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ABSTRACT: The study is aimed at revealing the possible manifestation of the overlap
topology of AOs at early stages of pericyclic reactions. To this end, formation of an
evenmembered cycle of carbon atoms is considered as a unified model, wherein relatively
strong (C C) bonds alternate with weak ones. A direct perturbative method is applied to
derive algebraic expressions for energy and bond order corrections due to cyclization. To
represent the overlap topology of 2pz AOs over the cycle, a new concept of the roundabout
interaction is introduced. The relevant definition contains a product of resonance
parameters (or overlap integrals) between orbitals of all neighboring pairs of C C bonds
and a certain N-dependent parity factor, where N coincides with the total number of these
bonds. The principal result of the study consists in demonstration of proportionality of
both energy and bond order corrections to the roundabout interaction of the given cycle
and thereby of a direct dependence between these corrections and the overlap topology of
AOs. Moreover, the sign of the roundabout interaction is shown to determine the
allowance of the given way of the process, viz. cycles described by positive (negative)
roundabout interactions refer to allowed (forbidden) ways. Thus, an analog of the famous
Woodward-Hoffmann rule is obtained, wherein the overlap topology of AOs stands
instead of symmetry of molecular orbitals. Along with stabilization of the cycle vs. the
initial open chain, the allowed processes also are necessarily characterized by growing
uniformity of all bond orders over the cycle, while the forbidden ones are accompanied by
both destabilization and an increasing distinction between strong and weak bonds. The
results obtained also yield a new definition of the concerted nature of pericyclic processes.
The general conclusions of the study are illustrated by consideration of specific examples
including the electrocyclic closure of polyene chains. © 2008 Wiley Periodicals, Inc. Int J
Quantum Chem 108: 1141–1154, 2008
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1. Introduction

M olecular topology is known to play an impor-
tant role in the formation of various observed

characteristics of chemical compounds [1, 2]. This
fact determines applicability and fruitfulness of pop-
ular concepts of molecular graphs and of their adja-
cency matrices in theoretical chemistry [3–5]. Given
that these matrices may be additionally related
to respective Hamiltonian matrices, the approach
allows an investigation of the dependence between
topological properties and electronic structures.
Studies of this type are especially popular in the case
of conjugated hydrocarbons [4–7], where the rele-
vant Hückel model Hamiltonian matrices are pro-
portional to adjacency matrices of molecular graphs
describing the C-skeletons [4, 5]. It deserves men-
tioning here, however, that the resulting interdepen-
dences between electronic structures and adjacency
matrices usually are cumbersome and difficult to
analyze. The square-root-like dependence between
the charge-bond order matrix and the respective
adjacency matrix [5, 8] serves as an excellent illus-
tration of the above assertion.

Reorganization of bonding is expected to take
place in molecular systems during chemical reac-
tions. This implies that some molecular topologies
break down and new ones are formed while the
reaction proceeds. At early stages of these forma-
tion processes, a perturbative treatment of the newly
emerging molecular topologies is likely to be fea-
sible. Relations of a direct (linear) nature may be
then expected to be derivable between topologi-
cal characteristics of the reacting system and those
describing the relevant electronic structure, e.g. the
total energy, electron density distribution, etc. Sim-
ple interdependences of the above-anticipated form
(if established) contribute to our understanding of
the reaction mechanism, in general, and of the role
of topological factors in choice of a certain way of the
process, in particular.

The present study addresses the pericyclic organic
reactions [9–11]. The principal feature of these
popular processes consists in the formation of
even-membered cycles of continuously bounded
atoms when approaching the respective transition
state. So far as the initial and the final com-
pounds are concerned, these are representable as
open chain(s) involving mostly one or two gaps.
Thus, a certain cyclization process followed by
recyclization underlies any pericyclic reaction. In
this connection, allowance of a particular way

of the given pericyclic process is likely to be
directly determined by topological properties of
the cycle under formation including the total num-
ber of participating atoms and the signs of over-
lap integrals between the neighboring pairs of
AOs (the so-called overlap topology). Applicabil-
ity of the concept of the Hückel and Möbius
aromaticity [12–14], as well as of the topologi-
cal analysis of the electron localization function
(a measure of the local Pauli repulsion) [15–
19] to the relevant transition states serves as an
indirect support for the above-formulated hypoth-
esis. The present study is aimed at its direct
verification.

To this end, we are about to apply the perturbative
method of obtaining the one-electron density matrix
(DM) of the system (P) directly [20,21] on the basis of
solution of the relevant commutation equation to an
early stage of the cyclization process. The respective
total energy (E), in turn, follows from the well-
known interdependence E = Trace(PH), where H is
the Hamiltonian matrix [22]. Solution of the eigen-
value equation for the latter and thereby passing into
the basis of delocalized molecular orbitals (MOs) is
not required here. We also intend to abandon the
popular belief that the molecular graph and/or its
adjacency matrix is the only algebraic representation
of molecular topology. Moreover, we avoid introduc-
ing any topological characteristic a priori. Instead,
we will analyze the actual expressions for mem-
bers of the power series for both the DM and total
energy referring to early stages of pericyclic reac-
tions to reveal there some specific terms representing
the overlap topology of AOs over the cycle under
formation.

Members of the power series for the DM P were
shown to be expressible [20, 21] in terms of specific
matrices G(k), describing the direct (through-space)
and indirect (through-bond) interactions of basis
orbitals (k here and below stands for the order
parameter). These interactions, in turn, are propor-
tional to certain products of resonance parameters
and/or of overlap integrals. It may be expected on
this basis that elements of the resulting DMs and
thereby the related total energies contain a depen-
dence upon the relevant overlap topology of AOs of
the cycle. Our specific aim consists just in deriva-
tion of a compact form of the above-anticipated
dependence.

We start with an overview of expressions for
one-electron DMs and total energies in Section 2.
Thereupon, we describe a certain unified model of
pericyclic reactions that reflects the formation of a
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cycle and the subsequent recyclization. The principal
features of direct and indirect interorbital interac-
tions representing this model also are discussed in
Section 3. Section 4 deals with overlap-topology-
dependent contributions to elements of the DM and
to total energies of our unified model. The final
Section 5 contains an illustration of the general
results by consideration of specific reactions, as well
as a comparison of the present approach to related
approaches and methods.

2. Overview of Expressions for the
One-Electron DMs and Total Energies

As it was mentioned earlier, elements of the one-
electron DM have been expressed in Refs. 20 and
21 in terms of those of certain principal matrices
G(k) describing the direct and indirect interactions
of basis orbitals. In this connection, let us start with
definitions of the elements G(k)ij. Let us assume that
our basis set {ϕ} consists of I initially occupied
basis orbitals and of J initially vacant ones. These
basis functions will be correspondingly abbreviated
as IOBOs and IVBOs and supplemented with sub-
scripts (+) and (−), viz. ϕ(+)i,, i = 1, 2 . . . I and
ϕ(−)j, j = 1, 2..J. Then the first order element G(1)ij

may be expressed as follows

G(1)ij = −〈ϕ(+)i | Ĥ | ϕ(−)j〉
ε(+)i − ε(−)j

(1)

and describes the direct (through-space) interaction
between orbitals ϕ(+)i and ϕ(−)j. The numerator of
the right-hand side of Eq.(1) contains the Hückel
type Hamiltonian matrix element (resonance param-
eter) between basis orbitals indicated within the bra-
and ket-vectors, and the denominator involves the
relevant difference in one-electron energies.

