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ABSTRACT: Explicit algebraic expressions are derived and analyzed for the
second-order corrections to the charge-bond order (CBO) matrix of perturbed alternant
hydrocarbons (PAHs) in terms of entire blocks of the common Hamiltonian matrix of
parent AHs in the framework of the simple Hückel model. The derivation is based on the
direct means of solution of the commutation equation for the one-electron density matrix
by means of passing to the basis of noncanonical molecular orbitals of parent AHs
followed by application of the noncommutative Rayleigh–Schrödinger perturbation theory
and retransformation of the results into the initial basis of 2pz AOs of carbon atoms. The
second-order corrections obtained are shown to determine alterations in bond orders
between chemically bound pairs of atoms under influence of the most popular types of
perturbation, viz. changes in the Coulomb parameter(s) and emergence of new
intermolecular resonance parameter(s). The same corrections are also demonstrated to
play an important role in the formation of stabilization energies of PAHs vs. those of
parent AHs. On this basis, an additional insight is given into the content of the classical
formulae for total energies of PAHs in terms of self-polarizabilities of atoms and bonds,
viz. an energy correction is shown to be made up of a difference between the primary
stabilizing contribution of perturbation (which is twice as large as the final stabilization
energy) and the destabilizing increment related to weakening of remaining chemical
bonds. A detailed comparison of CBO matrices and stabilization energies is made for
compounds originating from the same parent hydrocarbon (R) after perturbation of the
Coulomb parameter of a certain AO χr and after building up a composite AH R R′ by
formation of a new bond between AOs χr and χ ′

r of two identical AHs R and R′ (e.g.,
pyridine and biphenyl). The first-order corrections to CBO matrices of these systems are
shown to be expressible in terms of the same submatrices, whereas the respective
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second-order corrections contain coinciding submatrices referring to parent fragments R
and R′. As a result, coincidences are established (i) between the self-polarizability of the rth
atom of the parent AH R and that of the bond between atoms r and r′ of the composite
AH R R′, (ii) between alterations in orders of chemical bonds due to both types of
perturbation, and (iii) between stabilization energies referring to a single fragment R or R′
under an assumption of coinciding perturbation parameters. On this basis, a nontrivial
and intriguing similarity is concluded between respective electronic structures in general.
Finally, two particular second-order effects are revealed for the same systems, viz. a
destabilizing effect related mostly to a local weakening of bonds at the site of perturbation
and an energy-free effect manifesting itself as emergence of changes in all bond orders of
alternating nature. © 2006 Wiley Periodicals, Inc. Int J Quantum Chem 106: 2145–2160, 2006

Key words: alternant conjugated hydrocarbons; charge-bond order matrix;
stabilization energy; pyridine; biphenyl

1. Introduction

C ommon peculiarities of electronic structures
of different molecules are among facts of

particular interest in quantum chemistry. This refers
especially to non-trivial examples of similarity
of electronic structures embracing compounds of
essentially distinct chemical constitution. Accord-
ingly, specific concepts are usually introduced to
distinguish these groups of molecules. For exam-
ple, the concepts of isoconjugated systems [1] and
of isospectral graphs [2–4] may be mentioned.

The well-known conjugated alternant hydrocar-
bons (AHs) [1, 4–8] also rank among systems of the
above-described type. Indeed, electronic structures
of these molecules are characterized by numerous
common peculiarities that can be represented in the
form of general rules in the framework of the sim-
ple Hückel model. The principal classical results
for these hydrocarbons [9–12] refer to constitutions
of their usual (canonical) molecular orbitals (MOs)
along with the relevant one-electron energies and to
related charge-bond order (CBO) matrices. Recent
results concerning common properties of noncanon-
ical MOs of AHs [13] may also be added here.

Numerous organic compounds are known to be
representable as perturbed alternant hydrocarbons
(PAHs) [1, 14]. Two types of perturbations are usu-
ally distinguished, viz. small alterations in Coulomb
parameters (the so-called one-center perturbations)
and changes in resonance parameters (two-center
perturbations). Perturbations of the former type
serve to describe aromatic heterocycles (e.g., pyri-
dine), where alteration(s) in Coulomb parameters
correspond to the site(s) of substitution. Again,
two-center perturbations represent breaking and/or
formation of new bonds inside and/or between
AHs. Continuing interest in electronic structures of

PAHs is due to their applicability as model sys-
tems when studying various aspects of chemical
reactions. In particular, the results concerning alter-
ations in total energies of AHs due to perturba-
tion form the basis of the popular PMO theory of
chemical reactivity [1]. These alterations, in turn,
are expressible in terms of polarizabilities of vari-
ous types (e.g., atom–atom, atom–bond) following
from the first-order corrections to CBO matrices of
parent AHs.

It should be mentioned immediately that the over-
all constitution of the first-order correction to the
CBO matrix depends essentially on the nature of
perturbation [15]. In particular, one-center pertur-
bations are known to give rise to alterations in
occupation numbers of all 2pz AOs in accordance
with the famous rule of alternating polarity [5, 6,
9–12, 15, 16]. In the case of a two-center perturba-
tion, the alternant nature of the resulting PAH and
thereby the uniform charge distribution may be pre-
served (cf. perturbations of the so-called intersubset
type [15]). Hence, at least two different classes of
compounds seem to originate from the single class
of AHs. Nevertheless, there are grounds to expect a
certain extent of nontrivial similarity between elec-
tronic structures of the above-discussed two types of
PAHs. This refers especially to pairs of compounds
originating from the same parent AH (R) after per-
turbing the Coulomb parameter of a certain AO χr

and after building up a composite AH R R′ by for-
mation of a new bond between AOs χr and χr′ of two
identical AHs R and R′ (cf. pyridine and biphenyl).
Indeed, consideration of constitutions of additional
resonance structures of these PAHs promotes an
expectation about similar alterations in the orders
of chemical bonds to emerge in these two types of
systems. As for instance, para-quinoidal structures of
pyridine and biphenyl (cf. the so-called Zwitterion
[1, 17]) may be mentioned (Scheme 1).
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SCHEME 1. Para-quinoidal structures of pyridine and
biphenyl.

The well-studied first-order correction P(1) to the
common CBO matrix of PAHs P does not contribute
to alterations in bond orders referring to actual chem-
ical bonds (see Ref. [15] and Section 3). Hence, anal-
ysis of the respective second-order correction P(2) is
required when looking for the similarity expected.
To this end, an efficient method of derivation of
members of the power series for the CBO matrix
is required. The approach suggested recently [15],
and based on the direct solution of the commuta-
tion equation for the one-electron density matrix by
means of passing to the basis of noncanonical MOs
of parent AHs [13] and application of the noncom-
mutative Rayleigh–Schrödinger perturbation theory
[18, 19], appears promising in this field. It is also
worth noting that the significance of second-order
corrections to CBO matrices of PAHs is not limited
to description of alterations in neighboring bond
orders due to perturbation. This additional antici-
pation is based on the important role of the second-
order correction P(2) in the formation of the stabi-
lization energy of any perturbed system revealed
recently [20, 21].

Total energies of molecules are known to be
alternatively obtainable [14, 22, 23] on the basis
of expressions for the one-electron density matrix
(CBO matrix) and the well-known general rela-
tion between these two principal chracteristics of
molecules instead of summing up the eigenvalues of
the Hamiltonian matrix corresponding to occupied
canonical MOs. On this basis, two interdependent
components of opposite signs have been revealed
within any member E(k) of the resulting power series
for the total energy E [20]. Moreover, these compo-
nents were found to be determined by corrections
P(k) of different orders (k). In particular, the second-
order energy E(2) (which is responsible for stabiliza-
tion (or destabilization) of perturbed systems vs.
those desribed by the zero-order Hamiltonian matri-
ces [21]) consists of the P(1)-containing component
and of the P(2)-containing one [20, 21], the abso-
lute value of the former exceeding twice that of the
latter. Just this result allowed the conclusion to be
drawn about the role of the second-order correc-
tion P(2) being as important as that of the first-order
one in the formation of the stabilization energy of
the perturbed system. Finally, the above-mentioned

interrelation between the absolute values of the two
principal components of the second-order energy
formed the basis for expressing the total correction
either in terms of the P(1)-containing component or
via the P(2)-containing one.

