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ABSTRACT: The usual way of obtaining charge-bond order (CBO) matrices of
molecules by summing up the MO LCAO coefficients over occupied molecular orbitals
(MOs) is extended to derive terms representing the reorganization of bonding in reacting
systems. The CBO matrix of a certain molecule (reactant) under influence of another one
(reagent) is expressed in the form of power series with respect to intermolecular
interaction. Terms of this series responsible for the internal reorganization of bonding in
the reactant are also shown to be representable by sums of MO LCAO coefficients of the
relevant isolated compound. As opposed to the case of a single molecule, the new sums
embrace all MOs of the reactant and their pairs. This result is conditioned by the fact that
the actual occupation numbers of MOs differ from either two or zero in the bimolecular
system because of the intermolecular charge transfer, and bond orders arise between pairs
of MOs in addition. Partial increments to the final reorganization of bonding related to
individual MOs and to their pairs are then studied separately. These increments may be
classified on the basis of criteria applied to MOs they originate from. In particular,
symmetric and antisymmetric increments are distinguished with respect to any symmetry
operation of the isolated reactant lost under influence of an approaching reagent.
Increments of the same symmetry are subsequently collected into separate groups
representable by specific graphical schemes. Consequently, the final pattern of charge and
bond order redistribution in the reactant under influence of an approaching reagent
follows from superposition of a few principal schemes. The results are illustrated by
consideration of specific examples, in particular of addition of electrophile to the butadiene
molecule. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem 110: 1327–1343, 2010
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1. Introduction

R eorganization of bonding is the principal fea-
ture of any chemical reaction [1–4]. Thus,

revealing of its nature for both specific processes
and their types is undoubtedly an important task. In
terms of quantum chemistry, the reorganization of
bonding is most commonly represented by electron
density and bond order redistributions in reacting
molecules [2] following from the relevant charge-
bond order (CBO) matrices [5]. If we confine our-
selves to an early stage of the process characterized
by a relatively weak intermolecular interaction, the
afore mentioned matrices may be expressed in the
form of power series [6, 7]. The problem then resolves
itself into derivation and analysis of corrections of
this series related to the intermolecular interaction.
General properties of these corrections (if any) are
of particular interest, as these are able to yield com-
mon rules governing the reorganization of bonding
in related compounds.

The long history of organic chemistry demon-
strates that chemical reactions may be discussed
in terms of initial constitutions of participating
compounds [1–3, 8]. Moreover, search for rela-
tions between relative reactivities of individual
molecules and peculiarities of their chemical struc-
tures is among the most fundamental approaches
of this scientific field. An implicit assumption
seems to underlie this approach, namely that the
nature of reorganization of bonding during a cer-
tain reaction is conditioned by respective initial
structures.

Electronic structures of isolated molecules are
usually represented in quantum chemistry by
respective sets of canonical molecular orbitals (MOs)
and their energies [6, 7, 9]. The afore mentioned clas-
sical hypothesis then gives us a hint that the reorga-
nization of bonding might be interpretable in terms
of MOs of initial compounds too. Such an antici-
pation is additionally supported by known decisive
roles of initial MOs in determining other aspects of
chemical reactions, e.g., the allowance of pericyclic
processes (cf. the famous Woodward-Hoffmann rule
[10–12]), the relative reactivities of alternative routes
of organic reactions (cf. the HOMO/LUMO con-
cept [13–17]), etc. If we assume the reorganization
of bonding to be conditioned by MOs of initial
compounds, these orbitals seem to form the most
appropriate basis set for analysis of corrections to
CBO matrices of reacting molecules originating from
the intermolecular interaction. Finally, the known

common properties of MOs (such as symmetry prop-
erties [6]) are then likely to determine general rules
governing the reorganization of bonding.

Employment of MOs of initial compounds in
studies of their chemical reactivities started a long
time ago. In the pioneering contribution [18], a sim-
ple model has been suggested for SE2 reactions of
aromatic compounds [1–4], wherein the intermolec-
ular charge transfer (intermolecular delocalization)
was entirely excluded from consideration. To this
end, the influence of the reagent was modelled by an
intramolecular perturbation of the Coulomb param-
eter of the 2pz AO of the atom under attack. As
a result, relative reactivities of individual carbon
atoms of an alternant conjugated hydrocarbon have
been related to the well-known self-polarizabilities
πrr. Meanwhile, redistribution of population over the
hydrocarbon chain has been represented by other
polarizabilities of the atom–atom type (πrs) governed
by the rule of the alternating polarity (later, the same
rule acquired a graph-theoretical interpretation [19]).
Finally, polarizabilities of the atom-bond type (πr,st)

served to describe redistributions of bond orders.
It is essential in our context that all polarizabilities
proved to be expressible in terms of MO LCAO coef-
ficients of the parent hydrocarbon. This achievement
probably is the first demonstration of the relation
between the initial structure and its response to the
influence of the reagent. The authors of subsequent
studies [13, 20–28] focused their efforts on analysis
of increments of the intermolecular delocalization
to the total energy of the chemical interaction. As a
result, the decisive role of the so-called frontier MOs
(HOMO and LUMO) has been revealed. Meanwhile,
little attention was paid to internal changes in the
structures of participating compounds. This espe-
cially refers to consequences of the remaining (polar-
ization) increments [20, 21] of the intermolecular
interaction energy.

In this study, an attempt is undertaken to unite
and generalize the two extreme perturbative con-
cepts as discussed earlier. The new approach to be
suggested is aimed at revealing all alterations in
electronic structures of reacting systems that fol-
low from their initial constitutions deductively. To
this end, we consider both the reactant and the
reagent explicitly and address the corrections to CBO
matrices of reacting molecules directly instead of
starting with the intermolecular interaction energy.
The most attention is paid to general properties of
these corrections.

CBO matrices of isolated molecules are usually
obtained by summing up the MO LCAO coefficients
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over occupied MOs [5]. This procedure is equivalent
to retransformation into the AO basis of the diago-
nal representation of the one-electron density matrix
(DM) referring to the basis of MOs and containing
uniform occupation numbers of the latter equal to
either 2 or 0. The essence of the present approach
consists in an extension of the same retransforma-
tion procedure to the DM of a bimolecular system
represented in the composite basis of MOs of respec-
tive isolated compounds. Elements of the above-
specified initial DM, in turn, follow from the general
power series for this matrix [29–31].

The article is organized as follows: We start with
an overview of relations the present approach is
based on (Section 2). Partial increments of individual
MOs and of their pairs to the overall reorganization
of bonding are analyzed in Section 3. The role of
the initial symmetry of the reactant in determining
the subsequent reorganization of bonding is consid-
ered in Section 4. Finally, the results are illustrated by
analysis of particular examples (Section 5). The most
attention is paid here to addition of electrophile to
the butadiene molecule.

2. Basic Relations of the Approach

The standard (canonical) MO method consists in
passing from the initial basis of atomic orbitals (AOs)
{χ} into that of MOs {ψ}, wherein the Hamiltonian
(or Fockian) matrix of our system H̄ takes the diago-
nal form. The respective representation matrix of the
one-electron DM P̄ is also diagonal in the MO basis
and involves occupation numbers of these orbitals
equal to either 2 or 0 [5, 32]. This implies no bond
orders to arise between MOs. To obtain the usual
CBO matrix of the same system P containing popu-
lations of AOs and bond orders between the latter,
we retransform the matrix P̄ into the AO basis again.
The relation concerned is as follows [5, 32]

P = CP̄C+, (1)

where the matrix C contains the MO LCAO coef-
ficients in its columns, and the superscript + here
and below designates the transposed (or Hermitian-
conjugate) matrix. This relation along with the
above-specified diagonal constitution of the matrix
P̄ yields the usual expressions for elements of the
CBO matrix P in the form of sums of the MO LCAO
coefficients over occupied MOs.

The approach of this study is based on an exten-
sion of the scope of applicability of the relation of

Eq. (1) and thereby of the above-described common
way of obtaining CBO matrices. Two peculiarities of
this relation permit such an extension: First, Eq. (1)
is actually valid for any pair of basis sets [32]. This
implies that the MOs of the whole system {ψ} may be
replaced by another basis set, provided that the rele-
vant CBO matrix P̃ is known or easily constructable.
Second, an algebraic form is allowed for elements of
all matrices of Eq. (1). It is just the composite basis
of MOs of respective isolated compounds, which
is able to replace the basis set {ψ} in the case of
two interacting molecules. This assertion is based on
applicability of the general perturbative expansion
for the one-electron DM [29–31] to construct alge-
braic expressions for elements of the relevant matrix
P̃ as demonstrated in detail in the Appendix section.
Before exhibiting these expressions, however, let us
introduce some notations.