Similarly, the second order element G(2)ij describes
the indirect interaction between the same orbitals by
means of a single mediator. This element takes the
form

G(2)ij = 1
ε(+)i − ε(−)j

×
{

IOBOs∑
m

VimRmj

ε(+)m − ε(−)j
−

IVBOs∑
n

RinQnj

ε(+)i − ε(−)n

}
, (2)

where the meanings of designations coincide with
those of Eq.(1), and

Vim = 〈ϕ(+)i | Ĥ | ϕ(+)m〉,
Rmj = 〈ϕ(+)m | Ĥ | ϕ(−)j〉, (3)

Qnj = 〈ϕ(−)n | Ĥ | ϕ(−)j〉.

It is seen that both IOBOs and IVBOs play the role of
mediators in the indirect interaction between orbitals
ϕ(+)i and ϕ(−)j. To be an efficient mediator, however,
the orbital under consideration (ϕ(+)m or ϕ(−)n) should
overlap with both ϕ(+)i and ϕ(−)j. Hence, orbitals sit-
uated in between the indirectly interacting orbitals
meet this condition best of all.

The element G(3)ij describes the indirect interac-
tion of the same orbitals ϕ(+)i and ϕ(−)j by means of
two mediators. The relevant expression is as follows
[21]:

G(3)ij = −1
ε(+)i − ε(−)j

×
{ IOBOs∑

n

IOBOs∑
m

VinVnmRmj

(ε(+)n − ε(−)j)(ε(+)m − ε(−)j)

−
IOBOs∑

n

IVBOs∑
r

[
VinRnrQrj

(ε(+)n − ε(−)j)(ε(+)n − ε(−)r)

+ VinRnrQrj

(ε(+)i − ε(−)r)(ε(+)n − ε(−)r)

+ RirR+
rnRnj

(ε(+)n − ε(−)r)(ε(+)n − ε(−)j)

+ RirR+
rnRnj

(ε(+)i − ε(−)r)(ε(+)n − ε(−)r)

]

+
IVBOs∑

r

IVBOs∑
p

RirQrpQpj

(ε(+)i − ε(−)p)(ε(+)i − ε(−)r)

}
. (4)

Pairs of mutually overlapping orbitals situated
in between the orbitals ϕ(+)i and ϕ(−)j are the most
efficient mediators of this indirect interaction.

The above-exhibited expressions for elements
G(k)ij may be considered in a more formalized manner
[23] as follows: Any product of resonance parame-
ters of Eqs. (2) and (4) represents a pathway from the
IOBO ϕ(+)i to the IVBO ϕ(−)j via a bridge consisting of
mediating orbitals. For example, the product VimRmj

of Eq. (2) describes a pathway between orbitals ϕ(+)i

and ϕ(−)j via a single IOBO ϕ(+)m, while VinVnmRmj

of Eq. (4) represents an analogous pathway via two
IOBOs ϕ(+)n and ϕ(+)m. Accordingly, the expression
for a certain element G(k)ij contains increments of all
possible pathways from ϕ(+)i and ϕ(−)j via k−1 medi-
ators. In particular, four types of fractions of Eq. (4)
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correspond to bridges of four possible constitution,
namely (ϕ(+)n, ϕ(+)m), (ϕ(+)n, ϕ(−)r), (ϕ(−)r, ϕ(+)n), and
(ϕ(−)r, ϕ(−)p). On the whole, the higher is the order
parameter k of the element G(k)ij, the larger is the
total number of different fractions and/or bridges. It
should be emphasized here in addition that the path-
way under consideration actually contributes to the
total element G(k)ij only if all resonance parameters
contained within the relevant product take nonzero
values. Consequently, revealing of the principal con-
tributing pathways is required for evaluation of a
certain element G(k)ij. Another remark to be made
here consists in the fact that the series of interor-
bital interactions G(1)ij, G(2)ij . . . G(k)ij . . . converges if
resonance parameters of numerators of fractions
take sufficiently small values vs. the energy gaps
between IOBOs and IVBOs. This implies the respec-
tive condition to be imposed on the basis set {ϕ}
(Section 3).

Let us turn now to the representation of the one-
electron DM in the basis {ϕ}. Let this matrix to be
denoted by P̃ [The symbol ˜ serves here to distin-
guish the above-specified representation of the DM
from that referring to the basis of AOs (Section 4)].
As it was mentioned earlier, the matrix P̃ has been
derived in Refs. 20 and 21 in the form of power series.
Accordingly, the expressions for elements P̃ij contain
sums of corrections P̃(k)

ij of various orders (k).
Given that the subscripts i and j correspond to an

IOBO (ϕ(+)i) and to an IVBO (ϕ(−)j), the respective
corrections P̃(k)

(+)i,(−)j (k = 1, 2, 3 . . .) take the form

P̃(k)

(+)i,(−)j = −2G(k)ij, (5)

where G(k)ij are elements of the principal matrices
G(k) defined by Eqs. (1)–(4) and determining vari-
ous types of direct and indirect interactions between
orbitals ϕ(+)i and ϕ(−)j. The zero order term P̃(0)

(+)i,(−)j
of Eq.(5) takes a zero value. If both subscripts i and
j refer to IOBOs, the following expressions for the
relevant corrections have been obtained

P̃(0)

(+)i,(+)j = 2δij; P̃(1)

(+)i,(+)j = 0;

P̃(2)

(+)i,(+)j = −2
IVBOs∑

r

G(1)irG+
(1)rj;

P̃(3)

(+)i,(+)j = −2
IVBOs∑

r

(
G(1)irG+

(2)rj + G(2)irG+
(1)rj

)
, (6)

where the superscripts of the left-hand sides (0),
(1), etc. indicate the orders of respective corrections.

The superscripts + of the right-hand sides denote
elements of the Hermitian-conjugate matrices G+

(k).
Finally, for both i and j corresponding to IVBOs,

the relevant corrections are

P̃(0)

(−)i,(−)j = P̃(1)

(−)i,(−)j = 0; P̃(2)

(−)i,(−)j = 2
IOBOs∑

m

G+
(1)imG(1)mj;

P̃(3)

(−)i,(−)j = 2
IOBOs∑

m

(
G+

(1)imG(2)mj + G+
(2)imG(1)mj

)
. (7)

Given that j coincides with i in Eqs. (6) and (7),
populations of BOs ϕ(+)i and ϕ(−)i will be obtained. It
deserves mentioning here that the right-hand sides
of Eqs. (6) and (7) also may be interpreted as indi-
rect interactions between respective pairs of basis
orbitals, i.e. between ϕ(+)i and ϕ(+)j, and between ϕ(−)i

and ϕ(−)j. In this connection, it is convenient to define
the relevant indirect interactions �

(k)

(+)i,(+)j and �
(k)

(−)i,(−)j
on the basis of the following relations

P̃(k)

(+)i,(+)j = −2�
(k)

(+)i,(+)j, P̃(k)

(−)i,(−)j = −2�
(k)

(−)i,(−)j (8)

similar to that of Eq. (5). The expressions for �
(k)

(+)i,(+)j

and �
(k)

(−)i,(−)j easily follow from Eqs. (6) and (7),
respectively. The numbers of mediators of these new
interactions coincide with k−1 as it was the case with
G(k)ij. For diagonal elements P̃(k)

(+)i,(+)i and P̃(k)

(−)i,(−)i, the
resulting factors �

(k)

(+)i,(+)i and �
(k)

(−)i,(−)i represent the
indirect k-th order self-interactions of BOs ϕ(+)i and
ϕ(−)i, respectively. Thus, alterations in the popula-
tions of basis orbitals ϕ(+)i and ϕ(−)i against their
initial values 2 and 0, respectively, are determined
by the relevant self-interations.