Given that the above-overviewed general results
are applicable to perturbed AHs, these may be
expected to yield an additional insight into the con-
tent of the classical formulae for total energies in
terms of self-polarizabilities of atoms and bonds [5,
6, 14] as it was the case with the Dewar formula [21].
Moreover, the similarity between PAHs originating
from the same parent hydrocarbon in respect of
alterations in the neighboring bond orders (if estab-
lished) would also be manifested as a proportionality
between respective stabilization energies. The latter
relation, in turn, is likely to imply a certain interde-
pendence between the self-polarizabilities referring
to the formation of aromatic heterocycles and of
composite hydrocarbons.

The principal aim of the present work consists
of verifying the above-enumerated expectations. To
this end, we are about to derive and analyze the
expressions for second-order corrections to CBO
matrices of PAHs and to the relevant total ener-
gies using the approaches discussed above. We will
focus our attention to comparison of results referring
to pairs of PAHs originating from the same parent
hydrocarbon.

This work is organized as follows. We begin, in
Section 2, with an overview of general conclusions
concerning total energies and demonstrate their
applicability to PAHs. In Section 3, expressions for
the second-order corrections P(2) are analyzed and
compared with the first-order corrections. Section 4
is devoted to exploration of corrections describing
the PAHs of the same origin. Specific examples are
studied in Section 5.

2. Role of Second-Order Effects in
the Formation of Stabilization
Energies of PAHs

Given that our system is described by a cer-
tain one-electron Hamiltonian matrix H (e.g., of
the Hückel type), the relevant energy is simply
expressed as follows [14, 22, 23]:

E = Trace(PH), (1)

where P is the respective representation of the one-
electron density matrix (the CBO matrix). Let us
assume that the matrix H consists of the zero-order
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and first-order members, i.e.,

H = H(0) + H(1). (2)

As a result, two components generally arise
within any correction E(k), viz.

E(k,0)

(k) = Trace[P(k)H(0)], E(k−1,1)

(k) = Trace[P(k−1)H(1)],
(3)

where P(k) coincide with members of the power series
for the matrix P, k here and below stands for the order
parameter and the superscripts of the left-hand sides
of these definitions indicate the orders of corrections
P(k) and H(k) contained within the respective right-
hand sides. In particular, the first three members E(k),
k = 0, 1, 2 of the power series for the energy E take
the form

E(0) = E(0,0)

(0) = Trace[P(0)H(0)],
E(1) = E(1,0)

(1) + E(0,1)

(1)

= Trace[P(1)H(0)] + Trace[P(0)H(1)],
E(2) = E(2,0)

(2) + E(1,1)

(2)

= Trace[P(2)H(0)] + Trace[P(1)H(1)]. (4)

It is seen that the second-order correction P(2) to the
CBO matrix of our system P contributes to the for-
mation of the second-order energy E(2) along with
the first-order correction P(1).

Let us turn now to alternant hydrocarbons and
their perturbations within the framework of the sim-
ple Hückel model [1, 4–16, 24, 25]. The basis set {χ}
of any AH consisting of 2pz AOs of carbon atoms
may always be divided into two subsets {χ∗} and
{χ ◦}, so that the intrasubset resonance parameters
take zero values. This happens because the neighbor-
ing pairs of AOs characterized by nonzero resonance
parameters in the Hückel model get into different
subsets. Moreover, the Coulomb parameters repre-
senting AOs usually are assumed to take uniform
values α, and the equality α = 0 is accepted for con-
venience. As a result, the one-electron Hamiltonian
matrices of AHs acquire a common form containing
zero submatrices (blocks) in its diagonal positions [8,
13, 15, 24, 25], viz.

H(0) =
∣∣∣∣ 0 B
B+ 0

∣∣∣∣ . (5)

Again, B and B+ are off-diagonal blocks contain-
ing intersubset resonance parameters. Nonzero ele-
ments of these blocks represent the neighboring pairs
of 2pz AOs. The mean value of the latter β will be
used here as a (negative) energy unit by accepting

the equality β = 1. The superscript + in Eq. (5) des-
ignates the transposed matrix B. (Note B �= B+ in the
general case.) The Hamiltonian matrix of Eq. (5) will
serve as the zero-order matrix in our study and it
is accordingly supplied with the subscript (0). The
first-order matrix H(1) also will be divided into four
submatrices (blocks) in accordance with the above-
described partition of the basis set {χ}. We then
obtain

H(1) =
∣∣∣∣A(1) W(1)

W+
(1) D(1)

∣∣∣∣ . (6)

No specifying of submatrices A(1), D(1) and W(1) is
undertaken in this section.

An important property of the matrix H(0) of Eq. (5)
consists of the possibility of transforming this matrix
into a block-diagonal form, using an unitary trans-
formation matrix [13]. Inasmuch as a block-diagonal
Hamiltonian matrix refers to the basis of noncanoni-
cal molecular orbitals (NCMOs) of the given system
in accordance with the Brillouin theorem [26–32], the
above-mentioned transformation describes passing
to the basis of NCMOs of parent AHs. The same
transformation may be evidently applied to the first
order matrix H(1) of Eq. (6). As a result, the total
Hamiltonian matrix of PAHs represented in the basis
of NCMOs of parent AHs contains a block-diagonal
zero-order term. Hamiltonian matrices of just this
constitution underlie the so-called noncommutative
Rayleigh–Schrödinger perturbation theory [18, 19,
31] used to obtain members of the power series both
for the one-electron density matrix (DM) [31] and
for total energy [20, 21]. Thus, these results may be
applied straightforwardly to PAHs in the basis of
NCMOs of parent AHs. To turn to the usual repre-
sentation of the DM in the basis of 2pz AOs {χ} (i.e.,
to the CBO matrix of PAHs), members P̃(k) of the
above-mentioned power series should be retrans-
formed into the set {χ} again. Just this procedure
formed the basis of derivation of the first-order cor-
rection P(1) to the CBO matrix of PAHs in the previous
study [15], and it will be extended to the correction
P(2) in Section 3. In this section, we will focus on
application to PAHs of the results concerning the
total energy E [20, 21].

The principal result under our interest is the
interrelation between the two components E(k,0)

(k) and
E(k−1,1)

(k) of Eq. (3) established for k ≥ 2 in Ref. [20]. For
the second-order correction E(2), these relations take
the form

E(1,1)

(2) = −2E(2,0)

(2) , E(2) = 1
2

E(1,1)

(2) , E(2) = −E(2,0)

(2) (7)
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and originally correspond to the basis of NCMOs
of the parent hydrocarbon in our case. Applicabil-
ity of the same relations to the initial Hamiltonian
matrix of PAHs represented in the basis of 2pz AOs
{χ} follow immediately from the invariance of Traces
against an unitary transformation of basis set. The
first relation of Eq. (7) indicates the two components
of the second-order energy E(2) to be interdependent
and to acquire opposite signs, whatever the actual
structure of the system. Accordingly, the remain-
ing relations exhibit the expressibility of the total
correction E(2) in terms of either E(1,1)

(2) or E(2,0)

(2) .
Let us now turn to a separate discussion of cor-

rections E(0), E(1), and E(2) for PAHs. From the first
expression of Eq. (4), it follows that the zero-order
member E(0) depends only on the term P(0) referring
to the Hamiltonian matrix of AHs (H(0)) of Eq. (5).
The correction P(0) was originally derived in Ref.
[25] and rederived recently [13] on the basis of solu-
tion of the respective commutation equation. Two
alternative forms of this matrix have been obtained:

P(0) =
∣∣∣∣ I BQ
QB+ I

∣∣∣∣ , P(0) =
∣∣∣∣ I SB
B+S I

∣∣∣∣ , (8)

where submatrices of the right-hand sides corre-
spond to subsets {χ∗} and {χ ◦} and to their interac-
tion. Products SB and BQ coincide with one another,
and both are unitary matrices in addition, i.e.,

SBB+S = QB+BQ = BQQB+ = B+SSB = I. (9)

I here and below stands for the unit matrix, while
matrices S and Q take the form

S = (BB+)−1/2, Q = (B+B)−1/2. (10)

Substituting the expressions for H(0) and P(0) of
Eqs. (5) and (8) into the definition of E(0) shown in
Eq. (4) yields the following expression [13]:

E(0) = 2Trace(BB+)1/2. (11)

Let us turn now to the first-order correction E(1)

defined by the second expression of Eq. (4). The first-
order correction P(1) contained in Eq. (4) has been
derived in Ref. [15] and represented in terms of four
submatrices as follows

P(1) =
∣∣∣∣X(1) N(1)

N+
(1) Z(1)

∣∣∣∣ . (12)

Expressions for these submatrices will be discussed
later in Section 3. For our present purpose, let us only

note that the submatrices N(1) proved proportional to
specific skew-symmetric matrices �(1) and �(1), viz.