Let our participants of a certain reaction to be
denoted A and B. The canonical MOs of respective
isolated compounds (ϕ) also will be correspondingly
designated by subscripts A and B. Moreover, the
occupied and vacant orbitals will acquire additional
subscripts (+) and (−), respectively, e.g. ϕA(+)i, ϕB(−)n,
etc., where i and n represent individual orbitals. The
composite set of MOs {ϕ} will then consist of four
subsets, viz.

{ϕ} = {{ϕA(+)}, {ϕA(−)}, {ϕB(+)}, {ϕB(−)}}. (2)

In this basis, the zero order Hamiltonian matrix of
the whole reacting system is assumed to take the
diagonal form containing one-electron energies of
MOs correspondingly denoted by εA(+)i, εB(−)n, etc.
Meanwhile, the first order (perturbation) matrix is
supposed to involve intermolecular interactions. The
latter will be represented by Hamiltonian matrix
elements of four types, viz.

Mis = 〈
ϕA(+)i|Ĥ|ϕB(+)s

〉
, Kin = 〈

ϕA(+)i|Ĥ|ϕB(−)n
〉
,

Lsr = 〈
ϕB(+)s|Ĥ|ϕA(−)r

〉
, Trn = 〈

ϕA(−)r|Ĥ|ϕB(−)n
〉
, (3)

where bra- and ket-vectors contain the respective
basis orbitals. Let us note finally that elements of the
matrix P̃ referring to the molecule A suffice to derive
the CBO matrix under our interest.

To prove the latter statement, let us accept the
relative order of subsets shown in Eq. (2) and
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represent the total matrix P̃ in terms of intra- and
intermolecular blocks, viz.

P̃ =
∣∣∣∣P̃A(B) P̃AB

P̃AB P̃B(A)

∣∣∣∣ . (4)

Additional superscripts (B)and (A)of the intramolec-
ular blocks of the matrix P̃ indicate their indirect
dependence on characteristics of the opposite mole-
cule as shown latter in Eqs. (8), (10), and (11).

Because the total basis set of AOs {χ} also consists
of subsets of AOs of separate molecules, partition
like that of Eq. (4) is allowed also for the final CBO
matrix P. Moreover, the total transformation matrix
C takes the form of a direct sum of matrices CA and
CB, containing MOs of respective molecules, i.e.

C =
∣∣∣∣CA 0

0 CB

∣∣∣∣ . (5)

Substituting Eqs. (4) and (5) in Eq. (1) yields the fol-
lowing formula for the CBO matrix of the molecule
A under influence of the molecule B, viz.

PA(B) = CAP̃A(B)CA+ (6)

It is seen that only the submatrix P̃A(B) referring to the
molecule A is contained within this expression and
not the remaining blocks of the total DM P̃ of Eq.
(4). Thus, let us now turn to expressions for separate
elements of just this submatrix.

For pairs of orbitals of the molecule A of the
same initial occupation (e.g., ϕA(+)i, ϕA(+)j, and
ϕA(−)m, ϕA(−)r), the relevant expressions take the form

P̃A(B)

(+)i,(+)j = 2δij + P̃A(B)

(2),(+)i,(+)j, P̃A(B)

(−)m,(−)r = P̃A(B)

(2),(−)m,(−)r,
(7)

where 2 represents the initial (zero order) popula-
tion of an MO ϕA(+)i or ϕA(+)j (for MOs ϕA(−)m and
ϕA(−)r, the respective term takes a zero value). Mean-
while, terms of Eq. (7) designated by the subscript
(2) coincide with second-order corrections to ele-
ments concerned and depend on characteristics of
the molecule B, viz.

P̃A(B)

(2),(+)i,(+)j = −2
∑

B(−)n

G(K)

(1)inG(K)+
(1)nj ,

P̃A(B)

(2),(−)m,(−)r = 2
∑
B(+)s

G(L)+
(1)msG

(L)

(1)sr, (8)

where sums embrace MOs of subsets {ϕB(−)} and
{ϕB(+)}, respectively, and

G(K)

(1)in = − Kin

εA(+)i − εB(−)n
, G(L)

(1)sr = − Lsr

εB(+)s − εA(−)r

(9)

are elements of a certain first-order matrix G(1) (see
Refs. [29–31] and the Appendix section) represent-
ing direct intermolecular interactions. Numerators
of fractions of these expressions are defined by Eq.
(3), whereas denominators contain differences in
one-electron energies of respective orbitals. From Eq.
(8), it is seen that bond orders arise between MOs of
the molecule A if this molecule interacts with the
remaining one (B). Corrections to initial occupation
numbers of MOs, in turn, follow from Eq. (8) in the
cases i = j and m = r, respectively. Hence, the
actual occupation numbers of MOs are somewhat
altered against 2 or 0 for interacting molecules. These
alterations evidently are due to the intermolecular
charge transfer. In particular, the partial popula-
tion transferred between orbitals ϕA(+)i and ϕB(−)n is
determined by square of the direct interaction G(K)

(1)in
defined by Eq. (9). Given that the Hamiltonian matrix
elements Kin of Eq. (3) do not differ significantly for
various pairs of MOs ϕA(+)i and ϕB(−)n, a single pre-
dominant interaction may be distinguished in the
charge transfer-determined diagonal elements of the
matrix P̃ on the basis of relative values of energy gaps
εA(+)i − εB(−)n. The famous pair of frontier MOs (i.e.,
the HOMO of the molecule A and the LUMO of B or
vice versa [13–17]) usually plays this role.

For pairs of MOs of opposite initial occupation,
the relevant element of the submatrix P̃A(B) takes the
form

P̃A(B)

(+)i,(−)r = P̃A(B)

(2),(+)i,(−)r = −2GA(B)

(2)ir , (10)

where GA(B)

(2)ir is an element of the second-order matrix
G(2). This element is expressible as follows:

GA(B)

(2)ir = 1
εA(+)i − εA(−)r

×
{∑

B(+)s

MisLsr

εB(+)s − εA(−)r
−

∑
B(−)n

KinT+
nr

εA(+)i − εB(−)n

}
, (11)

and represents a newly formed indirect interaction
between orbitals of the molecule A (ϕA(+)i and ϕA(−)r)
by means of additional mediators offered by the
molecule B. It is seen that intermolecular interac-
tion gives birth to bond orders between MOs of
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the molecule A of opposite initial occupation too.
As opposed to occupation numbers of MOs, two
MOs of the molecule A are necessarily involved
within any newly formed bond order. Hence, the
HOMO/LUMO concept [13–17] is not applicable
here.

In summary, Eqs. (7)–(11) allow the submatrix
P̃A(B) to be represented in the form

P̃A(B) = P̃A
(0) + P̃A(B)

(2) , (12)

where the zero-order member (P̃A
(0)) corresponds to

the isolated molecule A and contains the matrix 2I
in its first diagonal position referring to the subset
{ϕA(+)} and zero matrices elsewhere (I stands for the
unit matrix). Meanwhile, elements of the second-
order term P̃A(B)

(2) are defined by Eqs. (8) and (10)
and depend indirectly on the molecule B. Now, no
more is required as to substitute Eq. (12) in Eq. (6).
The resulting expression for the final CBO matrix of
the reacting molecule A (PA(B)) then resembles Eq.
(12), where the zero-order member (PA

(0)) coincides
with the CBO matrix of the isolated molecule A in
accordance with the expectation. The second-order
correction (PA(B)

(2) ), in turn, follows from the relation

PA(B)

(2) = CAP̃A(B)

(2) CA+ (13)

and describes charge and bond order redistribution
and thereby reorganization of bonding in the mole-
cule A under influence of the molecule B. Thus, we
have generalized the relation of Eq. (1) to the case
of a reacting molecule A. Equation (13) is the basic
expression of the present approach. The decisive role
of initial MOs in the formation of the subsequent
reorganization of bonding may be easily anticipated
on the basis of this expression. Indeed, Eq. (13) indi-
cates the populations ofAOs of the reacting molecule
A and bond orders describing its chemical bonds to
be expressible as linear combinations of elements of
the matrix P̃A(B)

(2) , the nature of these combinations
being determined by elements of the matrix CA, i.e.
by the structure of MOs of the isolated molecule A. In
this connection, the relation of Eq. (13) may be ana-
lyzed without specifying the actual intermolecular
interaction as demonstrated in Sections 3 and 4.