The total energy of the same system (E) is known
to be related to the respective DM (̃P) as follows [24]:

E = Trace(̃PH̃), (9)

where H̃ is the relevant Hamiltonian matrix in the
basis {ϕ}. The latter was assumed to consist [20–22]
of the sum of the zero and first order members, i.e.

H̃ = H̃(0) + H̃(1), (10)

where H̃(0) coincides with a diagonal matrix con-
taining one-electron energies of IOBOs (ε(+)i) and of
IVBOs (ε(−)j) and H̃(1) involves resonance parame-
ters defined by Eq. (3). Substituting Eq. (10) and the
power series for the DM P̃ [20,21] into Eq. (9) yields
an analogous series for the energy E [22]. The sum
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SCHEME 1. The unified model of pericyclic reactions. The bonding and antibonding bond orbitals of individual initially
double (C=C) bonds are denoted by ϕ(+)i and ϕ(−)i , respectively, where i = 1, 2, . . . N . The signs of coefficients at
particular 2pz AOs of these bond orbitals are indicated above and/or below the respective C=C bond. Resonance
parameters of weak (initially single and initially zero) bonds are designated by γ23, γ2N−2,2N−1, and γ1,2N , where the
subscripts represent the relevant numbers of AOs.

of the zero and first order corrections (E(0) + E(1)) of
this series coincides with the total energy of isolated
double-occupied basis orbitals, whereas the remain-
ing corrections E(k)(k = 2, 3, ..) are expressible as
sums of two related components, viz.

E(k) = E(α)

(k) + E(β)

(k) , (11)

where

E(α)

(k) = Trace(̃P(k)H̃(0)), (12)

E(β)

(k) = Trace(̃P(k−1)H̃(1)), (13)

and

(k − 1)E(β)

(k) = −kE(α)

(k) (14)

is the above-mentioned interrelation. The total cor-
rection E(k) may be then alternatively expressed as
follows

E(k) = 1
k

E(β)

(k) , E(k) = − 1
k − 1

E(α)

(k) . (15)

The sum of corrections E(k) starting with k = 2 repre-
sents the stabilization (or destabilization) energy of
the system due to interorbital interactions.

3. The Unified Model of Pericyclic
Reactions. The Principal Properties of
the Relevant Interorbital Interactions

Let us start with description of our model of peri-
cyclic reactions. Aliphatic conjugated hydrocarbons
(polyenes) are known as the most common partici-
pants of these processes [9–11]. Thus, constitution of

these compounds forms the basis of our model: We
will consider a formation of an even-membered cycle
of carbon atoms. We will dwell on a rather early stage
of this cyclization process situated in between the ini-
tial open chain and the transition state on the scale
of the reaction coordinate. The principal assump-
tion here consists in the possibility of distinguishing
between strong (initially double) and weak (initially
single and initially zero) bonds in the cycle.

Let our cycle of 2N carbon atoms to contain N
strong (C C) bonds and N weak (C C) bonds alter-
nately (Scheme 1). The atoms will be enumerated
in a usual cyclic way so that C1 C2, C3 C4, etc.
correspond to strong bonds. Carbon atoms will be
represented by their 2pz AOs {χ} = {χ1, χ2, . . . χ2N}
characterized by uniform Coulomb parameters α.
The strongly overlapping pairs of AOs referring to
initially double bonds will be described by uniform
negative resonance parameters β. The equalities α =
0 and β = 1 will be accepted for convenience, the
latter indicating a negative energy unit to be actu-
ally chosen. The above-mentioned assumption about
strong and weak bonds of our model implies res-
onance parameters β to be incorporated into the
zero order Hamiltonian matrix H(0). Meanwhile, res-
onance parameters representing the remaining pairs
of AOs will be denoted by γ23, γ45 . . . γ2N−2,2N−1, γ1,2N

(Scheme 1) and included into the first order matrix
H(1). [The requirements of the perturbation theory
underlying the expressions of Section 2 are not met
in the basis {χ}. Thus, the matrices H(0) and H(1)

do not coincide with those of Eq. (10)]. As opposed
to the parameter β, the resonance parameters γmn

are assumed to take either a positive or a negative
value. Positive values of these parameters will cor-
respond to positive overlap integrals and vice versa
in accordance with the negative energy unit. On the
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whole, a formally uniform polyene-like constitution
is peculiar to our model.

Now, we are about to explore the dependence
between particular elements of the one-electron DM
of the model in the basis of AOs {χ} (i.e., of the so-
called charge-bond order matrix) and the signs of N
parameters {γmn} representing the overlap topology
over the cycle, as well as of an analogous depen-
dence for the relevant total energy. To be able to
apply the power series of Section 2, we have to turn to
the basis of bonding and antibonding bond orbitals
(BOs) defined below. In this alternative basis set, con-
vergence of the power series shown in Eqs. (5)–(7)
was verified in Ref. 25. It is also evident that the bond-
ing BOs (BBOs) are initially occupied orbitals in our
polyene-like model, whereas the antibonding BOs
(ABOs) coincide with the initially vacant ones. This
implies that the expressions of Section 2 are appli-
cable to our model just in this basis. Thereupon, we
will return to the basis of AOs again in Section 4.

BBOs and ABOs of our model will be defined as
bonding and antibonding combinations of pairs of
AOs of the initially double (C C) bonds. Let the des-
ignation {ϕ} of Section 2 to be used also to the basis
of BOs, where ϕ(+)i and ϕ(−)i will stand for BBOs and
for ABOs, respectively. We then obtain

ϕ(+)1(ϕ(−)1) = 1√
2
(χ1 ± χ2),

ϕ(+)2(ϕ(−)2) = 1√
2
(χ3 ± χ4), etc (16)

where the upper and the lower signs of the right-
hand sides of these expressions also correspondingly
refer to BBOs and to ABOs. After passing to the basis
{ϕ}, the Hamiltonian matrix of our model turns into
that shown in Eq. (10), where the zero order member
H̃(0) contains one-electron energies of BOs equal to 1
and to −1 for BBOs and ABOs, respectively.

Let us turn now to expressions of Section 2. The
matrix elements G(k)ij of Eqs. (1)–(4) will represent
now the interactions of the k-th order between the
BBO ϕ(+)i of the Ith bond and the ABO ϕ(−)j of the
Jth bond. Note that the definition of BOs of Eq. (16)
implies the equality Rii = 0 and thereby zero values
for first order direct intrabond interactions G(1)ii. The
above-mentioned formally uniform constitution of
our model is likely to imply specific features of the
relevant interorbital interactions G(k)ij, �

(k)

(+)i,(+)j, and
�

(k)

(−)i,(−)j. Let us dwell now just on this point.
Similarity of all initially double bonds of our cycle

allows the energy intervals ε(+)i − ε(−)j of Eqs. (1), (2),

and (4) to be replaced by 2. As a result, the factors
(2)−k arise in front of any expression for an indirect
interaction and products of the relevant resonance
parameters actually remain inside the sums.