N(1) = −BQ�(1) = −�(1)BQ, (13)

where �+
(1) = −�(1) and �+

(1) = −�(1). From Eq. (13),
it follows that the P(1)-containing component E(1,0)

(1)

does not contribute to the first-order energy E(1), i.e.,

E(1,0)

(1) = Trace(N(1)B+ + N+
(1)B) = 0 (14)

and

E(1) = E(0,1)

(1) = Trace[P(0)H(1)]
= Trace[A(1) + D(1) + BQW+

(1) + QB+W(1)]. (15)

Specific results following from this expression coin-
cide with the classical ones. To demonstrate this, let
us introduce the most popular types of perturbation.

Let us start with the local alteration in the
Coulomb parameter of the AO χ1 denoted by α.
Instead of Eq. (6), we then obtain

A(1)ij = αδi1δj1, D(1) = 0, W(1) = W+
(1) = 0.

(16)

Substituting Eq. (16) into Eq. (15) yields E(1)loc = α,
in accordance with the known results [1], where the
subscript loc serves to denote the above-described
perturbation.

The second example consists of formation of a
new bond between two identical parent AHs R and
R′, so that the resulting composite hydrocarbon R R′

also belongs to AHs. Accordingly, the subsets {χ∗}
and {χ ◦} of the total basis set {χ} will be subdivided
into four subsets {χ∗

R}, {χ∗
R′ }, {χ ◦

R}, and {χ ◦
R′ }. The new

bond is supposed to be formed between the first AOs
of subsets {χ∗

R} and {χ ◦
R′ }, further denoted by χ1 and

χ1′ for simplicity. Under the latter condition, the sim-
ilarity of numberings of AOs inside the parent AHs
R and R′ may be easily preserved by interchanging
the subsets of the second subsystem (R′) relatively
to those of the first one (R) as illustrated in Section 5
(see also Scheme 2). For total matrices Bcomp, Qcomp,
and for blocks of the relevant perturbation matrix
H(1)comp, we then obtain

Bcomp =
∣∣∣∣BR 0

0 B+
R

∣∣∣∣ , Qcomp =
∣∣∣∣QR 0

0 SR

∣∣∣∣ ,

A(1) = D(1) = 0, W(1)comp =
∣∣∣∣0 K(1)

0 0

∣∣∣∣ , (17)
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SCHEME 2. Numbering of 2pz AOs of a carbonyl
group (a), butadiene (b), acroleine (c), octatriene (d),
pyridine (e), biphenyl (f), quinoline (g), and
binaphthyl (h).

where BR and QR represent a single parent AH
and the subscript comp here and below refers to
formation of a composite AH. (Note that the trans-
posed matrix B+

R and the matrix SR arise instead of
BR and QR owing to interchange of subsets for the
second parent AH R′.) Elements of the interparent
block K(1) take zero values except for a single element
K(1)11, i.e.,

K(1)ij = γ δi1δj1, (18)

where γ stands for the resonance parameter of the
newly formed bond. Substituting these particular
expressions for matrices B, Q, and W(1) into Eq. (15)
yields a zero value for the first-order correction
E(1)comp in accordance with the known result for
intermolecular perturbation [1].

Let us turn now to the second-order energy E(2)

defined by the last expression of Eq. (4). Substi-
tuting Eqs. (6) and (12) into the definition of the
P(1)-containing component E(1,1)

(2) yields the following
formula:

E(1,1)

(2) = Trace[X(1)A(1) + Z(1)D(1)

+ N(1)W+
(1) + N+

(1)W(1)] (19)

generally containing all submatrices of the first-
order correction P(1). For a local one-center pertur-
bation defined by Eq. (16), we then obtain

E(1,1)

(2)loc = Xloc
(1)11α = �11α

2, (20)

where Xloc
(1)11 coincides with the relevant element of

the first-order correction P(1)loc [see Eq. (12)]. The last
relation of the right-hand side of Eq. (20) follows after
invoking the definition of the self-polarizability of
the atom C1, viz.

�11 = ∂Xloc
(1)11

∂A(1)11
= ∂Xloc

(1)11

∂α
. (21)

It is seen that the P(1)-containing component of the
second order energy is proportional to the popula-
tion acquired by the AO χ1 after perturbation. In
this connection, this increment may be interpreted
as the contribution to the total second-order energy
E(2)loc due to lowering of the one-electron energy
of electrons acquired by the AO χ1. Comparison of
Eq. (20) with the classical expression to the total
second-order energy E(2)loc [6, 14], viz.

E(2)loc = 1
2
�11α

2 (22)

indicates the increment E(1,1)

(2)loc to yield the stabiliz-
ing contribution to the total correction E(2)loc, which
is twice as large as the final one in accordance with
Eq. (7). (Note that �11 > 0 and E(1,1)

(2)loc > 0 in our
negative energy units.) Inasmuch as the first-order
correction P(1) to the CBO matrix of PAHs contains
the primary effects of perturbation on charge and
bond order distributions, the component E(1,1)

(2)loc may
be referred to accordingly as describing the pri-
mary stabilizing increment of perturbation upon the
second order energy.

An analogous result follows in the case of for-
mation of a new bond between AHs R and R′

represented by Eqs. (17) and (18). From Eq. (19), we
obtain

E(1,1)

(2)comp = 2N(1)11′ · γ = 2�11′ ,11′ · γ 2, (23)

where N(1)11′ is the element of the matrix N(1) refer-
ring to the new bond between AOs χ1 and χ1′
and �11′ ,11′ > 0 is the self-polarizability of the
bond C1 C1′ corresponding to the composite parent
hydrocarbon [6] and defined as a derivative of N(1)11′
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with respect to γ . It is evident that E(1,1)

(2)comp represents
the stabilizing increment of the newly formed bond
to the total second-order energy E(2)comp. The latter is
known to take the form [6, 14]

E(2)comp = �11′ ,11′ · γ 2. (24)

The ratio between E(2)comp and E(1,1)

(2)comp also meets
the relations of Eq. (7), i.e., the primary stabilizing
increment of perturbation exceeds twice the final
stabilization energy.

Let us now turn to the remaining component of
the second-order energy, i.e., to E(2,0)

(2) . Opposite signs
of the two components of the correction E(2) seen
from the first relation of Eq. (7) ensure the destabi-
lizing nature of the P(2)-containing component E(2,0)

(2) ,
provided the system becomes stabilized due to per-
turbation. As a result, the final second-order energy
[E(2)] actually follows from the difference between
the stabilizing primary increment of perturbation
[E(1,1)

(2) ] and the destabilizing secondary contribution
[E(2,0)

(2) ]. In this context, the role of the P(2)-containing
component may be concluded to consist in reduc-
ing twice the above-discussed primary increments
of perturbation originating from the P(1)-containing
component. Thus, the second-order corrections P(2)

to CBO matrices of AHs play an important part in the
formation of the final stabilization energies of these
systems.