3. Properties of Partial Increments to
the Reorganization of Bonding

Here and latter, we will dwell exclusively on the
relation of Eq. (13) referring to the molecule A. Thus,

the superscripts A(B) and A may be omitted for sim-
plicity. The same refers to the subscript (2) too. Let
individual AOs of the molecule A to be designated
by greek subscripts, e.g. χµ, χν , etc. After introducing
the following simple notations

P̃A(B)

(2)kl = (kl), PA(B)

(2)µν = pµν (14)

and reformulating Eq. (13) in terms of separate
matrix elements, we obtain

pµν =
∑

k,l

CµkCνl(kl). (15)

This relation indicates that any element pµν consists
of a sum of increments of individual MOs and of their
pairs. Moreover, these increments are correspond-
ingly proportional to the relevant changes in occu-
pation numbers (kk) and to bond orders (kl). Indeed,
the expression of Eq. (13) may be reformulated as
follows

pµν =
∑

k

p(kk)
µν +

∑
k>l

p(kl)
µν , (16)

where

p(kk)
µν = CµkCνk(kk), (17)

p(kl)
µν = (CµkCνl + CµlCνk)(kl) (18)

are the partial contributions of the k-th MO ϕk and of
the pair ϕk, ϕl, respectively. In the case of a diagonal
element pµµ, we accordingly obtain

p(kk)
µµ = (Cµk)

2(kk), (19)

p(kl)
µµ = 2CµkCµl(kl). (20)

Increments defined by Eqs. (17)–(20) depend on con-
stitutions of respective MOs only and thereby may
be studied separately. Moreover, the sets of incre-
ments {p(kk)

µν , µ, ν = 1, 2 . . .} and {p(kl)
µν , µ, ν = 1, 2 . . .}

embracing all AOs of the molecule A and their
pairs accordingly represent partial reorganizations
of bonding originating from the MO ϕk and from the
pair ϕk, ϕl, respectively. The final pattern of reorgani-
zation of bonding then follows from superposition
of these partial redistributions in accordance with
Eq. (16).

The above expressions demonstrate the gener-
alized nature of the present approach versus the
usual way of obtaining the CBO matrix of an iso-
lated molecule on the basis of Eq. (1). Indeed, occu-
pied MOs only contribute to the CBO matrix in the
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standard approach and these contributions are pro-
portional to the uniform number 2. By contrast, all
MOs yield increments to an element pµν in our case
and these increments contain nonuniform occupa-
tion numbers in addition. Finally, pairs of MOs also
make contributions to pµν owing to nonzero bond
orders (kl).

Let us now turn to analysis of separate increments
defined by Eqs. (17)–(20). Let us start with p(kk)

µµ of
Eq. (19). It is seen that the population lost (acquired)
by the MO ϕk of the molecule A because of the
intermolecular charge transfer becomes distributed
among its AOs {χAµ} proportionally to squares of the
relevant MO LCAO coefficients Cµk. Moreover, the
signs of increments p(kk)

µµ are uniform and depend on
that of (kk). It is evident that (kk) < 0 and (kk) > 0 for
initially occupied and initially vacant MOs [see Eq.
(8)]. Thus, negative and positive signs of increments
to occupation numbers of AOs correspondingly fol-
low. Taking into account the unitary nature of the
matrix CA and summing up both sides of Eq. (19)
over µ yields

∑
µ

p(kk)
µµ = (kk), (21)

i.e., the conservation condition for the total dis-
tributed population. Contributions of the same terms
(kk) to bond orders between AOs are described by
Eq. (17). As already mentioned, (kk) is a negative
quantity for an initially occupied MO ϕA(+)k. Thus,
the bond order between a certain pair of AOs (χAµ

and χAν) decreases owing to its deoccupation, if the
signs of coefficients Cµk and Cνk are uniform, i.e. if
the MO is of bonding nature between these AOs.
Otherwise, the bond order is predicted to grow.

Let us turn now to partial reorganizations of bond-
ing caused by newly-formed bond orders between
MOs and defined by Eqs. (18) and (20). Summing up
both sides of Eq. (20) over µ yields a zero result in
contrast to that of Eq. (21). Hence, the sum of all incre-
ments to occupation numbers of AOs due to a certain
bond order (kl) takes a zero value in accordance
with the general charge conservation condition (The
bond order (kl) cannot create a new population).
Turning of the above-specified sum to zero also indi-
cates increments p(kl)

µµ of opposite signs necessarily
to emerge in the molecule A. Contributions of the
plus-minus- like constitution, viz.

p(kl)
µµ

[
p(kl)

νν

] = ±D(kl)
µν (22)

are of particular interest (Section 5), where the upper
sign and the lower one correspondingly refer to p(kl)

µµ

and p(kl)
νν , and D(kl)

µν is the absolute value of the incre-
ment. Indeed, these changes in populations of AOs
may be interpreted as induced dipoles in the mole-
cule A due to its interaction with the compound B.

Contribution of the same element (kl) to the bond
order pµν between AOs χAµ and χAν is represented by
Eq. (18). This expression contains a cross product of
the relevant coefficients within MOs ϕk and ϕl. The
increments p(kl)

µν also are restricted in respect of their
total value. To derive the relevant condition, let us
turn to respective energetic increments. The latter
will be assumed to be defined in the framework of
the Hückel type approximation.

Because MOs of an isolated molecule follow
from the diagonality requirement for its Hamilton-
ian matrix [5–7, 32], off-diagonal elements Hkl =〈
ϕAk|Ĥ|ϕAl

〉
take zero values for any pair of MOs of the

molecule A. As a result, the product Hkl ·(kl) also van-
ishes. This implies that formation of the bond order
(kl) is an energy-free effect. Owing to invariance of
energy alterations towards unitary transformations
of the basis set, the same conclusion is valid in the
basis of AOs too. We then obtain∑

µ

Hµµp(kl)
µµ +

∑
µ,ν

Hµνp(kl)
µν = 0, (23)

for any bond order (kl), where Hµµ and Hµν stand
for the usual Coulomb and resonance parameters of
AOs. In the case of conjugated hydrocarbons, the
Coulomb parameters Hµµ are assumed to be uni-
form and thereby may be chosen to coincide with
zero. Moreover, equalities Hµν = 1 and Hµν = 0 usu-
ally refer to chemically-bound (neighboring) pairs of
AOs and to the remaining pairs, respectively. From
Eq. (23) we then obtain

(neighb)∑
µ,ν

p(kl)
µν = 0, (24)

where the sum embraces the neighboring pairs of
AOs only. Thus, the total alteration in bond orders
of chemical bonds originating from the element (kl)
takes a zero value in conjugated hydrocarbons. As
a result, increments p(kl)

µν of opposite signs also are
anticipated to arise, in particular changes of the same
absolute value as shown in Eq. (22). Terms of the
latter type may be interpreted as a switch of bond
order from one bond of the molecule A to another.
Let us note finally that the energy-free nature of alter-
ations in the elements of the CBO matrix caused by
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SCHEME 1. Symmetry breakings in the cis butadiene
(a), benzene (b), and naphthalene (c) under influence of
an approaching electrophile (E+). The reflection planes R
and Q represent elements of the total point symmetry
group that are lost in the reacting system. The plane S of
benzene remains among elements of the group for the
reacting system as well.

any bond order (kl) is consistent with the expression
for the stabilization energy of a molecular system in
terms of charge transfer energy only [31].

Therefore, two distinct types of partial increments
to the final pattern of reorganization of bonding
reveal themselves from the above analysis, viz. incre-
ments caused by the intermolecular charge transfer
and those related to newly formed bond orders
between MOs. Contributions of the former type
are not limited in respect of their total values, and
the HOMO/LUMO concept is applicable to them
in principle. Opposite to that said above refers to
increments of bond orders between MOs.

4. Symmetry Breaking in the Reactant
Under Influence of the Approaching
Reagent

Reacting molecules usually are characterized
by lower symmetry groups when compared with
respective isolated compounds. In other words, sym-
metry of the molecule A breaks with respect to
certain operation(s) of the relevant point group after
taking into account the intermolecular interaction.
The reflection planes R of cis-butadiene and benzene
under attack of electrophile [Schemes 1(a) and (b)]
serve here as excellent examples.

Canonical MOs of molecules are classified on the
basis of irreducible representations of the respective
symmetry group (see e.g. [6]). In particular, MOs are
either symmetric or antisymmetric with respect to

any operation of the group including the planes R
discussed earlier. The same is then likely to refer
the individual increments to the reorganization of
bonding in reacting molecules.