Let us start with a linear fragment of our cycle.
The indirect interactions of the k-th order between
orbitals of the C1 C2 and C2k+1 C2k+2 bonds are
then mediated only by orbitals of k − 1 intervening
bonds (C3 C4, C5 C6 . . . . C2k−1 C2k). In other words,
the existence of the roundabout pathway between
the same bonds is not taken into consideration at
the present stage of our discussion. We then obtain

G(1)12 = −1
2

R12, G(2)13 = 1
4
(V12R23 − R12Q23),

G(3)14 = −1
8
(V12V23R34 − 2V12R23Q34 − 2R12R+

23R34

+ R12Q23Q34), etc. (17)

In the basis of BOs {ϕ}, any neighboring pair of ini-
tially double (C C) bonds is characterized by four
resonance parameters Vij=Vji, Rij, Rji and Qij = Qji

(Note that Rij �= Rji). For example, parameters
V12 = V21, R12, R21 andQ12 = Q21 refertobondsC1 C2

and C3 C4. In the basis of AOs, however, a single
nonzero parameter (γ23, respectively) represents the
interaction of these bonds.As a result, the former four
parameters become expressible via the latter, e.g.

V12 = V21 = 1
2
γ23, R12 = 1

2
γ23, R21 = −1

2
γ23,

Q12 = Q21 = −1
2
γ23. (18)

After excluding the right-hand sides of the above
relations, we obtain

Vij = Vji = Rij = −R+
ij = −Rji = −Qij = −Qji (19)

for any neighboring pair of C C bonds provided that
the Jth bond takes an anticlockwise position with
respect to the Ith bond in the cycle of Scheme 1.
Employment of Eq. (19) within Eq. (17) yields the
expressions

G(1)12 = −1
2

R12, G(2)13 = 1
2

R12R23,

G(3)14 = −3
4

R12R23R34, etc. (20)

Using Eq. (1) [see also Eq. (3)], the second and third
relations of Eq. (20) may be reformulated in terms of
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products of first order interactions G(1)ij as follows

G(2)13 = 2G(1)12G(1)23, G(3)14 = 6G(1)12G(1)23G(1)34.
(21)

The generalized form of Eq. (21) is

G(a)
(K−1)1K = aKG(1)12G(1)23 . . . G(1)K−1,K , (22)

where the superscript (a) of the left-hand side
denotes the anticlockwise position of the 1st and
Kth C C bonds underlying Eq. (21), and aK stands
for a positive numerical coefficient. The first four
members of the series of these coefficients are

a2 = 1, a3 = 2, a4 = 6, a5 = 20. (23)

The result shown in Eq. (22) will be further referred
to as factorization of indirect interactions.Asmuch as
Eq. (22) reflects a division of the total bridge between
the 1st and the Kth C C bonds into K − 1 steps, the
product of the right-hand side of this relation may
be conveniently referred to as the stepwise interac-
tion between BOs ϕ(+)1 and ϕ(−)K . From the above
discussion it also follows that the indirect interac-
tion G(a)

(K−1)1K is determined by the product of non-
neighboring resonance parameters γ23, γ45, . . . repre-
senting the mediating fragment of the chain. More-
over, an additional factor (−1)K−1 arises in front of
the expression for G(a)

(K−1)1K in terms of parameters γmn

owing to the minus sign in the right-hand side of Eq.
(1). This factor gives rise to alternation of sign of the
total indirect interaction G(a)

(K−1)1K [26] with increas-
ing order parameter k(k = K − 1) provided that the
resonance parametersγ23, γ45, . . .are of the same sign.

For the clockwise position of the Ith and Jth C C
bonds, the analog of Eq. (21) is as follows:

G(c)
(2)31 = −2G(1)32G(1)21, G(c)

(3)41 = 6G(1)43G(1)32G(1)21.
(24)

The relation Rij = −Rji of Eq. (19) along with Eqs. (1)
and (3) implies the equality G(1)ij = −G(1)ji. Employ-
ment of the latter within Eq. (24) yields the skew-
symmetric nature of all interorbital interactions [25],
viz.

G+
(k)ji = G(k)ij = −G(k)ji, k = 1, 2, 3 . . . (25)

and the following interrelation

G(a)
(K−1)1K = −G(c)

(K−1)K1. (26)

Let us turn now to indirect interactions between
BOs of the same nature, i.e. �

(k)

(+)i,(+)j and �
(k)

(−)i,(−)j

defined by Eqs. (6)–(8). As opposed to the above-
discussed interactions G(k)ij, both �

(k)

(+)i,(+)j and �
(k)

(−)i,(−)j
are symmetric with respect to an interchange of BOs,
viz.

�
(k)

(+)i,(+)j = �
(k)

(+)j,(+)i, �
(k)

(−)i,(−)j = �
(k)

(−)j,(−)i. (27)

For particular interactions between BBOs, we obtain

�
(2)

(+)1,(+)3 = G(1)12G+
(1)23 = −G(1)12G(1)23,

�
(3)

(+)1,(+)4 = −(G(1)12G(2)24 + G(2)13G(1)34)

= −4G(1)12G(1)23G(1)34, etc (28)

where the last relation follows after factorizing the
second order interactions G(2)24 and G(2)13 in accor-
dance with Eq. (21). For interactions between ABOs,
we accordingly obtain

�
(2)

(−)1,(−)3 = −G+
(1)12G(1)23 = G(1)12G(1)23,

�
(3)

(−)1,(−)4 = G(1)12G(2)24 + G(2)13G(1)34

= 4G(1)12G(1)23G(1)34, etc. (29)

Comparison of Eqs. (21), (28), and (29) yields the
following principal interrelation

�
(K−1)

(+)1,(+)K = −�
(K−1)

(−)1,(−)K = −bKG(a)
(K−1)1K , k = 3, 4 . . .

(30)

where bK stands for another positive numerical K-
dependent coefficient. The first members of the series
concerned are as follows

b2 = 0, b3 = 1
2

, b4 = 2
3

, b5 = 3
4

. (31)

To ensure the validity of Eq. (27), let �
(K−1)

(+)K,(+)1 and
�

(K−1)

(−)K,(−)1 to be expressed as follows:

�
(K−1)

(+)K,(+)1 = −�
(K−1)

(−)K,(−)1 = bKG(c)
(K−1)K1, k = 3, 4 . . .

(32)

[see also Eq. (26)]. Eqs. (30) and (32) indicate pro-
portionality between various types of interorbital
interactions referring to a particular pair of bonds.
Moreover, invoking of Eq. (22) allows us to con-
clude that the interactions concerned are propor-
tional to the same stepwise interaction shown in the
right-hand side of Eq. (22).