From the definition of the destabilizing compo-
nent E(2,0)

(2) of Eq. (4), it follows that the latter actually
contains only those elements of the second-order
matrix P(2) that correspond to the nonzero elements
of the Hamiltonian matrix of the parent AHs [H(0)],
i.e., only the increments originating from the second-
order alterations in the neighboring bond orders
due to the given perturbation. As was mentioned
already, the first-order corrections P(1) do not con-
tribute to alterations in the orders of actual chemical
bonds (see also Section 3). Hence, stabilization of
the system vs. the parent hydrocarbon necessarily
is accompanied by prevalent weakening of chemical
bonds due to perturbation. Finally, the last rela-
tion of Eq. (7) indicates that the total second-order
energy E(2) is alternatively expressible in terms of
the above-discussed alterations in the neighboring
bond orders.

To discuss the P(2)-containing component of the
second-order energy in greater detail, we are about
to derive and analyze the second-order correc-
tion P(2) to the CBO matrix of PAHs in the next
section.

3. Analysis of Second-Order
Corrections to Charge-Bond Order
Matrices of Perturbed AHs in
Comparison With the First-Order Ones

As was already mentioned, the first-order correc-
tion P(1) to the CBO matrix of AHs [P(0)] has been
obtained in Ref. [15] by retransforming the rele-
vant correction P̃(1) referring to the basis of NCMOs
of parent AHs [13] into the basis of AOs {χ}. The
second-order correction P(2) of the same power series
may be derived analogously after retransforming the
correction P̃(2) of Ref. [31]. Inasmuch as the latter is of
a more involved constitution as compared to P̃(1), the
same refers also to the transformed correction P(2).
Thus, the general expression for P(2) corresponding
to the perturbation matrix of an arbitrary structure
shown in Eq. (6) takes the form

P(2) =
∣∣∣∣ X(2) + K(2) M(2) + N(2)

M+
(2) + N+

(2) Z(2) + L(2)

∣∣∣∣ . (25)

Submatrices X(2), Z(2), and N(2) are the second-order
analogues of those contained within the correction
P(1) of Eq. (12). For both k = 1 and k = 2, the diagonal
blocks X(k) and Z(k) take the common form

X(k) = −BQG+
(k) − G(k)QB+,

Z(k) = G+
(k)BQ + QB+G(k). (26)

Accordingly, the off-diagonal submatrices N(k) are
related to skew-Hermitian matrices �(k) and �(k), i.e.,

N(k) = −BQ�(k) = −�(k)BQ, (27)

where

�(k) = G+
(k)BQ − QB+G(k),

�(k) = BQG+
(k) − G(k)QB+ (28)

for both k = 1 and k = 2.
The principal matrices G(k) contained within these

expressions meet the following equation:

G(k)Q + SG(k) + SV(k)Q = 0, (29)

where

V(1) = 1
2

{
A(1)BQ − BQD(1)

+ BQ[W+
(1)BQ − QB+W(1)]

}
, (30)

VOL. 106, NO. 9 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 2151



GINEITYTE

V(2) = 1
2

{[A(1) + BQD(1)QB+]G(1)

+ [BQW+
(1) + W(1)QB+]G(1)

− G(1)[QB+A(1)BQ + D(1)]
+ G(1)[W+

(1)BQ + QB+W(1)]
}
. (31)

As opposed to matrices X(k), Z(k), and N(k), the
remaining submatrices of the second-order correc-
tion P(2), i.e., M(2), K(2), and L(2), have no analogues
in the first-order correction P(1). [These new blocks
of the correction P(2) originate from nonzero diag-
onal blocks of the matrix P̃(2) of Ref. [31] that are
absent in the first-order matrix P̃(1).] The expressions
for the additional submatrices of the matrix P(2) are
as follows:

K(2) = −G(1)G+
(1) + BQG+

(1)G(1)QB+,

L(2) = G+
(1)G(1) − QB+G(1)G+

(1)BQ (32)

and

M(2) = −BQ�(2) = −�(2)BQ, (33)

where �(2) and �(2) are Hermitian matrices as
opposed to �(2) and �(2) of Eq. (27). The expressions
for matrices �(2) and �(2) take the form

�(2) = G+
(1)G(1) + QB+G(1)G+

(1)BQ,

�(2) = G(1)G+
(1) + BQG+

(1)G(1)QB+. (34)

Finally, the following interrelations between sepa-
rate submatrices may be mentioned:

X(k) = −BQZ(k)QB+, �(k) = BQ�(k)QB+ (35)

and

K(2) = BQL(2)QB+. (36)

Analysis of the above-outlined general expres-
sions for the correction P(2) may be performed by
using the procedure of Ref. [15]. To this end, let us
distinguish the so-called block-diagonal perturba-
tion matrix (H(α)

(1) ) and the anti-block-diagonal one
(H(β)

(1) ) corresponding to assumptions that W(1) =
W+

(1) = 0 and A(1) = D(1) = 0, respectively, in the
general form of the first-order Hamiltonian matrix
H(1) of Eq. (6). It should be noted immediately that
the perturbations represented by Eqs. (16) and (17),
(18) correspond to particular cases of matrices H(α)

(1)

and H(β)

(1) .

Before turning to a discussion of corrections P(α)

(2)

and P(β)

(2) correspondingly, referring to the above-
introduced perturbations H(α)

(1) and H(β)

(1) , let us briefly
overview the results of analysis of the relevant cor-
rections P(α)

(1) and P(β)

(1) [15]. Let us begin with the
notation that the latter were found to be of oppo-
site constitutions for perturbation matrices H(α)

(1) and
H(β)

(1) , viz.

P(α)

(1) =
∣∣∣∣X(α)

(1) 0
0 Z(α)

(1)

∣∣∣∣ , P(β)

(1) =
∣∣∣∣ 0 N(β)

(1)

N(β)+
(1) 0

∣∣∣∣ , (37)

where nonzero submatrices (these are also accord-
ingly denoted by the superscripts (α) and (β)) have
been expressed in terms of relevant principal matri-
ces G(α)

(1) and G(β)

(1) as follows:

X(α)

(1) = −2G(α)

(1) QB+, Z(α)

(1) = 2G(α)+
(1) BQ (38)

and

N(β)

(1) = −BQ�
(β)

(1) = −2BQG(β)+
(1) BQ (39)

instead of Eqs. (26)–(28). Just this “opposite” consti-
tution of corrections P(α)

(1) and P(β)

(1) proved responsible
for distinct primary effects of perturbations H(α)

(1) and
H(β)

(1) on populations of AOs and bond orders.
It is also essential within this context that the

corrections of Eq. (37) yield no increments to the
neighboring bond orders for both the local alteration
in the Coulomb parameter and the formation of the
interparent bond as described by Eqs. (16)–(18). In
the former case, the above-drawn conclusion fol-
lows directly from the block-diagonal form of the
correction P(α)

(1) of Eq. (37) (note that the neighbor-
ing bond orders are positioned within off-diagonal
blocks of this matrix). For the case of an interparent
bonding represented by Eqs. (17) and (18), the rele-
vant matrices �

(β)

(1)comp and N(β)

(1)comp take the following
anti-block-diagonal form [15]

�
(β)

(1)comp =
∣∣∣∣ 0 �

(β)

(1)inter

−�
(β)+
(1)inter 0

∣∣∣∣ ,

N(β)

(1)comp =
∣∣∣∣∣ 0 N(β)

(1)inter

N
(β)

(1)inter 0

∣∣∣∣∣ , (40)

where the subscripts inter are used to denote the
submatrices of the interparent type and

N
(β)

(1)inter = B+
R SR�

(β)+
(1)inter. (41)
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The submatrix �
(β)

(1)inter, in turn, meets the equation

QR�
(β)

(1)inter + �
(β)

(1)interSR + Q2
RB+

R K(1)SR = 0. (42)

It deserves separate mention that elements of sub-
matrices N(β)

(1)inter and N
(β)

(1)inter describe bond orders
between parent AHs. The intraparent bond orders
(if any) would emerge in the diagonal positions of
total matrices N(β)

(1)comp. Zero submatrices standing
there ensure zero contributions of perturbation of
Eqs. (17) and (18) to neighboring bond orders inside
the parent AHs. Thus, influences of perturbations
on bond orders are determined by the second-order
corrections P(α)

(2) and P(β)

(2) .
As opposed to first-order corrections P(α)

(1) and P(β)

(1)

of Eq. (37), analysis of Eqs. (27)–(34) for the cases of
perturbations H(α)

(1) and H(β)

(1) yields a common anti-
block-diagonal form for both corrections P(α)

(2) and
P(β)

(2) , viz.