To show this, let us consider a model system of
six AOs of Scheme 2. The AOs χµ and χν , as well
as χρ and χλ, take symmetric positions with respect
to the plane R, whereas χσ and χτ lie on this plane.
The bonds χµ − χρ , χν − χλ, χρ − χσ , and χσ − χλ also
accordingly take symmetric positions. For a certain
symmetric MO ϕS

k , we then obtain

Cµk = Cνk, Cρk = Cλk. (25)

Given that the MO is antisymmetric, i.e. ϕA
k , the

analogue of Eq. (25) is as follows:

Cµk = −Cνk, Cρk = −Cλk, Cσk = Cτk = 0. (26)

Let us now consider separate increments to elements
of the CBO matrix of Section 3. Let us start with
the increments p(kk)

µµ of Eq. (19). Because the right-
hand side of this expression contains a square of the
coefficient Cµk, we obtain that

p(kk)
µµ = p(kk)

νν , p(kk)
ρρ = p(kk)

λλ , (27)

irrespective of the type of symmetry of the MO ϕk.
Thus, no symmetry breaking follows in populations
of AOs of the molecule Abecause of the intermolecu-
lar charge transfer. An analogous conclusion results
also from Eq. (17), viz.

p(kk)
µρ = p(kk)

νλ , p(kk)
ρσ = p(kk)

σλ , (28)

whatever the type of symmetry of the MO con-
cerned. Hence, distribution of bond orders also

SCHEME 2. Relative positions of AOs with respect to
the symmetry plane R in the model system for
consideration of the symmetry breaking.
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retains its symmetry in spite of changing occupation
numbers of MOs.

Let us now turn to increments of newly formed
bond orders between MOs. Let us start with con-
tribution of bond orders (kl) to populations of AOs
described by Eq. (20). For pairs of MOs of the same
symmetry (ϕS

k , ϕS
l or ϕA

k , ϕA
l ), a relation like that of

Eq. (27) easily results along with the equality of
population alterations p(kl)

σσ and p(kl)
ττ to zero for pairs

of antisymmetric MOs. Hence, pairs of MOs of the
same symmetry also yield symmetric changes in the
charge distribution. Given that ϕk is a symmetric
MO, whereas ϕl is an antisymmetric one, or vice
versa, the result is as follows:

p(kl)
µµ = −p(kl)

νν , p(kl)
ρρ = −p(kl)

λλ , p(kl)
σσ = p(kl)

ττ = 0. (29)

Hence, antisymmetric alterations in occupation
numbers of AOs are predicted to arise owing to
newly formed bond orders between pairs of MOs
of opposite symmetry (ϕS

k , ϕA
l or ϕA

k , ϕS
l ). Moreover,

the first two relations of Eq. (29) coincide with that
of Eq. (22). Therefore, dipole-like contributions arise
to occupation numbers of all symmetrically placed
pairs of AOs in this case.

Analogous results also follow from the relation
of Eq. (18) for bond orders. Thus, the equality like
that of Eq. (28) may be easily derived for any pair
of symmetric MOs ϕS

k and ϕS
l . In the case of two

antisymmetric MOs, Eq. (28) becomes supplemented
with turning of some bond orders between AOs to
zero (viz. of those embracing AOs χσ and χτ ). Thus,
alterations following from MOs of the same symme-
try also are of symmetric nature. For pairs of MOs
of opposite symmetry, the result is as follows:

p(kl)
µρ = −p(kl)

νλ , p(kl)
ρσ = −p(kl)

σλ , p(kl)
µν = p(kl)

στ = 0 (30)

and indicates antisymmetric dipole-like increments
to arise to bond orders between AOs. The resulting
effect then consists in switches of bond order inside
pairs of symmetrically positioned bonds.

Therefore, partial increments to the total reorga-
nization of bonding in the reactant may be classified
into symmetric and antisymmetric ones with respect
to any symmetry operation lost under influence of
the approaching reagent. The symmetric changes
arise either from the intermolecular charge transfer
or from bond orders between pairs of MOs of the
same symmetry, whereas those of the antisymmet-
ric type originate from newly formed bond orders
between pairs of MOs of opposite symmetry. More-
over, antisymmetric changes in populations of AOs

always take the form of induced dipoles between
individual pairs of symmetrically positioned AOs,
whereas antisymmetric alterations in bond orders
coincide with their switches from a certain bond to
its symmetrically placed counterpart.

5. Illustration of the Results by
Consideration of Specific Examples

Let us start with a very simple and illustrative
example, viz. with a two-level two-electron system
under attack of an electrophile. Thus, our reactant
(A) will be represented by two AOs χ1 and χ2 and
by two MOs ϕ(+)1 and ϕ(−)2 (Scheme 3). Let us first
assume that the AOs are characterized by dissimilar
Coulomb parameters (H11 �= H22) so that χ1 is a more
electronegative orbital. Just the latter is supposed to
be under attack of electrophile (E+). The energy refer-
ence point of our model system will be chosen in the
middle of the energy gap between the initially occu-
pied MO (ϕ(+)1) and the initially vacant one (ϕ(−)2),
whereas the energy unit will be assumed to coin-
cide with the internal resonance parameter (H12).
One-electron energies of MOs ϕ(+)1 and ϕ(−)2 will
be accordingly denoted by ε(+)1 and −ε(−)2, where
ε(+)1 and ε(−)2 are positive parameters. The approach-
ing electrophile (E+) will be modeled by a single
initially vacant orbital ϕ(−)E, characterized by a cer-
tain one-electron energy −ε(−)E, where ε(−)E > 0. The
intermolecular interaction also will be represented
by a positive parameter, the latter being denoted by
δ, i.e.

δ = 〈
ϕ(−)E|Ĥ|χ1

〉
. (31)

SCHEME 3. Basis orbitals of a two-level two-electron
system under attack of an electrophile. The MO LCAO
coefficients defined by Eqs. (32) and (33) are shown
above the respective energy levels.
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Finally, elements of the relevant matrix C(≡CA) are
expressible as follows [33]:

C11 = cos(γ /2), C12 = C21 = sin(γ /2),

C22 = − cos(γ /2), (32)

where

γ = arctan
2H12

H11 − H22
, 0 ≤ γ ≤ π

2
. (33)

Two partial reorganizations of bonding may be
revealed in our two-level system under influence of
the reagent, viz. reorganization related to deoccu-
pation of the initially occupied MO ϕ(+)1 because of
charge transfer between orbitals ϕ(+)1 and ϕ(−)E and
that originating from the newly formed bond order
(12) between MOs ϕ(+)1 and ϕ(−)2 owing to their indi-
rect interaction by means of the external orbital ϕ(−)E.
Consequences of the first reorganization are rather
evident and easily followed from constitution of the
MO ϕ(+)1. The expressions concerned result from Eqs.
(17) and (19) after substituting Eq. (32). For the rele-
vant alterations in occupation numbers of AOs and
in the bond order between the latter, we obtain

p(11)

11 = (11) cos2 γ

2
, p(11)

22 = (11) sin2 γ

2
,

p(11)

12 = 1
2
(11) sin γ , (34)

where (11) coincides with the extent of deoccupa-
tion of the MO ϕ(+)1 and is proportional to square
of the direct interaction G(1)1E between orbitals ϕ(+)1

and ϕ(−)E as Eq. (8) indicates, i.e.

(11) = −2(G(1)1E)
2 = −2

(K1E)
2

(ε(+)1 + ε(−)E)2
< 0. (35)

Equation (9) is also invoked here. The resonance
parameter K1E is defined by Eq. (3) and equals to

K1E = 〈
ϕ(+)1|Ĥ|ϕ(−)E

〉 = δ cos
γ

2
. (36)

Use of Eq. (35) within Eq. (34) shows that both
populations of AOs and the internal bond order are
predicted to be reduced because of deoccupation
of the MO ϕ(+)1 in accordance with conclusions of
Section 3. The relation of Eq. (21) may also be easily
verified by summing up the increments p(11)

11 and p(11)

22 .
Let us now turn to the second partial reorganiza-

tion of bonding in our two-level system originating

from the bond order (12). Expressions for the rele-
vant alterations in occupation numbers of AOs and
in the internal bond order follow after substituting
Eq. (32) in Eqs. (18) and (20). We obtain

p(12)

11

[
p(12)

22

] = ±(12) sin γ , p(12)

12 = −(12) cos γ , (37)

where the upper sign of the first relation (+) refers to
p(12)

11 , and the lower one (−) corresponds to p(12)

22 . It is
seen that an induced dipole of the form shown in Eq.
(22) necessarily arises in the two-level system what-
ever the actual newly-formed bond order between its
MOs (12) and whatever the parameter γ . The abso-
lute value of this dipole coincides with (12) sin γ .
Finally, the relation of Eq. (23) may be easily verified
to be met by alterations of Eq. (37).