Let us turn now to taking into consideration the
cyclic structure of our model of pericyclic processes.
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To this end, let us define the following N-dependent
interaction

	(N) = −G(1)12G(1)23G(1)34 . . . G(1)N−1,NG(1)N1, (33)

which coincides with the step-wise interaction over
the whole cycle in the anticlockwise fashion. The
minus sign in front of the product of the first order
interactions is introduced here for convenience. Let
us call 	(N) the roundabout interaction of our cycle.
The AO χ1 playes the role of both starting and ter-
minal orbital in the definition of Eq. (33). The total
roundabout interaction, however, is invariant with
respect to choice of this exclusive site. Indeed, Eq.
(33) may be alternatively presented as follows:

	(N) = −G(1)23G(1)34G(1)45 . . . G(1)N−1,NG(1)N1G(1)12,
(34)

where the AO χ2 playes the above-specified role.
Finally, an alternative expression for 	(N) follows
after invoking Eq. (22), viz.

	(N) = (aN)−1G(1)12G(N−1)12 = (aN)−1G(1)23G(N−1)23 = . . .

= (aN)−1G(1)1NG(N−1)1N , (35)

where Eq. (25) is also invoked. Thus, the round-
about interaction 	(N) takes a positive value if the
direct (through-space) and the indirect (through-
cycle) interactions are of same signs for any pair of
neighboring bonds and vice versa. It should be men-
tioned finally that the roundabout interaction 	(N)

represents the cycle as a whole and not its sepa-
rate fragments. Thus, it is a collective property of
the model.

Let us dwell now on self-interactions of BOs of
the Ith bond (�(+)i,(+)i and �(−)i,(−)i) determining the
alterations in populations of these orbitals due to
interorbital interaction. Let us take the case i = 1
as an example. The power series for these interac-
tions start with second order contributions of the
following form

�
(2)

(+)1,(+)1 = −�
(2)

(−)1,(−)1 = (G(1)12)
2 + (G(1)1N)2, (36)

where Eqs. (6)–(8) are taken into consideration. The
two increments of the right-hand side of Eq. (36)
correspond to mediating contributions of AOs χ2

and χN , respectively, to the total self-interactions
concerned. Moreover, these increments refer to path-
ways toward the nearest-neighboring bonds and
backward. It is no surprise in this connection that
squares of direct interactions arise in the right-hand

sides of Eq. (36). It is evident that these increments
are little to do with the overlap topology of AOs over
the cycle.

Analysis of corrections of higher orders to the
same self-interactions shows that pathways of the
“toward-backward” nature always yield contribu-
tions containing squares of direct interactions. Thus,
no dependence upon signs of resonance parameters
arises in these contributions. Two roundabout path-
ways (the clockwise one and the anticlockwise one)
are important exceptions here. Contributions of the
latter arise within the Nth order corrections to self-
interactions and are overlap- topology-dependent.

To show this, let us turn to Eq. (30) and take
K = N + 1 in the relation shown there. Let us also
note that N + 1 actually coincides with 1 owing to
the cyclic constitution of our model. As a result, the
right-hand side of Eq. (30) becomes proportional to
the roundabout interaction 	(N) [see also Eqs. (22)
and (33)]. We then obtain the contributions of the
anticlockwise roundabout pathway to the total Nth
order self-interactions of BOs ϕ(+)1 and ϕ(−)1. Let the
overlined notations to be used for these particular
contributions. The latter then take the form

�
(N,a)
(+)1,(+)1 = −�

(N,a)
(−)1,(−)1 = −bN+1G(a)

(N)1,N+1 ≡
− bN+1G(a)

(N)11 = aN+1bN+1	(N) = cN+1	(N), (37)

where cN+1 stands for the product aN+1bN+1. Anal-
ogously, Eq. (32) yields the relevant contribution
of the clockwise roundabout pathway to the same
self-interactions of BOs, viz.

�
(N,c)
(+)1,(+)1 = −�

(N,c)
(−)1,(−)1 = bN+1G(c)

(N)11

= −bN+1G(a)
(N)11 = cN+1	(N), (38)

where passing from G(c)
(N)11 to G(a)

(N)11 is based on Eq.
(26). It is seen that increments of Eqs. (37) and (38)
coincide one with another. This result is in line with
the symmetry requirement of Eq. (27) and allows us
to derive total contributions of the two roundabout
pathways, viz.

�
(N)

(+)1,(+)1 = −�
(N)

(−)1,(−)1 = 2cN+1	(N). (39)

The right-hand side of the above relation contains
no dependence upon the number of the bond con-
cerned, i.e. upon i. Moreover, the same procedure of
its derivation refers to any i value from 1 to N. Thus,
the roundabout pathways yield uniform increments
to any self-interaction �(+)i,(+)i and/or �(−)i,(−)i.
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Let us note finally that the roundabout interaction
	(N) is alternatively expressible in terms of resonance
parameters Rij using Eqs. (1) and (33). We then obtain

	(N) = (−1)N+12−NR12R23R34 . . . RN−1,NRN1, (40)

where the factor (−1)N originates from the minus
sign of the right-hand side of Eq. (1). Expressibility
of parameters Rij via resonance parameters γmn as
shown in Eq. (18), in turn, allows the relation of Eq.
(40) to be reformulated as follows:

	(N) = (−1)N+12−2Nγ23γ45γ67 . . . γ2N−2,2N−1γ2N,1. (41)

The dependence of the roundabout interaction 	(N)

upon the overlap topology ofAOs {χ} is evident from
Eq. (41). The factor (−1)N+1, in turn, depends on the
total number of C C bonds in our cycle (N). This
may be referred to as the parity factor for simplicity.
Thus, �

(N)

(+)1,(+)1 and �
(N)

(−)1,(−)1 of Eq. (39) are overlap-
topology-dependent increments to self-interactions
of BOs ϕ(+)1 and ϕ(−)1 of the Ith bond.

4. Overlap-Topology-Dependent
Contributions to Bond Orders
Between AOs and to the Total
Energy of the Unified Model of
Pericyclic Processes

In this Section, we are about to derive and ana-
lyze the overlap-topology-dependent contributions
to bond orders of various bonds of our model, as well
as the analogous contributions to the total energy. To
this end, we have to retransform the expressions of
Eqs. (5)–(7) into the AO basis {χ}. The relevant trans-
formation matrix may be easily constructed on the
basis of Eq. (16). Moreover, we will invoke the con-
cept of the roundabout interaction 	(N) when dealing
with occupation numbers of BOs. It is also essential
to note here that the relations concerning total ener-
gies and shown in Eqs. (11)–(15) are invariant against
unitary transformations of the basis set including
passing from AOs to BOs and/or backward. Thus,
Eqs. (11)–(15) may be straightforwardly applied to
power series for the charge-bond order matrix P and
to the respective Hamiltonian matrix H in the basis
{χ}.

Let us start with bond orders of initially double
bonds and consider the C1 C2 bond as an example.
The respective bond order is expressible as follows

P12 = 1
2
(̃P(+)1,(+)1 − P̃(−)1,(−)1), (42)

where the right-hand side contains populations of
BOs ϕ(+)1 and ϕ(−)1. The latter are proportional to
self-interactions �(+)1,(+)1 and �(−)1,(−)1, respectively
[see Eq. (8)]. Substituting Eq. (8) into Eq. (42) yields a
zero order term of the power series for P12 coinciding
with 1 in accordance with the expectation (this con-
tribution refers to an isolated C C bond). The first
order member takes a zero value in the same series,
whilst the second order one follows after substitut-
ing Eq. (36) into Eqs. (8) and (42) and proves to be a
negative quantity. Thus, the primary bond order of
our bond (equal to 1) always becomes reduced due
to interbond interaction.