P(α)

(2) =
∣∣∣∣ 0 M(α)

(2) + N(α)

(2)

M(α)+
(2) + N(α)+

(2) 0

∣∣∣∣ ,

P(α)

(2) =
∣∣∣∣ 0 M(β)

(2) + N(β)

(2)

M(β)+
(2) + N(β)+

(2) 0

∣∣∣∣ . (43)

The submatrices M(α)

(2) and M(β)

(2) are expressible alge-
braically in terms of blocks of the first-order correc-
tions of Eq. (37) as follows:

M(α)

(2) = −2BQG(α)+
(1) G(α)

(1) = −1
2
(X(α)

(1) )
2BQ

= −1
2

BQ(Z(α)

(1) )
2 (44)

and

M(β)

(2) = −2BQG(β)+
(1) G(β)

(1) = −1
2

BQ�
(β)

(1)�
(β)+
(1)

= −1
2

N(β)

(1) N(β)+
(1) BQ. (45)

In these expressions, passing from matrices G(α)

(1) and
G(β)

(1) to X(α)

(1) and �
(β)

(1) , respectively, is correspondingly
based on Eqs. (38) and (39) and on the unitarity con-
dition for the matrix BQ seen in Eq. (9). Moreover, the
relations of Eqs. (13) and (35) also are invoked when
obtaining the last expressions of Eqs. (44) and (45).

Furthermore, the skew-symmetric matrices �
(α)

(2)

and �
(β)

(2) determining the remaining blocks N(α)

(2) and
N(β)

(2) of corrections P(α)

(2) and P(β)

(2) in accordance with
Eq. (27) meet the standard matrix equation of the

common form

Q�(2) + �(2)Q + F(2) = 0. (46)

For perturbations H(α)

(1) and H(β)

(1) , the respective �(2)-
free terms F(α)

(2) and F(β)

(2) are

F(α)

(2) = 1
2

{
Q2B+[

A(1)X
(α)

(1) − X(α)

(1) A(1)

]
BQ2

− Q
[
D(1)Z

(α)

(1) − Z(α)

(1) D(1)

]
Q

}
(47)

F(β)

(2) = 1
2

Q
[
�

(β)

(1) QB+W(1) − W+
(1)BQ�

(β)+
(1)

]
Q

+ 1
2

Q2B+[
W(1)�

(β)

(1) QB+ − BQ�
(β)+
(1) W+

(1)

]
BQ2. (48)

The solution of matrix equations like that of Eq. (46)
may be represented in the form of an integral
[33], i.e.,

�(2) = −
∫ ∞

0
exp[−Qt] · F(2) · exp[−Qt] dt. (49)

Thus, submatrices �
(α)

(2) and �
(β)

(2) and thereby N(α)

(2) and
N(β)

(2) are also expressible in terms of entire blocks of
respective first-order corrections P(α)

(1) and P(β)

(1) . [Note
that the matrix F(β)

(2) of Eq. (48) may be represented
alternatively in terms of N(β)

(1) using Eq. (39).] Hence,
the second-order effects resulting from matrices P(α)

(2)

and P(β)

(2) may be considered consequences of first-
order ones and thereby referred to as secondary
effects of the given perturbation upon charge- and
bond-order distribution.

For the case of the formation of an interparent
bond, a more detailed information about structures
of the relevant matrices M(β)

(2)comp and N(β)

(2)comp may
be obtained after substituting Eqs. (17) and (40)
into Eqs. (45) and (48). The resulting matrix M(β)

(2)comp
proves to be of a block-diagonal constitution; i.e., it
contains the direct sum of two matrices M(β)

(2)R and
M(β)

(2)R′ referring to separate subsystems R and R′.
These submatrices, in turn, may be expressed as
follows:

M(β)

(2)R = −1
2

BRQR�
(β)

(1)inter�
(β)+
(1)inter

= −1
2

N(β)

(1)interN
(β)+
(1)interBRQR,

M(β)

(2)R′ = −1
2

B+
R SR�

(β)+
(1)inter�

(β)

(1)inter

= −1
2

N
(β)

(1)interN
(β)+
(1)interB

+
R SR, (50)
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where �
(β)

(1)inter is defined by Eq. (42). The last rela-
tion of Eq. (50) is obtained using Eq. (41). It is
seen that the intraparent blocks M(β)

(2)R and M(β)

(2)R′ are
built up of interparent bond orders contained within
submatrices N(β)

(1)inter and N
(β)

(1)inter. The interrelation
between matrices M(β)

(2)R and M(β)

(2)R′ will be considered
in Section 4.

The remaining submatrix �
(β)

(2)comp and thereby
N(β)

(2)comp is also of a block-diagonal constitution. The
blocks �

(β)

(2)R and �
(β)

(2)R′ referring to parent AHs R and
R′, respectively, are determined by equations

QR�
(β)

(2)R + �
(β)

(2)RQR + F(β)

(2)R = 0, (51)

SR�
(β)

(2)R′ + �
(β)

(2)R′SR + F(β)

(2)R′ = 0 (52)

following from Eq. (46) after employment Eqs. (17),
(40), and (48). Matrices F(β)

(2)R and F(β)

(2)R′ take the form

F(β)

(2)R = 1
2

QR
[
�

(β)

(1)interK
+
(1)BRQR

− QRB+
R K(1)�

(β)+
(1)inter

]
QR, (53)

F(β)

(2)R′ = 1
2

SR
[
K+

(1)BRQR�
(β)

(1)inter

− �
(β)+
(1)interQRB+

R K(1)

]
SR. (54)

The relevant blocks N(β)

(2)R and N(β)

(2)R′ of the matrix
N(β)

(2)comp follow from Eq. (27) after substituting the
block-diagonal matrix �

(β)

(2)comp along with respec-
tive matrices Bcomp and Qcomp of Eq. (17). We obtain

N(β)

(2)R = −BRQR�
(β)

(2)R

N(β)

(2)R′ = −B+
R SR�

(β)

(2)R′ = −QRB+
R�

(β)

(2)R′ . (55)

(The last relation follows after invoking the equality
SRBR = BRQR for the subsystem R.) The role of the
interparent bond orders in the formation of matrices
N(β)

(2)R and N(β)

(2)R′ is also evident.
Before finishing this section, let us draw

some additional conclusions concerning the P(2)-
containing component of the second-order energy
[E(2,0)

(2) ] and the correction itself [E(2)]. Using Eqs. (4),
(5), (7), and (43), we obtain

E(2) = −E(2,0)

(2) = −Trace
[
M(2)B+ + M+

(2)B
]

(56)

for both perturbations H(α)

(1) and H(β)

(1) . The contri-
bution of the matrix N(2) vanishes owing to the

skew-symmetric nature of matrices �
(α)

(2) and �
(β)

(2) , as
it was the case with the increment of the matrix N(1) to
the first-order energy E(1) [see Eq. (14)]. Hence, both
E(2,0)

(2) and E(2) are expressible in terms of second-order
effects on the neighboring bond orders described
by matrices M(α)

(2) and M(β)

(2) . Thus, destabilization of
the system due to perturbation originates just from
these matrices. Again, alterations in the neighbor-
ing bond orders determined by matrices N(α)

(2) and
N(β)

(2) (if any) are predicted to be energy-free effects.
Finally, additivity of the second-order energy E(2)

with respect to contributions of individual chemi-
cal bonds follows from Eq. (56). Additivity of the
same energy relatively to parent fragments of the
composite hydrocarbon also is evident.