The newly formed bond order (12) between MOs
ϕ(+)1 and ϕ(−)2 is proportional to the indirect inter-
action G(2)12 as Eq. (10) shows. The orbital of elec-
trophile ϕ(−)E plays here the role of the only mediator.
From Eq. (11) we then obtain

(12) = −2G(2)12 = 2K1ET+
E2

(ε(+)1 + ε(−)2)(ε(+)1 + ε(−)E)
, (38)

where T+
E2 is defined by Eq. (3) and is expressible as

follows:

T+
E2 = T2E = 〈

ϕ(−)2|Ĥ|ϕ(−)E
〉 = δ sin

γ

2
. (39)

The positive sign of the bond order (12) easily results
from Eq. (38) after using Eqs. (36) and (39). Hence,
the occupation number of the AO under attack (χ1)

grows due to the induced dipole, whereas that of the
remaining AO (χ2) becomes accordingly reduced.
This result is in line with the relevant conclusions
of the “curly arrow chemistry.” Indeed, this classical
model predicts that bonds are polarized so that an
increase of population is observed at the site of an
electrophilic attack [3]. The total pattern of the reor-
ganization of bonding follows after summing up the
increments of Eqs. (34) and (37).

Given that the AOs χ1 and χ2 are characterized by
uniform Coulomb parameters (H11 = H22), a sym-
metric two-orbital system follows. This particular
case is characterized by the equality γ = π/2 as Eq.
(33) indicates. Consequently, the AOs loose uniform
populations [see Eq. (34)] and the induced dipole
±(12) becomes the only increment to the symmetry
breaking of our initially symmetric reactant under
influence of the approaching reagent. This result is
in line with predictions of Section 4 (note that MOs
ϕ(+)1 and ϕ(−)2 are of opposite symmetry in this case).
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SCHEME 4. MOs of butadiene along with the orbital of
electrophile (ϕ(−)E ). Numbering of AOs is shown in the
lower part of the scheme. Coefficients at these AOs in
the MOs of butadiene are shown above the respective
energy levels.

Let us now turn to a more involved system,
namely to the butadiene molecule under attack of
the same reagent (E+). Let the simple Hückel model
to be applied to the initial reactant [6, 7, 9, 34]. To this
end, we invoke four 2pz AOs of carbon atoms char-
acterized by uniform Coulomb parameters [Scheme
1(a)]. The resonance parameters of chemical bonds
C1–C2, C2–C3, and C3–C4 also will be assumed to take
uniform values for simplicity. The energy reference
point and the energy unit will correspondingly coin-
cide with the afore mentioned parameters. The MOs
of butadiene and their one-electron energies [7, 34]
are exhibited in Scheme 4. Note that coupled energy
levels are present in this scheme, namely ±ε1 and
±ε2, where ε1 = 1.618 and ε2 = 0.618. The standard
MO LCAO coefficients of butadiene (a = 0.372 and
b = 0.602) meet the following relations

a2 + b2 = 1
2

, b2 − a2 = ab. (40)

The first relation results from the normalization con-
dition for MOs, whereas the second one follows from
transformability of the initial Hamiltonian matrix of
butadiene into two blocks representing two simi-
lar two-level systems characterized by the relation
tan γ = 2 [see Eq. (33)] (to show this, passing to sym-
metric and antisymmetric combinations of pairs of
AOs χ1, χ4 and χ2, χ3 is required).

The reagent (electrophile) will be characterized
by the orbital ϕ(−)E and the energy −ε(−)E, as pre-
viously. The terminal carbon atoms C1 and C4 (the
so-called α-position) are known to be much more
reactive when compared with the internal atoms C2

and C3 (the β-position) in butadiene [1, 3, 4, 17, 35].

Nevertheless, we will consider both directions of the
attack for comparison. The reagent will be assumed
to approach the respective carbon atom from the
above [36]. To be able to compare the relevant alter-
ations in the electronic structure more easily, the
resonance parameter between the orbital ϕ(−)E and
the AO of the carbon atom under attack will be
assumed to take the same value (σ ), i.e.

〈
ϕ(−)E|Ĥ|χ1

〉 = σ ,
〈
ϕ(−)E|Ĥ|χ2

〉 = σ (41)

for the terminal (α) attack and for the internal (β)

one, respectively. To be able to reveal reorganiza-
tion of bonding of different symmetry (Section 4),
the MOs of butadiene are additionally classified into
symmetric and antisymmetric ones with respect to
the plane R by introducing superscripts S and A.

On the whole, seven partial increments contribute
to the final reorganization of bonding in butadiene
under attack of electrophile. These originate from
deoccupations of two initially occupied MOs [(11)
and (22)], as well as from five newly formed bond
orders, viz. (13), (24), (14), (23), and (12) [note that
no bond order arises between MOs ϕS

(−)3 and ϕA
(−)4

owing to absence of appropriate mediators in Eq.
(8)]. These increments, in turn, may be conveniently
collected into three groups, namely (i) contributions
of deoccupations of MOs, (ii) partial reorganizations
originating from newly formed bond orders (13)
and (24) between pairs of MOs of the same symme-
try (SS and AA, respectively), and (iii) increments
resulting from bond orders (14) and (23) between
MOs of opposite symmetry (SA and AS). Let us
consider the relevant partial reorganizations of
bonding separately.

Let us start with contributions of deoccupations
of MOs. As with the two-level system studied ear-
lier, changes in occupation numbers of MOs ϕS

(+)1 and
ϕA

(+)2 [(11) and (22)] follow from Eq. (8) and are pro-
portional to squares of direct interactions G(1)1E and
G(1)2E, respectively, the latter being defined by Eq.
(9). The consequent alterations in occupation num-
bers of AOs of butadiene are determined by Eq. (19).
Let us define the total increments of deoccupations
of MOs as follows:

pCT
11 = pCT

44 = a2(11) + b2(22),

pCT
22 = pCT

33 = b2(11) + a2(22), (42)

where the superscript CT indicates these changes
to originate from the intermolecular charge transfer.
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TABLE I
Relative numerical values of terms representing the reorganization of charge distribution in butadiene under
influence of an approaching electrophile for various values of one-electron energies of the latter (all increments
are given in the σ 2 units).

ε(−)E pCT,α
11 pCT,α

22 , pCT,β
11 pCT,β

22 DSα, −DSβ DAα
1 DAα

2 , DAβ

1 DAβ

2

0.0 −0.701 −0.300 −0.200 0.200 0.500 −0.500 0.000
0.3 −0.321 −0.146 −0.119 0.143 0.381 −0.323 0.039
0.6 −0.185 −0.088 −0.080 0.113 0.286 −0.235 0.051
0.9 −0.120 −0.059 −0.058 0.094 0.237 −0.184 0.052
1.2 −0.084 −0.043 −0.043 0.080 0.202 −0.150 0.050
1.5 −0.062 −0.033 −0.033 0.070 0.169 −0.126 0.049

The final expressions for these increments take the
form

pCT,α
11 = pCT,α

44 = −2σ 2

[
a4

(ε1+ε(−)E)2
+ b4

(ε2+ε(−)E)2

]
< 0,

pCT,α
22 = pCT,α

33 = pCT,β
11 = pCT,β

44

= −2a2b2σ 2

[
1

(ε1 + ε(−)E)2
+ 1

(ε2 + ε(−)E)2

]
< 0,

pCT,β
22 = pCT,β

33 =−2σ 2

[
b4

(ε1+ε(−)E)2
+ a4

(ε2+ε(−)E)2

]
< 0

(43)

where the superscripts α and β of the left-hand sides
correspondingly refer to the α- and β-attacks of elec-
trophile. The symmetric nature of these alterations
with respect to the plane R is evident. Moreover, all
AOs lose their populations under influence of elec-
trophile. The results of numerical calculations on the
basis of Eq. (43) are shown in Table I. It is seen that the
overall loss of population is approximately two times
higher for the α-attack when compared with the β

position of the reagent. This result implies a higher
stabilization energy of the intermolecular interac-
tion [31] in the former case and thereby it allows us to
account for the more significant relative reactivity of
the α-position. The above-established ratio between
the extents of the charge transfer, in turn, may be
traced back to the structure of the HOMO ϕA

(+)2 play-
ing the decisive role in the formation of alterations
of Eq. (43).

Let us now turn to influences of the same terms
(11) and (22) on bond orders between AOs. The
HOMO ϕA

(+)2 is of a bonding nature in the regions of
initially double bonds (C1=C2 and C3=C4) (Scheme
4). Thus, the orders of these bonds may be expected
to be reduced if this MO is deoccupied. Accordingly,
the antibonding nature of the same MO in the region

of the remaining bond (C2–C3) implies growth of the
bond order p23. Such a simple scheme has been dis-
cussed in Ref. [20]. It is evident, however, that it
may become modified essentially after taking into
account the contribution of the lowest MO ϕS

(+)1. To
examine this point, let us consider total alterations in
bond orders between AOs due to deoccupations of
both initially occupied MOs. The expressions con-
cerned result from Eq. (17) and Scheme 4 take the
form

pCT
12 = pCT

34 = ab[(11) + (22)], pCT
23 = b2(11) − a2(22).