Let the cyclization process to be defined as for-
mation of a nonzero roundabout interaction 	(N) in
our model. As it was discussed earlier in Section
3, the overlap-topology-dependent contribution to
self-interactions of BOs and thereby to the bond
order P12 originates from Nth order terms �

(N)

(+)1,(+)1

and �
(N)

(−)1,(−)1 shown in Eq. (39) and proportional to
the roundabout interaction 	(N). We then obtain

P
(N)

12 = −2�
(N)

(+)1,(+)1 = −4cN+1	(N). (43)

It is seen that the local alteration in the order of the
C1 C2 bond is determined by the collective property
of the cycle 	(N). Moreover, the sign of this overlap-
topology-dependent alteration depends on that of
the roundabout interaction 	(N). Consequently, this
bond order becomes reduced during the cyclization
process more substantially if the relevant round-
about interation 	(N) takes a positive value and vice
versa. It is also evident that the increment of Eq. (43)
refers to any initially double (C C) bond, i.e.

P
(N)

12 = P
(N)

34 = P
(N)

56 = . . . P
(N)

2N−3,2N−2 = P
(N)

2N−1,2N . (44)

Thus, overlap-topology-determined alterations in
the orders of all initially double bonds are uniform
in our model.

Let us turn now to alterations in the orders of the
remaining (C C) bonds. Let us consider the bond
order P1,2N between AOs χ1 and χ2N as an example.
Instead of Eq. (42), we then obtain [26]

P1,2N = 1
2
(̃P(+)1,(+)N − P̃(−)1,(−)N + P̃(+)N,(−)1 − P̃(+)1,(−)N).

(45)

Using Eqs. (5), (8), (25), and (30), this expression may
be simplified as follows

P1,2N = P̃(+)1,(+)N − P̃(+)1,(−)N . (46)
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The increments of the right-hand side of Eq. (46) may
be derived using Eqs. (5) and (6). It is evident that the
power series for P1,2N starts with the first order con-
tribution originating from the increment P̃(1)

(+)1,(−)N ,
viz.

P(1)

1,2N = −P̃(1)

(+)1,(−)N = 2G(1)1N = 1
2
γ1,2N . (47)

[The last equality is based on Eqs. (1), (3), and (18)].
It is seen that the first order contribution to the bond
order under our interest is determined exclusively by
the direct (through-space) interaction between BOs
of the 1st and of the Nth bond, i.e. between ϕ(+)1

and ϕ(−)N . Accordingly, the sign of this contribution
depends on that of the respective resonance parame-
ter γ1,2N . This implies that both positive and negative
values may arise here.

The dependence of the bond order P1,2N upon
the overall constitution of the cycle and thereby
upon the overlap topology of AOs {χ} manifests
itself within the (N − 1)th order correction P(N−1)

1,2N .
To reveal this dependence, the increment of the
roundabout pathway from the AO χ1 to χ2N to the
above-mentioned correction should be considered.
This increment follows from Eqs. (5), (8), and (30)
and takes the form

P
(N−1)

1,2N = 2
(
G(N−1)1N − �

(N−1)

(+)1,(+)N

) = 2(1 + bN)G(a)
(N−1)1N ,

(48)

where G(a)
(N−1)1N is the indirect anticlockwise inter-

action between BOs ϕ(+)1 and ϕ(−)N via the cycle.
Alternation of sign of this interaction when the num-
ber N grows was established in Section 3 in the
case of coinciding signs of resonance parameters γmn.
Thus, both positive and negative signs of P

(N−1)

1,2N are
possible.

The expression for the total bond order P1,2N may
be then presented as follows

P1,2N = P(1)

1,2N + · · · + P
(N−1)

1,2N + · · ·
= 2G(1)1N + · · · + 2(1 + bN)G(a)

(N−1)1N + · · · (49)

where dots stand for other overlap-topology-
independent increments originating from path-
ways of the toward-backward type (the latter
may be exemplified by (G(1)12)

2 G(1)1N , (G(1)12)
2

(G(1)23)
2G(1)1N , etc.). From Eq. (49) it is seen that the

bond order P1,2N takes a more significant absolute
value if the direct and the indirect (through-cycle)
interactions of BOs ϕ(+)1 and ϕ(−)N are of the same
sign. Let us take now the square of the bond order

P1,2N , viz.

(P1,2N)2 = 4(G(1)1N)2+· · ·+8(1+bN)G(1)1NG(a)
(N−1)1N+· · ·

(50)

The dependence of (P1,2N)2 upon the overlap
topology of AOs is described by the product
G(1)1NG(a)

(N−1)1N . The latter is proportional to the round-
about interaction 	(N) as Eq. (35) indicates. Thus, the
overlap-topology-determined contribution to the
square of the bond order P1,2N is as follows

(P1,2N)2 = 8(1 + bN)aN	(N). (51)

The same result may be evidently derived for any
C C bond of our model. Hence, overlap-topology-
dependent alterations in squares of bond orders of
all weak bonds of the cycle are uniform in spite of
dissimilar resonance parameters γmn.

Comparison of Eqs. (43) and (51), in turn, shows
that the overlap-topology-dependent alterations in
the orders of strong and weak bonds are express-
ible in terms of the same topological factor 	(N).
Moreover, the right-hand sides of these relations
always are of opposite signs. Hence, the above-
mentioned two types of alterations necessarily are
of opposite directions. In particular, the overlap-
topology-determined reduction of orders of strong
bonds is accompanied by growth of absolute values
of those of weak bonds if the cycle under formation
is characterized by a positive roundabout interaction
	(N). Meanwhile, the above-mentioned interdepen-
dent alterations acquire opposite signs for cycles
described by a negative factor 	(N).

Let us turn now to the power series for total ener-
gies. As it was mentioned earlier, members H(0) and
H(1) of the total Hamiltonian matrix H contain res-
onance parameters referring to strong and to weak
bonds, respectively, in the basis of AOs {χ}. More-
over, parameters of the former type coincide with
1. As a result, the zero- and first-order terms of the
power series for the total energy E are as follows

E(0) = Trace(H(0)P(0)) = 2N,

E(1) = Trace(H(1)P(0) + P(1)H(0)) = 0, (52)

where 2N represents the total energy of N isolated
C C bonds. The subsequent corrections E(k) starting
with k = 2 are determined by Eqs. (11)–(15), where
the designation ˜ may be omitted in the right-hand
sides of Eqs. (12) and (13) owing to invariance of
Traces against unitary transformations of the basis
set.
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As much as the zero order Hamiltonian matrix
H(0) contains elements equal to 1 in the positions
referring to the initially double (C C) bonds, the
overlap-topology-dependent Nth order corrections
like that of Eq. (43) give birth to an Nth order energy
correction E

(α)

(N) defined by Eq. (12), viz.

E
(α)

(N) = Trace(H(0)P(N)) = −8NcN+1	(N). (53)

This correction is made up of N uniform increments
of individual C C bonds, each of them coinciding
with 2P

(N)

12 of Eq. (43). Hence, it represents the total
energetic effect of all overlap-topology-dependent
alterations in the orders of initially double bonds. It
is also seen that this component of the total Nth order
energy is negative in the case of a positive factor 	(N).
Thus, the component E

(α)

(N) describes the destabilizing
effect of the overlap-topology-dependent reduction
of orders of C C bonds in this case. For cycles rep-
resentable by negative 	(N) values, E

(α)

(N) acquires a
positive sign.