4. Comparison of Second-Order
Effects for PAHs Originating
From the Same Parent AH

We will focus in this section on comparison of
second-order effects for pairs of perturbed com-
pounds originating from a single parent AH R,
as described by Eqs. (16)–(18) and exemplified by
Scheme 2 in Section 5. The 2pz AOs of our sys-
tems {χ} always may be enumerated in such a way
that the matrix BR describing the fragment R in
the composite AH R R′ coincides with that of the
hydrocarbon R undergoing the one-center perturba-
tion; i.e., BR = B. As a consequence, the equalities
QR = Q and SR = S also may be accepted for AHs
under comparison. Coincidence between matrices
A(1) and K(1) of Eqs. (16) and (18) also is evident
provided that α = γ . Alterations in the neighbor-
ing bond orders of AHs under study are described
by elements of matrices M(α)

(2)loc and M(β)

(2)R[M(β)

(2)R′], as
well as of N(α)

(2)loc and N(β)

(2)R[N(β)

(2)R′]. Thus, the aim of
the present section consists of establishing relations
between these pairs of matrices.

Inasmuch as submatrices of the second-order are
expressed in terms of those of the first-order as
discussed in Section 3, we begin with exploration
of an interrelation between the latter. To this end,
let us take the matrix equation for G(α)

(1) following
from Eqs. (29) and (30) under an assumption that
D(1) = W(1) = 0. After turning to the complex–
conjugate counterpart of the relation, we obtain the
matrix equation for 2G(α)+

(1) of the following form

Q
[
2G(α)+

(1)

] + [
2G(α)+

(1)

]
S + Q2B+A(1)S = 0. (57)

2154 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 106, NO. 9



SECOND ORDER EFFECTS OF PERTURBED ALTERNANT HYDROCARBONS

Comparison of the above relation with Eq. (42)
shows that submatrices 2G(α)+

(1) and �
(β)

(1)inter actually
follow from the same matrix equation if the above
assumptions, i.e., BR = B, QR = Q, SR = S, and
A(1) = K(1), are taken into consideration. This result
allows us to conclude that

�
(β)

(1)inter = 2G(α)+
(1) = Z(α)

(1)locQRB+
R , (58)

where the last equality follows from the second
expression of Eq. (38) along with unitarity of the
matrix BRQR shown in Eq. (9). After multiplying the
relation of Eq. (58) by BRQR from the left-hand side
and invoking Eqs. (13) and (35), we obtain

X(α)

(1)loc = N(β)

(1)inter = −BRQR�
(β)

(1)inter. (59)

The first of the above relations indicates coincidence
of submatrices of the first-order corrections P(α)

(1)loc and
P(β)

(1)comp corresponding to nonzero blocks of the rele-
vant perturbation matrices, i.e., to A(1) and K(1). An
analogous relation may easily be obtained as well
for the remaining nonzero submatrices of the same
matrices, i.e., for Z(α)

(1)loc and N
(β)

(1)inter [see Eqs. (37), (40),
and (41)]. To do this, no more is required as to express
�

(β)+
(1)inter as follows:

�
(β)+
(1)inter = BRQRZ(α)

(1)loc (60)

on the basis of Eq. (58), and to substitute it into
the definition of N

(β)

(1)inter of Eq. (41). Thereupon, the
relations of Eq. (9) along with coincidence between
products BRQR and SRBR yields the result

N
(β)

(1)inter = Z(α)

(1)loc. (61)

Therefore, the first-order corrections P(α)

(1)loc and
P(β)

(1)comp referring to the systems under compari-
son actually consist of the same two submatrices,
provided that α = γ . More explicitly, the subma-
trices X(α)

(1)loc and Z(α)

(1)loc describing charge and bond
order redistributions inside subsets {χ∗

R} and {χ ◦
R}

under influence of the one-center perturbation of the
Coulomb parameter of the AO χ∗

1 of the AH R coin-
cide with submatrices N(β)

(1)inter and N
(β)

(1)inter describing
the interparent bond orders of the composite sys-
tem R R′ due to formation of the new bond between
AOs χ1 and χ1′ belonging to subsets {χ∗

R} and {χ ◦
R′ }.

The above-obtained coincidence between pairs of
submatrices shown in Eqs. (59) and (61) evidently
implies coincidence of their individual elements.

This fact along with the definition of polarizabilities
of AOs like that of Eq. (21) and the equality α = γ

allows us to establish interdependences between
specific pairs of polarizabilities for systems under
comparison. In particular, the choice of elements
X(α)

(1)loc,11 and N(β)

(1)inter,1,1′ referring to the sites of per-
turbation of our systems and making a notation that
any AO χr may acquire the number 1, we obtain the
coincidence of self-polarizabilities, i.e.,

�rr = �rr′ ,rr′ (62)

for the systems under comparison. An analogous
result easily follows also from the relevant classical
definitions of self-polarizabilities in terms of coef-
ficients of canonical MOs and their energies [6, 14]
under an assumption of coinciding constitutions of
fragments R and R′ of the composite system R R′.
This result is an independent verification of relations
obtained in the present study.

Let us turn now to the second-order matrices
M(α)

(2)loc and M(β)

(2)R[M(β)

(2)R′], as well as to N(α)

(2)loc and
N(β)

(2)R[N(β)

(2)R′]. Substituting Eq. (59) into the defini-
tion of matrices M(α)

(2)loc and M(β)

(2)R shown in Eqs. (44)
and (50) indicates that M(α)

(2)loc coincides with M(β)

(2)R.
To compare the matrix M(β)

(2)R to M(β)

(2)R′ , the relations
of Eqs. (9) and (35) should be additionally invoked.
The result takes the form

M(α)

(2)loc = M(β)

(2)R = M(β)+
(2)R′ , (63)

where the last relation is in accordance with our enu-
meration of AOs inside the subsystem R′ [see also the
matrix Bcomp of Eq. (17)].

To compare the matrices N(α)

(2)loc and N(β)

(2)R, the
expressions for F(α)

(2) of Eq. (47) corresponding to
D(1) = 0 and for F(β)

(2)R of Eq. (53) should be analyzed.
Employment of the second relation of Eq. (59) allows
Eq. (47) to be reformulated in terms of �

(β)

(1)inter, and
thereby to be compared with Eq. (53). The result con-
sists in coincidence between matrices F(α)

(2)loc and F(β)

(2)R

and thereby between N(α)

(2)loc and N(β)

(2)R. As opposed to
matrices shown in Eq. (63), comparison of matrices
N(β)

(2)R and N(β)

(2)R′ is a rather cumbersome procedure.
The point is that matrix equations for �

(β)

(2)R and �
(β)

(2)R′
are formulated in terms of different matrices QR and
SR as seen from Eqs. (51) and (52). Thus, the first
step of this procedure consists of multiplying Eq. (52)
by B+

R and BR from the left- and right-hand sides,
respectively, and in eliminating the matrix SR by
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employment the equality SRBR = BRQR. The result
is as follows:

QRB+
R�

(β)

(2)R′BR + B+
R�

(β)

(2)R′BRQR

+ 1
2

QRB+
R

[
K+

(1)BRQR�
(β)

(1)inter

− �
(β)+
(1)interQRB+

R K(1)

]
BRQR = 0. (64)

Thereupon, we suppose that N(2)R = N+
(2)R′ and

obtain the relation

�
(β)

(2)R = −QRB+
R�

(β)

(2)R′BRQR (65)

as implication. Finally, we multiply Eq. (64) by QR

from both sides and demonstrate that the resulting
equation resolves itself into that shown in Eqs. (51)
and (53) just under an assumption of Eq. (65).
Thus, the result of the overall comparison is as
follows:

N(α)

(2)loc = N(β)

(2)R = N(β)+
(2)R′ . (66)

Therefore, coinciding second-order effects are actu-
ally obtained for perturbations under comparison.
In particular, alterations in the orders of chemical
bonds under the influence of these perturbations
take the same values, provided that α = γ . The
interrelation between the respective second-order
energies, viz.

E(2)comp = 2E(2)loc (67)

may be added here. This result easily follows from
Eqs. (22), (24), and (62) and implies coincidence
between stabilization energies referring to a single
fragment R in both PAHs.