(44)

The final formulae for these alterations are as
follows:

pCT,α
12 = pCT,α

34

= −2abσ 2

[
a2

(ε1 + ε(−)E)2
+ b2

(ε2 + ε(−)E)2

]
< 0,

pCT,α
23 = 2a2b2σ 2

[
1

(ε2 + ε(−)E)2
− 1

(ε1 + ε(−)E)2

]
> 0,

pCT,β
12 = pCT,β

34

= −2abσ 2

[
b2

(ε1 + ε(−)E)2
+ a2

(ε2 + ε(−)E)2

]
< 0,

pCT,β
23 = 2σ 2

[
a4

(ε2 + ε(−)E)2
− b4

(ε1 + ε(−)E)2

]
. (45)

Signs of the first three changes in bond orders are
in accordance with the above expectations, whereas
that of the last expression cannot be defined a priori.
Numerical calculations (Table II) indicate the term
pCT,β

23 to be a negative quantity in a wide range of ener-
gies ε(−)E. This result implies reduction of the order
of the C2–C3 bond under influence of the β-attacking
electrophile. The more detailed analysis shows that
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TABLE II
Relative numerical values of terms representing the
reorganization of bond orders in butadiene under
influence of an approaching electrophile for various
values of one-electron energies of the latter (all
increments are given in the σ 2 units).

ε(−)E pCT,α
12 pCT,α

23 pCT,β
12 pCT,β

23 F Sα, −F Sβ F A

0.0 −0.448 0.224 −0.224 −0.000 0.045 −0.224
0.3 −0.209 0.091 −0.117 −0.026 0.025 −0.127
0.6 −0.122 0.047 −0.075 −0.028 0.017 −0.083
0.9 −0.080 0.028 −0.052 −0.025 0.012 −0.058
1.2 −0.057 0.018 −0.039 −0.022 0.009 −0.044
1.5 −0.042 0.012 −0.030 −0.019 0.007 −0.034

the increment of the lowest MO ϕS
(+)1 predominates

in this case.
Let us now turn to increments of the second type

(ii) originating from bond orders between MOs of the
same symmetry. As already mentioned, two bond
orders of this type arise in butadiene, viz. (13) and
(24). These bond orders embrace MOs of opposite
initial occupation and are determined by Eq. (10).
As with the two-level system studied earlier, the
relevant indirect interactions G(2)13 and G(2)24 are
mediated by the orbital of electrophile ϕ(−)E. We then
obtain

(13)α = −(13)β = 2abσ 2

(ε1 + ε2)(ε1 + ε(−)E)
> 0,

(24)α = −(24)β = 2abσ 2

(ε1 + ε2)(ε2 + ε(−)E)
> 0. (46)

It is seen that bond orders (13) and (24) differ in their
signs for the α- and β-attacks. Their total increments
to populations of AOs follow from Eq. (20), viz.

pS
11 = pS

44 = 2ab[(13) + (24)],
pS

22 = pS
33 = −2ab[(13) + (24)], (47)

where the superscript S is used here in connection
with the anticipated symmetric nature of the alter-
ations (Section 4). Opposite signs of bond orders (13)
and (24) for α- and β-attacks ensure opposite direc-
tions for respective population alterations of AOs.
Moreover, Eq. (47) yields dipole-like increments of
the form shown in Eq. (22) for bonds C1–C2 and
C3–C4 symmetrically. In particular, populations of
AOs χ1 and χ4 grow, whereas those of χ2 and χ3

are accordingly reduced if the terminal atom (C1) is
under attack of electrophile.

The relevant increments to bond orders between
AOs follow from Eq. (18). After an additional taking
into account the second relation of Eq. (40), we obtain

pS
12 = pS

34 = −ab[(24) − (13)], pS
23 = 2ab[(24)−(13)].

(48)

Constitution of expressions of Eq. (48) indicates sym-
metric switches of bond order to take place between
the terminal bonds (C1−C2 and C3−C4) and the
internal one (C2−C3). In particular, the bond order
becomes shifted from the former two bonds to the
latter under influence of the α-attack and vice versa
for the β-attack (note that (24)α >(13)α >0 as ε1 >ε2).
Condition of Eq. (24) for the total alteration in the
orders of chemical bonds is also met by increments
of Eq. (48).

On the whole, dipole-like nature of symmetric
alterations of Eqs. (47) and (48) may be concluded.
Two points serve to account for this unexpected
result, the first one consisting in the afore mentioned
transformability of the Hamiltonian matrix of buta-
diene to that of two two-level systems and the second
one lying in the above-established dipole-like consti-
tution of relevant alterations referring to the latter.
Let us introduce the following notations

DS = 2ab[(13) + (24)], FS = ab[(24) − (13)] (49)

for the induced dipoles of terminal bonds and for
switch of bond order defined by Eq. (48). Numeri-
cal values of these terms are included into Tables I
and II, respectively, while their directions are shown
in Scheme 5(a) for both types of the attack. It is seen
that the direction of the dipole DS is such that growth
in the electron density is ensured at the site of the
attack of electrophile in accordance with predictions
of the “curly arrow chemistry” [3]. Meanwhile, the
switch of bond order FS takes an opposite direction
versus that of DS. The latter result implies oppo-
site effects of α- and β-attacking electrophiles on
the overall extent of delocalization of π -electrons in
butadiene. For comparison, the enhanced delocal-
ization in this hydrocarbon under influence of an
electric field of a longitudinal direction established
recently [37] deserves mentioning.

Let us finally consider the last type of reorganiza-
tion of bonding in butadiene originating from bond
orders between MOs of opposite symmetry, namely
from (14), (23), and (12). The first two bond orders
embrace MOs of opposite initial occupation and fol-
low from Eq. (10). The last bond order, viz. (12), refers
to initially occupied MOs. Thus, it is determined by
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SCHEME 5. Reorganizations of bonding in butadiene under influence of electrophile (E+) originating from bond orders
between MOs. Symmetric shifts of population (DSα, DSβ) and of bond orders (F Sα, F Sβ) for the α- and β-attacks of the
reagent are shown in the first picture (a). These shifts originate from newly formed bond orders between MOs of the
same symmetry. The second picture (b) represents antisymmetric shifts caused by bond orders between MOs of
opposite symmetry. The lengths of arrows virtually reflect the relative extents of respective shifts of population and bond
order. The cis-form of butadiene is chosen here for convenience.

Eq. (8), whereϕB(−)n coincides withϕ(−)E. It is essential
to note that (14)α and (23)α differ from their counter-
parts (14)β and (23)β not only in signs but also in
absolute values. The same then refers to the relevant
alterations in occupation numbers of AOs. Let us
introduce the following notations for the respective
antisymmetric dipoles

pA
11 = −pA

44 = DA
1 , pA

22 = −pA
33 = DA

2 . (50)

After using Eq. (20) and Scheme 4, we then
obtain

DA
1 = 2a2(14) + 2b2(23) + 2ab(12),

DA
2 = −2b2(14) − 2a2(23) + 2ab(12). (51)

Substituting the relevant expressions for bond
orders (14), (23), and (12) yields the following
result

DAα
1 = 2σ 2

[
a4

ε1(ε1 + ε(−)E)
+ b4

ε2(ε2 + ε(−)E)
− 2a2b2

(ε1 + ε(−)E)(ε2 + ε(−)E)

]
,

DAα
2 = DAβ

1 = −2a2b2σ 2

[
1

ε1(ε1 + ε(−)E)
+ 1

ε2(ε2 + ε(−)E)
+ 2

(ε1 + ε(−)E)(ε2 + ε(−)E)

]
,

DAβ

2 = 2σ 2

[
a4

ε2(ε2 + ε(−)E)
+ b4

ε1(ε1 + ε(−)E)
− 2a2b2

(ε1 + ε(−)E)(ε2 + ε(−)E)

]
. (52)

As opposed to the above dipoles, the antisymmet-
ric shifts of bond orders prove to be determined by
the term (12) only. Moreover, the equality (12)α =
(12)β ensures an indepence of the switch of bond
order FA on the position of electrophile. From Eqs.
(18) and (40), we obtain

FA = pA
12 = −pA

34 = 1
2
(12) = − abσ 2

(ε1 + ε(−)E)(ε2 + ε(−)E)
.

(53)

Increments of Eqs. (52) and (53) are also shown in
Tables I and II and in Scheme 5(b). Positive signs
of dipoles DAα

1 and DAβ

2 ensure growing populations
at the sites of the attack. So far as absolute values
are concerned, the α-attack of electrophile is accom-
panied by considerably larger shifts of population
toward the approaching reagent. This result is in
line both with the higher relative reactivity of the
α-position versus the β one [1, 3, 4, 17, 35] and with
the more significant self-polarizability π11 versus π22
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TABLE III
Numerical values of antisymmetric induced dipoles
of naphthalene under influence of electrophile.
Superscripts AS and AA are used to denote dipoles
of A(R)·S(Q) and A(R)·A(Q) types, respectively, where
R and Q stand for reflection planes shown in the
Scheme 1(c) (all dipoles are given in the σ 2 units).