Furthermore, the (N −1)th order correction P
(N−1)

1,2N
of Eq. (48) gives birth to the Nth order energy incre-
ment E

(β)

(N) defined by Eq. (13). As seen from Eq.
(22), the indirect interaction G(a)

(N−1)1N contains first
order interactions G(1)ij over the cycle except for
G(1)1N . Again, the element of the matrix H(1), the term
P

(N−1)

1,2N is multiplied by when building up the prod-
uct P(N−1)H(1), coincides with γ1,2N , the latter being
equal to 4G(1)1N (see Eqs. (1), (3), and (18)). Thus,
the element G(1)1N missing in the indirect interaction
G(a)

(N−1)1N actually originates from the matrix H(1). As a
result, the Trace(H(1)P(N−1)) also contains N uniform
members each of them referring to an individual
C C bond and being expressible in terms of the
roundabout interaction. We then obtain

E
(β)

(N) = 2NP
(N−1)

1,2N · γ1,2N = 16N(1 + bN)G(1)1NG(a)
(N−1)1N

= 16NaN(1 + bN)	(N), (54)

where the last equality follows after employment of
Eq. (35). It is seen that E

(β)

(N) > 0 for positive round-
about interactions 	(N). Given that this is the case,
the correction E

(β)

(N) represents the stabilizing effect
originating from the overlap-topology-dependent
growth in the orders of initially single and initially
zero bonds. For cycles described by negative round-
about interactions, the correction E

(β)

(N) becomes of the
destabilizing nature.

Let us turn now to Eqs. (11), (14), and (15).
The relation of Eq. (14) may be shown to be met

by overlap-topology-dependent increments E
(α)

(N) and

E
(β)

(N) up to N = 4 inclusive using the coefficients aN

and bN of Eqs. (23) and (31). This implies that ener-
getic increments of overlap-topology-determined
alterations in the orders of strong and of weak
bonds are interdependent, viz. the more destabilized
the cycle becomes owing to weakening of initially
double (C C) bonds, the higher is the stabilizing
increment of increasing bond orders of the remain-
ing bonds, and vice versa. An analogous relation
is also met by partial energetic increments of indi-
vidual bonds. Hence, a local interdependence may
be concluded between an energetic effect of the
overlap-topology-dependent alteration in the order
of a certain C C bond and that of the neighboring
C C bond.

The final stabilization (or destabilization) energy
of the cycle (E(N)), in turn, is determined by the
balance between the two increments of opposite
signs E

(α)

(N) and E
(β)

(N) in accordance with Eq. (11). As

much as the absolute value of E
(β)

(N) always exceeds

that of E
(α)

(N) as Eq. (14) indicates, the sign of the
total overlap-topology-dependent energy increment
E(N) is actually determined by that of E

(β)

(N). Hence,
the whole system becomes additionally stabilized if
E

(β)

(N) takes a positive value (in our negative energy
units). This condition, in turn, proves to be met
for cycles described by a positive roundabout inter-
action. Otherwise, destabilization of the system
follows.

Therefore, two types of pericyclic processes reveal
themselves on the basis of the above results. The
first one embraces reactions representable by for-
mation of a cycle described by a positive round-
about interaction 	(N). These processes are charac-
terized by an additional stabilization of the whole
system, as well as by two energetically coupled
subprocesses, viz. by growth of absolute values of
bond orders of all initially single bonds and by
a significant lowering of bond orders referring to
initially double bonds. The second type of reac-
tions embraces those described by cycles of a neg-
ative roundabout interaction. These processes are
accordingly characterized by destabilization of the
whole system, as well as by opposite alterations
in the bond orders vs. those specified above. It is
evident that these two classes of reactions corre-
spond to the allowed and to the forbidden ones.
Thus, the allowance of a pericyclic reaction is deter-
mined by the sign of the roundabout interaction
	(N).
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5. Illustration of the Results by
Consideration of Specific Reactions.
Discussion and Conclusions

Let us consider some specific pericyclic reactions
for illustration. Let us start with the thermal electro-
cyclic closure of polyenes (C2NH2N+2) that serves as
an example of monomolecular pericyclic processes
[9–11]. The resonance parameters between pairs of
AOs of the initially single bonds inside the polyene
molecule may be assumed to take uniform positive
values (in our negative energy units). Let this param-
eter to be denoted by γ0. Using the designations of
Section 2 we then obtain

γ23 = γ45 = · · · = γ2N−2,2N−1 = γ0 (55)

(see also Scheme 1). The new resonance parameter
that is formed between the terminal AOs χ1 and χ2N

during the closure process will be designated by γ1,2N

as before. The sign of this parameter was shown to
be positive for disrotatory processes and negative for
conrotatory ones [26]. Indeed, lobes of the 2pz AOs
χ1 and χ2N of the same sign (e.g., the negative ones)
overlap one with another most significantly during
a disrotatory reaction. Thus, a positive overlap inte-
gral is formed in this case. By contrast, a conrotatory
way of reaction gives rise to a primary overlap of
lobes ofAOs χ1 and χ2N of different signs and thereby
to a negative value of the same overlap integral. In
our negative energy units, the same conclusions refer
also to resonance parameters γ1,2N . We then obtain

γ
(dis)
1,2N > 0, γ

(con)

1,2N < 0, (56)

where the supersripts (dis) and (con) correspond-
ingly designate the disrotatory way and the conro-
tatory one.

The roundabout interactions 	(2), 	(3), and 	(4)

peculiar to butadiene, hexatriene, and octatriene,
respectively, result from Eq. (41). These are as follows

	(2) = −2−4γ0γ1,2N , 	(3) = 2−6(γ0)
2γ1,2N ,

	(4) = −2−8(γ0)
3γ1,2N . (57)

It is seen that positive roundabout interactions are
obtained for negative parameters γ1,2N in the cases
N = 2 and N = 4 and for a positive parameter
γ1,2N for N = 3. Thus, choice of the conrotatory way
of closure is predicted for butadiene and octatriene
molecules. Again, the disrotatory way is expected
to be chosen in the case of hexatriene. These results
coincide with predictions of other approaches and

experimental facts [9]. Simplicity of the concept of
the roundabout interaction is evident.

Other types of pericyclic reactions may be stud-
ied analogously. As for instance, the popular Diels-
Alder cycloaddition reaction between butadiene and
ethene [9–11] may be modeled by formation of a six-
membered cycle of carbon atoms corresponding to
N = 3. Let the resonance parameter between AOs χ2

and χ3 of the butadiene molecule to be denoted by γ0

(γ0 > 0), while those of the intermolecular type will
be designated by γ ′

inter and γ ′′
inter. We then obtain

	(3) = 2−6γ0γ
′
interγ

′′
inter. (58)

It is seen that a positive roundabout interaction is
obtained if both γ ′

inter and γ ′′
inter are of the same sign.

Thus, the reaction is predicted to be allowed in the
supra–supra fashion in accordance with experimen-
tal facts [9].