Before finishing the section, let us note that the
above-suggested approach in general may be con-
sidered as an extension of the PMO theory in respects
of both methodology and results. Indeed, the use of
an alternative basis of noncanonical MOs of parent
AHs along with a new version of the perturbation
theory developed in Refs. [18, 19] allows the deriva-
tion of second-order corrections to CBO matrices of
PAHs that is hardly possible in the framework of
the original PMO theory based on the usual per-
turbative expansions in the basis of canonical MOs.
Again, coincidence is observed between the results
of both approaches concerning the first-order correc-
tions to CBO matrices and the relevant increments
to total energies (Section 2), and this fact holds no
surprise.

5. Studies of Individual Molecules
as Examples

Let us turn now to illustration of our conclusions
by consideration of particular pairs of molecules
originating from the same parent AH. Numbering
of respective 2pz AOs that ensures the validity of
Eqs. (16)–(18) is shown in the Scheme 2.

The simplest case of one-dimensional subsets of
AOs may be exemplified by the carbonyl group and
butadiene. For the former, we obtain

{χ∗
R} = {χ1}, {χ ◦

R} = {χ2}, (68)

whereas the four subsets of the latter take the form

{χ∗
R} = {χ1}, {χ∗

R′ } = {χ2},
{χ ◦

R} = {χ3}, {χ ◦
R′ } = {χ4}, (69)

and χ1′ coincides with χ4. Instead of matrices
B, Q, BQ, X(α)

(1)loc and Z(α)

(1)loc, one-dimensional quanti-
ties follow, viz.

B = Q = BQ = 1, X(α)

(1)loc =
1
2
α, Z(α)

(1)loc =−1
2
α.

(70)

In accordance with relations of Eqs. (59) and (61),
the last two quantities of Eq. (70) represent first-
order contributions not only to populations of AOs
of the carbonyl group, but also to the interparent
bond orders of butadiene. Thus, the contribution to
the population of the AO of the oxygen atom of the
former (1/2α) coincides with that to the bond order
between AOs of the newly joined atoms C1 and C4 of
the latter (1/2γ ), under assumption that α = γ , and
both are described by the one-dimensional quantity
X(α)

(1)loc. Similarly, the increment to the population of
the AO χ2 of carbonyl coincides with the relevant
interparent bond order between terminalAOs χ2 and
χ3 of butadiene. As far as the remaining bond orders
are concerned, these are determined by the term
M(α)

(2)loc(M
(β)

(2)R) following from Eq. (44) and coinciding
with −1/8α2(−1/8γ 2). [The increment originating
from N(α)

(2)loc(N
(β)

(2)R) takes a zero value owing to the
vanishing �(2)-free term F(α)

(2) in Eq. (47).] Thus, the
bond order of the only bond of carbonyl and those
of the two intraparent bonds of butadiene (C1 C3

and C2 C4) are predicted to be reduced by the same
value provided that α = γ . Coincidence of the above
results concerning both intra- and interparent bond
orders of butadiene to those of Ref. [34] should be
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also mentioned as an independent verification of the
former (this coincidence follows after turning to the
equality α = γ = 1 used in Ref. [34]).

Let us turn now to the acroleine and octa-
triene molecules that serve as examples of two-
dimensional subsets of AOs. Instead of Eqs. (68)
and (69), we then obtain

{χ∗
R} = {χ1, χ2}, {χ ◦

R} = {χ3, χ4}, (71)

and

{χ∗
R} = {χ1, χ2}, {χ∗

R′ } = {χ3, χ4},
{χ ◦

R} = {χ5, χ6}, {χ ◦
R′ } = {χ7, χ8} (72)

and χ1′ coincides with χ7. We may easily write down
the relevant initial matrices, viz.

B =
∣∣∣∣1 0
1 1

∣∣∣∣ , B+ =
∣∣∣∣1 1
0 1

∣∣∣∣ , B+B =
∣∣∣∣2 1
1 1

∣∣∣∣ ,

(73)

and note that the corresponding matrix Q may be
found by diagonalizing the last one (i.e., B+B) in
accordance with Eq. (10) [the same also refers to the
matrix exp[−Qt] used when solving equations like
that of Eq. (46), as shown in Eq. (49)]. Derivation
of matrices X(α)

(1)loc and Z(α)

(1)loc may be carried out as
described in Ref. [15]. The result is as follows:

X(α)

(1)loc = α

∣∣∣∣ 0.629 −0.136
−0.136 0.043

∣∣∣∣ ,

Z(α)

(1)loc = −α

∣∣∣∣ 0.402 −0.316
−0.316 0.268

∣∣∣∣ . (74)

These matrices evidently represent both the charge-
and bond-order redistributions inside subsets {χ∗

R}
and {χ ◦

R} of acroleine and the interparent bond orders
of octatriene, as was the case in the examples dis-
cussed above. Moreover, elements of these matrices
determine various types of polarizabilities [15] for
butadiene. It is therefore, no surprise that the signs
of diagonal elements are in line with the rule of
alternating polarity for AHs [5, 6, 9–12, 15, 16].

The respective matrix M(α)

(2)loc[M(β)

(2)R] may be easily
obtained using Eqs. (44) and (74), while N(α)

(2)loc[N(β)

(2)R]
follows from Eqs. (27), (46), (47), and (49). We obtain

M(α)

(2)loc = α2

∣∣∣∣−0.165 0.134
0.036 −0.030

∣∣∣∣ ,

N(α)

(2)loc = α2

∣∣∣∣−0.013 −0.027
0.027 −0.013

∣∣∣∣ . (75)

It is seen that the most important effect following
from the matrix M(α)

(2)loc(M
(β)

(2)R) consists in lowering
by 0.165α2 of orders of bonds attached to the site
of perturbation. This refers to the bond O1 C3 in
acroleine and to bonds C1 C5 and C3 C7 in octa-
triene. The remaining alterations determined by the
same matrix prove considerably weaker and acquire
both positive and negative signs. For example, the
growing order of the C2 C3 bond and the decreasing
order of the C2 C4 bond of acroleine may be men-
tioned (the relevant changes coincide with 0.036 and
−0.030, respectively).

As opposed to the matrix M(α)

(2)loc(M
(β)

(2)R), the matrix
N(α)

(2)loc(N
(β)

(2)R) of Eq. (75) yields alterations in orders
of all bonds of alternating nature. For example,
changes referring to the O1 C3, C3 C2, and C2 C4

bonds in acroleine correspondingly equal to −0.013,
+0.026, and −0.013. It is also worth noting that
the total absolute value of negative alterations coin-
cides with the only positive alteration in accordance
with the energy-free character of the relevant effect
(Section 3).

The pyridine and biphenyl molecules represent
the case of three-dimensional subsets of AOs. More-
over, these systems seem to offer the most illustrative
example in variuos respects, including representabil-
ity of the principal matrices in terms of whole num-
bers. Let us begin with matrices X(α)

(1)loc and Z(α)

(1)loc
derived in Ref. [15]. These take the form

X(α)

(1) = α

108

∣∣∣∣∣∣
43 −5 −5
−5 1 1
−5 1 1

∣∣∣∣∣∣ ,

Z(α)

(1) = − α

108

∣∣∣∣∣∣
17 −13 17

−13 11 −13
17 −13 17

∣∣∣∣∣∣ . (76)

As was discussed already, the matrices X(α)

(1)loc and
Z(α)

(1)loc represent both charge- and bond-order redis-
tributions inside subsets {χ∗

R} and {χ ◦
R} of pyridine

and the interparent bond orders of biphenyl refer-
ring to pairs of subsets {χ∗

R}, {χ ◦
R′ } and {χ∗

R′ }, {χ ◦
R},

respectively. This fact implies coincidence between
excessive populations of AOs of pyridine and the
respective interparent bond orders in biphenyl. In
particular, the population acquired by the nitrogen
atom of the heterocycle coincides with the bond
order between the newly joined atoms C1 and C10

of biphenyl and both are described by the element
X(α)

(1)11. Accordingly, the populations acquired by the
meta-position carbon atoms (C2 and C3) with respect
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to the nitrogen atom coincide with bond orders
between meta-positioned pairs of carbon atoms in
biphenyl, i.e., between C2 and C11 and between C3

and C12. The latter are represented by the remaining
positive diagonal elements of the matrix X(α)

(1) . The
same interpretation refers to elements of the matrix
Z(α)

(1) : negative diagonal elements represent both pop-
ulations lost by ortho- and para-position carbon atoms
of pyridine and the bond orders between respective
pairs of AOs in biphenyl.