DASβ

1 , DAAβ

1 ,

ε(−)E DASα
1 DASα

2 DASβ

2 DAAα
1 DAAα

2 DAAβ

2

0.0 0.140 −0.140 0.056 0.084 −0.084 0.002
0.3 0.104 −0.091 0.055 0.067 −0.058 0.026
0.6 0.085 −0.067 0.052 0.054 −0.044 0.032
0.9 0.070 −0.055 0.050 0.050 −0.038 0.033
1.2 0.060 −0.042 0.045 0.046 −0.030 0.034
1.5 0.054 −0.037 0.040 0.040 −0.026 0.030

in butadiene [7]. Moreover, shifts of electron density
of Scheme 5(b) determine an alternating pattern of
respective excessive populations, e.g. C+

1 –C−
2 –C+

3 –C−
4

for the α-attack, where + implies an increased pop-
ulation. A growing importance of analogous charge-
alternant ionic structures has been revealed recently
[38], when studying the responce of cis-butadiene
to an electric field of a longitudinal direction. The
antisymmetric switch of bond order FA is directed
from the reacting C1–C2 bond to the remaining one
(C3–C4) in accordance with the expectation.

Let us finally turn to a brief consideration of
an analogous model of naphthalene under attack
of electrophile. The total number of MOs and of
their pairs grows significantly when passing from
butadiene to naphthalene. Nevertheless, both anal-
ysis and conclusions resemble the above ones.

Symmetry of naphthalene breaks under influ-
ence of an electrophilic attack with respect to
two planes R and Q [Scheme 1(c)]. As a result,
the whole manifold of partial reorganizations of
bonding may be classified into four types, viz.
S(R)·S(Q), A(R)·S(Q), S(R)·A(Q), and A(R)·A(Q).
Increments of the first two types (i.e., those sym-
metric with respect to the plane Q) are largely
similar to the relevant partial contributions of buta-
diene. In particular, this analogy embraces emer-
gence of shifts of electron density and bond orders
like those of Scheme 5 in the four fragments of
naphthalene, viz. C1−C2−C3−C4, C1−C6−C5−C4,
C7−C6−C5−C10, and C7−C8−C9−C10. The first three
columns of Table III contain relative numerical val-
ues of induced dipoles of the A(R)·S(Q) symmetry
referring to the fragment C1−C2−C3−C4 for the α-
and β-positions of electrophile (i.e. above the 1st

and the 2nd atom). Although the absolute values of
these dipoles (except for DASβ

2 ) are reduced consid-
erably versus those of butadiene (see the last three
columns of Table I for comparison), the correspond-
ing relative values and signs are similar including the
equality Dβ

1 = Dα
2 . These results may be traced back

to the qualitative similarity between the relevant MO
LCAO coefficients, as well as to the known extinc-
tion of their absolute values when the total number
of basis orbitals grows.

It is essential to emphasize here that the
afore mentioned alterations embrace both rings of
naphthalene symmetrically in accordance with their
S(Q) nature. In this context, the role of the remaining
increments of the A(Q) type (that are peculiar to the
naphthalene only) consists in strengthening of the
former changes in the ring under attack and in their
neutralization in the remaining ring. Induced
dipoles of the A(R)·A(Q) type are also shown in Table
III, where DAA

1 refers to atoms C1 and C7, whereas
DAA

2 embraces C2 and C8. Positive signs of dipoles
DAAα

1 and DAAβ

2 indicate additional shifts of electron
density to take place from atoms C7 and C8 to the
relevant atoms under attack of the reagent (C1 and
C2, respectively).

Finally, the analogy between butadiene and naph-
thalene embraces also the signs and relative values
of alterations referring to the α- and β-attacks of elec-
trophile. In particular, the α-attack on naphthalene is
accompanied by a larger extent of symmetry break-
ing in respect of populations of AOs when compared
with the β-attack as it was the case in butadiene.
The higher absolute values of DASα

1 versus DASβ

2 , as
well as of DAAα

1 versus DAAβ

2 seen from Table III serve
to illustrate the above statement. These results are
in line with the enhanced relative reactivity of the
α-position of naphthalene (C1) versus the β one (C2)
[17], as well as with the larger self-polarizability of
the 1st carbon atom when compared with the 2nd
one [7].

Therefore, the overall reorganization of bonding
in both butadiene and naphthalene under influ-
ence of electrophile is representable by superposition
of several principal contributions of comparable
absolute values.

6. Summary

The approach of this study is based on reveal-
ing new scopes of applicability for previous
achievements. Three principal points deserve to be
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mentioned here: (i) the usual retransformation pro-
cedure for the one-electron DM from the basis of
MOs into that of AOs is extended to the case of a cer-
tain molecule (reactant) under influence of another
one (reagent), (ii) the general power series for the
DM [29–31] is newly applied to the case of two inter-
acting molecules in the composite basis of MOs of
respective isolated compounds, and (iii) the stan-
dard way of classification of canonical MOs on
the basis of irreducible representations of the rele-
vant point symmetry group is extended to partial
increments of separate MOs and of their pairs to
the total reorganization of charge- and bond-order
distribution.

The principal achievement of the study con-
sists in derivation of expressions for corrections to
CBO matrices of molecules originating from the
intramolecular interaction and in revealing the con-
sequent reorganization of bonding in the reactant
under influence of an approaching reagent. Conclu-
sions that may be drawn here are as follows: (1) The
overall reorganization of bonding consists of two
principal components, the first one originating from
the intermolecular charge transfer and governed
mostly by frontier MOs, and the second component
resulting from newly formed bond orders between
MOs of the reactant and meeting certain conser-
vation conditions inside the latter. (2) The charge-
transfer component may be further decomposed into
increments of separate MOs of the reactant, while
that of bond orders contain contributions of separate
pairs of these basis orbitals. (3) The above-specified
increments may be classified into symmetric and
antisymmetric ones with respect to any symmetry
operation of the isolated reactant lost under influ-
ence of the approaching reagent. (4) Increments
of the same symmetry may be joined together, so
that the total number of principal contributions to
the final reorganization of bonding becomes largely
reduced.

With respect to comparison of the approach
suggested to related ones, the following points
deserve mentioning: (i) Decomposition of the over-
all reorganization of bonding into several partial
schemes underlying the approach suggested resem-
bles the analogous procedure of the classical qual-
itative version of the resonance theory [3, 4]. The
present decomposition, however, is based on the MO
method. (ii) An analogy reveals itself between the
above-established two principal components of the
reorganization of bonding (i.e., the charge transfer
component and that of bond orders between MOs)
and the two terms of the intermolecular interaction

energy of Refs. [20, 21] (namely, the delocalization
term and the polarization one, respectively). (iii) The
present approach may be considered as a general-
ization of that of Ref. [18] to the case of an explicit
taking into account both the reactant and the reagent
and thereby the charge redistribution between these
participants of the reaction. (iv) For specific systems,
predictions of the approach suggested are in line
with those of the “curly arrow chemistry” [3] and
with experimental trends in relative reactivities.

Appendix

EXPRESSIONS FOR THE ONE-ELECTRON
DENSITY MATRIX OF TWO INTERACTING
MOLECULES IN THE COMPOSITE BASIS OF
MOLECULAR ORBITALS

We are about to apply here the general pertur-
bative expansion for the one-electron density matrix
(DM) [29–31] to the case of two interacting molecules
A and B. Let us first invoke the basic expressions of
the original power series.

Let us start with the notation that no specify-
ing of basis orbitals was required when deriving
the series. The underlying total basis set {ϕ} was
only assumed to be divisible into two subsets {ϕ(+)}
and {ϕ(−)} containing the initially occupied orbitals
and the initially vacant ones, respectively. Moreover,
interactions (resonance parameters) of the intersub-
set type were supposed to be first-order terms versus
the intrasubset ones. As a result, the initial Hamil-
tonian matrix of the system under study H̃ has been
represented as a sum of the zero-order member H̃(0)

and of the first-order one H̃(1), where

H̃(0) =
∣∣∣∣E(+) 0

0 E(−)

∣∣∣∣ , H̃(1) =
∣∣∣∣ S R
R+ Q

∣∣∣∣ (A1)

consist of certain submatrices (blocks) E(+), E(−), S, R,
and Q. The blocks E(+)+S and E(−)+Q refer to subsets
{ϕ(+)}and {ϕ(−)}, respectively, and contain intrasubset
interactions along with one-electron energies of indi-
vidual orbitals. Meanwhile, the only off-diagonal
block R involves intersubset interactions.