Let us turn now to comparison of the present
approach to related ones. Let us start with the nota-
tion that the majority of theoretical approaches to
interpretation of pericyclic reactions in general are
directly or indirectly based on consideration of the
relevant delocalized (canonical) molecular orbitals
(MOs) and their transformations during the process.
This refers both to the pioneering studies of symme-
try properties of the highest-occupied MO (HOMO)
of the acyclic member of the reactant-product pair
[27–29] and to more sophisticated approaches, such
as the MO and/or state correlation diagrams on
going from reactant through transition state to prod-
uct [30], the frontier MO (FMO) theory [31], etc.
Certainly, the MOs contain an implicit dependence
upon the overlap topology of AOs. This dependence,
however, is cumbersome and difficult to analyze
even for separate MOs to say nothing about the total
energy. On the basis of the present experience, we
may conclude this dependence to be of an indirect
nature, wherein the MOs play the role of interme-
diate terms. Besides, numerous approaches have
been suggested lately for revealing just the role of
topological factors in determining various aspects of
pericyclic processes, including the nature of bonding
in the relevant transition states (pericyclic or pseu-
dopericyclic) [16–19], the regioselectivity of some
specific reactions [32], the so-called torquoselectivity
[33], etc. The present results on the allowance of par-
ticular reaction routes naturally join in these studies.
Finally, application of the pair population analysis
to electron reorganization in the course of pericyclic
reaction [34] deserves a separate mentioning here,
as a different pattern of reorganization of bonding is
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established in this contribution for an allowed reac-
tion and for a forbidden one in accordance with the
results of the present study.

Let us dwell now on the relation of the present
approach to the concept of the Hückel and Möbius
aromaticity of the transition state. The overall pre-
dictions of our approach coincide with those of Refs.
12 and 13. To show this, let us consider first the
cycles described by all resonance parameters γmn of
positive signs. The sign of the relevant roundabout
interaction 	(N) is then determined by the parity fac-
tor (−1)N+1 as Eq. (41) indicates. As a result, we then
obtain negative topological factors 	(N) for even N
values and positive ones for odd N values. Accord-
ingly, the cycle is predicted to be stabilized in the
latter case referring to N = 3, 5, 7, etc. The rel-
evant cycles then contain 6, 10, and 14 electrons,
respectively, described by the series 4n + 2. Thus,
the result actually coincides with the well-known
Hückel rule [35, 36]. Given that a single parame-
ter, say γ23, takes a negative sign among resonance
parameters γmn, Eq. (41) yields a positive roundabout
interaction for even N values. This result is nothing
more than the rule of the Möbius aromaticity [37].
It should be emphasized here, however, that the
approaches under comparison are based on distinct
(and even opposite) models. Thus, the concept of the
Hückel and Möbius aromaticity refers to cycles con-
sisting of uniform bonds in respect of absolute values
of resonance parameters and thereby it is applied to
the supposed transition states of pericyclic reactions.
By contrast, the approach of the present study is
based on the possibility of distinguishing strong and
weak bonds alternately in the given cycle (Section
3). Consequently, the results obtained refer to ini-
tial stages of the process starting with the very early
stage. Moreover, resonance parameters γmn of the
weak bonds are allowed to take different absolute
values in our case. Thus, we have to do here with an
extension of the concept of the Hückel and Möbius
aromaticity to the case of weakly interacting initially
double (C C) bonds.

Let us consider finally the relation of the present
approach to that of Ref. 26. The latter refers to very
early stages of the electrocyclic closure processes
when the new resonance parameter γ1,2N may be con-
sidered as a first order quantity versus γ0. As a result,
the relevant energy correction was shown to takes
the form

E(1) = 2P0
1,2Nγ1,2N , (59)

where P0
1,2N is the bond order between the terminal

AOs χ1 and χ2N in the initial (open) polyene chain.

As a result, the sign of the energy correction E(1)

and thereby the stabilization or destabilization of
the chain proved to be predictable on the basis of
sign of P0

1,2N in the initial (open) chain. Again, from
first relations of Eqs. (15) and (54) it is seen that the
overlap-topology-dependent energy increments E(N)

of the present model are expressible as follows

E(N) = 2P
(N−1)

1,2N γ1,2N , (60)

where P
(N−1)

1,2N is defined by Eq. (48). The indirect inter-
action G(a)

(N−1)1N present in Eq. (48), in turn, is shown
in Eq. (22). It is seen that Eq. (22) contains neither the
direct interaction between BOs of terminal bonds nor
the parameter γ1,2N . Thus, P

(N−1)

1,2N coincides with the
bond order betweenAOsχ1 andχ2N in an open chain.
This implies that the dependence of the energy alter-
ation upon the initial bond order between terminal
AOs is extended to the case of comparable values of
parameters γ0 and γ1,2N and thereby to later stages of
the process in the present study.

Conclusions that may be drawn on the basis of
our results are as follows:

1. The concept of the roundabout interaction
introduced in the present study allows us to
describe the overlap topology of AOs over the
cycle that is formed during the early stage of a
certain pericyclic process. Thus, the new con-
cept may be regarded as an alternative to the
well-known adjacency matrix of the molecular
graph [3–5]. In another respect, the round-
about interaction supplements the concepts of
direct (through-space) and indirect (through-
bond) interactions [38–41] with an appropriate
description of interactions in cycles. Moreover,
the concept of the roundabout interaction is
applicable to both the usual cyclic arrays of
2pz AOs and Möbius arrays and serves as a
universal collective characteristic of the given
cycle.

2. The roundabout interaction of the cycle under
formation directly determines specific overlap-
topology-dependent contributions both to
individual elements of the charge-bond order
matrix and to the total energy. These particular
contributions may be studied independently
from the remaining increments to the same
characteristics. Passing to the basis of delo-
calized (canonical) MOs of the cycle is not
required when applying the present approach.

3. The overlap-topology-dependent reorganiza-
tion of bonding during a certain pericyclic
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process necessarily embraces the whole cycle
under formation in a uniform manner. More-
over, the relevant contribution to the total
energy of the system consists of a sum of sim-
ilar increments of individual bonds. Thus, the
concerted nature of pericyclic reactions now
acquires a quantum-chemical definition.

4. Contributions to the total energy originating
from the overlap-topology-dependent alter-
ations in the orders of initially double (C C)
bonds and in those of the remaining bonds are
interrelated. The same also refers to local con-
tributions of an individual C C bond and of
its neighbors. Thus, the above-specified two
aspects of the overall reorganization of bond-
ing are energetically coupled subprocesses of
the whole cyclization process.

5. The nature of the given pericyclic process
depends on the sign of the roundabout inter-
action of the cycle under formation, viz. the
reaction is allowed if 	(N) > 0 and forbid-
den otherwise. Along with stabilization of the
cycle vs. the respective open chain, the allowed
processes are characterized by growing abso-
lute values of bond orders of all initially single
and initially zero bonds, as well as by a simul-
taneous reduction of bond orders of all ini-
tially double (C C) bonds. Reorganization of
bonding referring to a forbidden process take
opposite directions vs. those desribed above,
and the whole system becomes destabilized in
addition.

6. The overlap topology of AOs starts to mani-
fest itself at the very early stage of a pericyclic
reaction and continues to play the decisive role
until reaching the transition state. In particu-
lar, choice between the usual cyclic array of
2pz AOs and a Möbius array is predicted to be
made just at early stages and preserved within
a wide range of the reaction coordinate.
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