On the basis of the above conclusions, an illustra-
tive interpretation may be suggested for the results
of the present study in general, i.e., both types of
perturbation considered may be assumed to give
rise to the same pattern of population redistribution.
The excessive populations are employed in forma-
tion of interparent bond orders and thereby no actual
charges on atoms are observed in the compositeAHs.
By contrast, the same additional populations are not
employed and an actual alternation of occupation
numbers of AOs arises in the heterocycles. Coinci-
dence of second-order effects for these systems is also
compatible with this assumption.

Let us now consider the structures of second-
order matrices of pyridine and biphenyl. Elements
of the matrix M(α)

(2)loc(M
(β)

(2)R) are as follows:

M(α)

(2)loc,14 = M(α)

(2)loc,16 = − 397
7776

α2 = −0.0511α2,

M(α)

(2)loc,24 = M(α)

(2)loc,36 = 47
7776

α2 = 0.0060α2,

M(α)

(2)loc,25 = M(α)

(2)loc,35 = − 37
7776

α2 = −0.0048α2,

(77)

where the subscripts refer to numbers ofAOs of pyri-
dine. It is seen that elements M(α)

(2)loc,14 and M(α)

(2)loc,16
attached to the site of perturbation (C1) are approxi-
mately 10 times as large as the remaining ones. The
negative signs of these elements is also noteworthy.
Therefore, a significant weakening of bonds C1 C4

and C1 C6 in pyridine results from the matrix M(α)

(2)loc.
This effect is directly related to the predominant con-
centration of population at the nitrogen atom. [The
relevant element X(α)

(1)loc,11 also is more than 10 times as
large as the remaining diagonal elements as Eq. (76)
indicates.] In the case of biphenyl, weakening of
four bonds follows, viz. of C1 C7, C1 C9, C4 C10,
and C10 C6, and this effect is accordingly related
to formation of a new bond between atoms C1 and
C10. As far as the remaining elements of Eq. (77) are
concerned, these indicate a certain strengthening of

bonds C2 C4 and C3 C6 and weakening of bonds
C2 C5 and C3 C5. These alterations resemble those
following from an increment of para-quinoidal struc-
tures of Scheme 1. Hence, the matrix M(α)

(2)loc[M(β)

(2)R]
yields an essentially local effect consisting of pre-
dominant weakening of bonds attached to the site
of perturbation. It is no surprise that this effect is
accompanied by destabilization of the system [see
Eq. (56)].

Using the same numbers of AOs of pyridine, we
obtain elements of the matrix N(α)

(2)loc[N(β)

(2)R] too, viz.

N(α)

(2)loc,14 = N(α)

(2)loc,16 = N(α)

(2)loc,25

= N(α)

(2)loc,35 = − 5
1944

α2 = −0.0026α2,

N(α)

(2)loc,24 = N(α)

(2)loc,36 = 10
1944

α2 = 0.0051α2. (78)

It is seen that alterations in the neighboring bond
orders resulting from the matrix N(α)

(2)loc[N(β)

(2)R] are of
comparable absolute values for all bonds. Further-
more, the increase in the orders of bonds C2 C4 and
C3 C6 of pyridine is twice as large as the decrease in
the remaining bond orders. This conclusion perfectly
illustrates the energy-free nature of the relevant
contribution. Coincidence of the above-enumerated
trends to those following from the para-quinoidal
structure is also evident.

The last example concerns the quinoline and bi-
naphthyl molecules representing the more involved
systems. Discussion of this example would closely
resemble the previous ones. In this connection, let us
confine ourselves to consideration of second-order
matrices M(α)

(2)loc[M(β)

(2)R] and N(α)

(2)loc[N(β)

(2)R]. Elements of
the former are as follows:

M(α)

(2)loc,17 = −0.0723α2, M(α)

(2)loc,18 = −0.0401α2,

M(α)

(2)loc,27 = 0.0115α2, M(α)

(2)loc,26 = −0.0092α2,

M(α)

(2)loc,36 = −0.0045α2, M(α)

(2)loc,38 = 0.0035α2,

M(α)

(2)loc,3,10 = 0.0016α2, M(α)

(2)loc,4,10 = −0.0017α2,

M(α)

(2)loc,49 = 0.0022α2, M(α)

(2)loc,59 = −0.0050α2,

M(α)

(2)loc,58 = 0.0080α2 (79)

where the subscripts refer to numbers of AOs of
quinoline. It is seen that the principal aspect of the
relevant effect consists in lowering of orders of bonds
N1 C7 and N1 C8, i.e., of those attached to the site
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of perturbation. Moreover, the mean absolute value
of the relevant alterations (equal to 0.056) is close
to the respective value for pyridine and biphenyl
seen in Eq. (77). Thus, the essentially local nature of
the effect is supported for more involved systems
too. So far as the remaining alterations are con-
cerned, the para-quinoidal structure reveals itself in
the ring undergoing the perturbation and a particu-
lar Kekule structure corresponding to strengthening
of the bonds C3 C10, C4 C9, and C5 C8 manifests
itself in the another ring of quinoline. An analoguos
conclusion follows also in the case of binaphthyl. The
respective elements of the matrix N(α)

(2)loc(N
(β)

(2)R) are as
follows:

N(α)

(2)loc,17 = −0.0026α2, N(α)

(2)loc,18 = −0.0103α2,

N(α)

(2)loc,27 = 0.0093α2, N(α)

(2)loc,26 = −0.0049α2,

N(α)

(2)loc,36 = −0.0005α2, N(α)

(2)loc,38 = 0.0026α2,

N(α)

(2)loc,3,10 = −0.0018α2, N(α)

(2)loc,4,10 = 0.0019α2,

N(α)

(2)loc,49 = −0.0012α2, N(α)

(2)loc,59 = −0.0015α2,

N(α)

(2)loc,58 = 0.0090α2. (80)

Two para-quinoidal structures may be revealed after
analysis of these elements, the first one resulting
into strengthening of bonds C2 C7 and C3 C8 and
the second one manifesting itself as growing orders
of bonds C5 C8 and C4 C10. A significant lowering
of the order of the C1 C8 bond, in turn, is in line
with strengthening of the two adjacent bonds, viz.
of C3 C8 and C5 C8. It should also be added here
that the total value of positive alterations coincides
with the total absolute value of negative changes
in accordance with the energy-free nature of the
effect.

Conclusions

The second-order corrections to CBO matrices
of PAHs determine the following aspects of elec-
tronic structures of these compounds: (i) Alterations
in bond orders of chemically bound pairs of atoms
vs. their initial values in parent AHs of both desta-
bilizing and energy-free nature; (ii) The two-fold
reduction of the stabilization energy vs. the primary
stabilizing increment of perturbation; (iii) Additiv-
ity of the final stabilization energy of PAHs with
respect to increments of individual chemical bonds;
(iv) Concentration of the stabilizing component of

the total energy alteration on the site of perturbation
accompanied by destabilization of the remaining
part of the molecule.

The principal peculiarities of the second-order
corrections to CBO matrices of PAHs are as
follows: (i) These corrections are expressible in
terms of respective first-order corrections and may
be considered as describing the secondary con-
sequences of perturbation, (ii) The second-order
corrections are energetically coupled with the
first-order ones, viz. the more extended effects
originate from the latter, the more noticeable con-
sequences of the former may be expected with
respect to energy increments; and (iii) The second-
order corrections exhibit a large extent of similarity
for heteroaromatic compounds and for composite
hydrocarbons.

The last of the above-mentioned peculiarities of
second-order corrections determines resemblance
between electronic structures of PAHs originating
from the same parent AHs that embraces (i) sim-
ilar alterations in the orders of chemical bonds,
(ii) mutually proportional stabilization energies, and
(iii) coinciding values of self-polarizabilities for the
atom under perturbation and for the newly emerg-
ing bond.
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