Numbering of 2pz AOs of carbon atoms of biphe-
nyl may be chosen so that the matrices Bp and Qp of
Eq. (46) coincide with those of Eq. (55) (see Scheme
1). The same then also refers to the matrix
exp[�Qpt], which coincides with the exp[�Qt] de-
fined by Eq. (56).

Let the only nonzero element of submatrix K(1) of
Eq. (47) referring to the new bond C1OC10 to be
denoted by 
. As a result, the matrix �(1)p

(�) defined
by Eq. (49) and contained within the expression for
NCMOs of Eq. (54) takes the form

��1� p
��� �




36 ��9 1 1
7 �1 �1

�9 1 1
�. (61)

Consequently, the NCMOs of biphenyl 1,1 and
1,2 attached to the AOs �1 and �2, respectively,
may be expressed as follows:

1,1 �
1

�2 ���1 �
2
3 (�7 � �9) �

1
3 �8�

� 
� 43
108 �10 �

5
108 (�11 � �12)�	 , (62)

1,2 �
1

�2 ���2 �
2
3 (�7 � �8) �

1
3 �9�

� 
��
5

108 �10 �
1

108 (�11 � �12)�	. (63)

It is seen that NCMOs 1,1 and 1,2 acquire
additional tails localized on the second ring after
emergence of the new bond C1OC10. Moreover, the
most important new increments of these tails are
localized at the site of perturbation, i.e., at AO �10.
Comparison of total extents of additional tails for
NCMOs 1,1 and 1,2, in turn, shows that it is the
NCMO 1,1 that is reshaped more significantly.
This fact reflects a trend toward formation of a
four-center NCMO instead of a three-center NCMO
after emergence of the new bond. This result causes
no surprise if we recall the dependence between the
shapes of NCMOs of AHs and the numbers of the
nearest neighbors for the respective principal AOs
established previously [24].
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6. Summary

Two points may be mentioned as the principal
achievements of the above study. The first point
concerns reinterpretation of the classical results
about charge and bond order redistributions in
AHs due to perturbation as a part of the noncanoni-
cal theory of MOs along with supplementing them
with the following contributions: (i) derivation of
algebraic expressions for the charge–bond order
matrix of PAHs in terms of entire blocks of the
common Hamiltonian matrix of parent hydrocar-
bons that indicate the decisive role of molecular
topology in the formation of charge and bond order
distribution; and (ii) suggestion of a new integral
representation for orbital–orbital polarizabilities of
AHs that is an alternative to the classical one.

The second point consists of the development
of the remaining part of the noncanonical theory
of MOs for PAHs embracing the application of
NCMOs as an alternative localized way of repre-
senting electronic structures. The principal steps
of this development are: (i) formulation and so-
lution of the block-diagonalization problem for
PAHs originating from the Brillouin theorem and
determining the NCMOs of these molecules; (ii)
derivation of expressions for the common NCMO
representation matrix of PAHs in terms of entire
blocks of the relevant charge– bond order matrix;
(iii) interpretation of charge redistribution in AHs
due to perturbation in terms of reshaped NCMOs
and vice versa; and (iv) analysis of NCMOs of
individual molecules (i.e., of pyridine and biphe-
nyl) and establishing of the interdependence be-
tween the initial shape of the given NCMO and
the extent of its subsequent reshaping due to
perturbation.

The contribution of the results obtained to the
theory of electronic structures of molecules in gen-
eral may be summarized as follows:

1. The results contribute to development of di-
rect ways of obtaining NCMOs of molecules
without invoking CMOs. Moreover, the
power series for NCMO representation matri-
ces derived in this paper allow us to relate the
NCMOs of perturbed systems to those of par-
ent molecules without invoking of additional
localization criteria.

2. The results demonstrate possibilities of the
NCMO method in reflecting chemical struc-
tures of molecules and their alterations when

passing from one class of compounds to an-
other. Additional support for this conclusion
consists of the fact that changes in shapes of
NCMOs predicted by this method are in line
with those resulting from the simple reso-
nance theory.

3. The solution of the block-diagonalization
problem for the Hamiltonian matrix of PAHs
supplements the noncommutative RSPT [16]
with the case of two quasi-degenerate subsets
of basis functions. Moreover, the solution sug-
gested is likely to present the first nontrivial
employment of the most general version of
the NCRSPT corresponding to the zero-order
matrix of a block-diagonal constitution.
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