The one-electron DM P̃ corresponding to the
above-specified Hamiltonian matrix H̃ has been
obtained in Refs. [29–31] by means of the direct
solution of the relevant commutation equation in
the form of power series. Accordingly, the matrix P̃
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has been represented as a sum of corrections P̃(k) of
various orders k, where

P̃(0) = 2
∣∣∣∣I 0
0 0

∣∣∣∣ , P̃(1) = −2
∣∣∣∣ 0 G(1)

G+
(1) 0

∣∣∣∣ , P̃(2)

= −2
∣∣∣∣G(1)G+

(1) G(2)

G+
(2) −G+

(1)G(1)

∣∣∣∣ (A2)

and I stands for the unit matrix. The principal matri-
ces of these expressions G(k), k = 1, 2.. meet the
following matrix equations

E(+)G(k) − G(k)E(−) + W(k) = 0, (A3)

where W(1) coincides with the matrix R of Eq. (A1)
and

W(2) = SG(1) − G(1)Q. (A4)

Finally, the general solution of Eq. (A3) is repre-
sentable as an integral [39, 40], viz.

G(k) =
∫ ∞

0
exp[E(+)t] · W(k) · exp[−E(−)t]dt. (A5)

Let us now turn to the case of two interacting
molecules A and B. Let the composite basis of MOs
of the whole system to consist of MOs of respective
isolated compounds. These orbitals always may be
divided into initially occupied and initially vacant
ones. Because the MOs of an isolated molecule follow
from the diagonality requirement for the respective
Hamiltonian matrix, zero values of interorbital inter-
actions inside separate molecules is also a natural
assumption here. So far as intermolecular interac-
tions are conserned, these may be assumed to take
sufficiently small values relatively to differences
between one-electron energies of MOs of opposite
initial occupation, at least for early stages of chemical
reactions. This implies the requirements underlying
Eq. (A1) to be met by our two-molecular system in
the composite basis of initial MOs. Hence, the rela-
tions shown in Eqs. (A2)–(A5) may be applied to
derive elements of the relevant DM.

To this end, let the basis set {ϕ} underlying Eqs.
(A1)–(A5) to coincide with the above-defined com-
posite set of MOs. The designation P̃ will then refer to
the respective representation of the DM of the whole
reacting system. The subsets {ϕ(+)} and {ϕ(−)} will
accordingly consist of those of individual molecules,
e.g. {ϕ(+)} will contain a direct sum of {ϕA(+)} and
{ϕB(+)}. The same subdivision refers also to separate
blocks of matrices H̃(0) and H̃(1) of Eq. (A1). Moreover,

the above-assumed zero intramolecular interactions
ensure zero intramolecular sub-blocks within these
blocks. As a result, the blocks S, R, and Q acquire
antiblock-diagonal constitutions, viz.

S =
∣∣∣∣ 0 M
M+ 0

∣∣∣∣ , R =
∣∣∣∣0 K
L 0

∣∣∣∣ , Q =
∣∣∣∣ 0 T
T+ 0

∣∣∣∣ ,

(A6)

where the subblocks M, K, L, and T contain the inter-
molecular interactions. The same constitution may
be easily shown to refer to the relevant matrix G(1),
viz.

G(1) =
∣∣∣∣ 0 G(K)

(1)

G(L)

(1) 0

∣∣∣∣ , (A7)

where nonzero subblocks G(K)

(1) and G(L)

(1) also are
expressible as integrals, e.g.

G(K)

(1) =
∫ ∞

0
exp[E(+)t] · K · exp[−E(−)t]dt. (A8)

[Equality W(1) = R is used within Eq. (A5) for
k = 1 when deriving Eqs. (A7) and (A8)]. Use of our
specific matrix G(1) shown in Eq. (A7) within subma-
trices −2G(1)G+

(1) and 2G+
(1)G(1) of Eq. (A2) allows the

blocks of the latter referring to the molecule A to be
represented as products −2G(K)

(1) G(K)+
(1) and 2G(L)+

(1) G(L)

(1) ,
respectively. This result forms the basis of expres-
sions for elements P̃A(B)

(2),(+)i,(+)j and P̃A(B)

(2),(−)m,(−)r shown
in Eq. (8) of Section 2.

Furthermore, substituting the particular blocks
S, Q, and G(1) from Eqs. (A6) and (A7) into Eq. (A4)
followed by invoking the integral of Eq. (A5) for
k = 2 yields an integral form for the block of the
matrix G(2) referring to the molecule A, viz.

GA(B)

(2) =
∫ ∞

0
exp[E(+)t] · [

MG(L)

(1) − G(K)

(1) T+]·
exp[−E(−)t] dt. (A9)

Given that E(+) and E(−) are diagonal matrices
consisting of one-electron energies of basis orbitals,
fractions for separate elements of matrices being
sought easily result from integral solutions shown
in Eqs. (A5), (A8), and (A9) [39, 40]. In particular,
expressions of Eq. (9) for elements G(K)

(1)in and G(L)

(1)sr
(Section 2) follow instead of Eq. (A8). Similarly, the
formula of Eq. (11) for elements GA(B)

(1)ir results from Eq.
(A9). Diagonality of matrices E(+) and E(−) is a natural
assumption in the case of two interacting molecules
owing to zero values of intramolecular interactions
in the composite basis of MOs.

1342 INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY DOI 10.1002/qua VOL. 110, NO. 7



REORGANIZATION OF BONDING WITHIN CBO MATRICES

References

1. March, J. Advanced Organic Chemistry, Reactions, Mech-
anisms and Structure; Wiley-Interscience: New York,
1985.

2. Carroll, F. A. Perspectives on Structure and Mechanism in
Organic Chemistry; Brooks/Cole: Pacific Grove, 1998.

3. Edenborough, M. Organic Reaction Mechanisms. A Step by
Step Approach; Taylor and Francis: London, 1999.

4. Ingold, C. K. Structure and Mechanism in Organic Chemistry;
Cornell University Press: Ithaca, 1953.

5. McWeeny, R. Methods in Molecular Quantum Mechanics, 2nd
ed.; Academic Press: London, 1992.

6. Murrell, J. N.; Kettle, S. F. A.; Tedder, J. M. The Chemical Bond;
Wiley: Chichester, 1978.

7. Basilevskii, V. M. The MO Method and Reactivity of Organic
Molecules; Khimia: Moscow, 1969.

8. Dneprovskii, A. S.; Temnikova, T. I. Theoretical Fundamentals
of Organic Chemistry; Khimia: Leningrad, 1991.

9. Dewar, M. J. S.; Dougherty, R. C. The PMO Theory of Organic
Chemistry; Plenum Press: New York, 1975.

10. Woodward, R. B.; Hoffmann, R. J Am Chem Soc 1965, 87, 395.
11. Woodward, R. B.; Hoffmann, R. The Conservation of Orbital

Symmetry; Verlag Chemie/Academic Press: Weinheim, 1971.
12. Hoffmann, R.; Woodward, R. B. Acc Chem Res 1968, 1, 17.
13. Fukui, K. Angew Chem Int Ed 1982, 21, 801.
14. Tedder, J. M.; Nechvatal, A. Pictorial Orbital Theory; Pitman:

London, 1985.
15. Fleming, I. Frontier Orbitals and Organic Chemical Reactions;

Wiley: Chichester, UK, 1976.
16. Traven, V. F. Electronic Structure and Properties of Organic

Compounds; Khimia: Moscow, 1989.

17. Klopman, G., Ed. Chemical Reactivity and Reaction Paths;
Wiley: New York, 1974.

18. Coulson, C. A.; Longuet-Higgins, H. C. Proc R Soc (London)
1947, A191, 39; A192, 16.

19. Gutman, I. Z Naturforsch 1981, 36A, 1112.
20. (a) Fukui, K.; Fujimoto, H. Bull Chem Soc Jpn 1968, 41, 1989;

(b) Fukui, K.; Fujimoto, H. Bull Chem Soc Jpn 1969, 42, 3399.
21. Fujimoto, H.; Yamabe, S.; Fukui, K. Bull Chem Soc Jpn 1971,

44, 2936.
22. Fukui, K. Acc Chem Res 1971, 4, 57.
23. Klopman, G.; Hudson, R. F. Theor Chim Acta 1967, 8, 165.
24. Klopman, G. J Am Chem Soc 1968, 90, 223.
25. Salem, L. J Am Chem Soc 1968, 90, 543.
26. Devaquet, A.; Salem, L. J Am Chem Soc 1969, 91, 3793.
27. Devaquet, A. Mol Phys 1970, 18, 233.
28. Sustman, R.; Binch, G. Mol Phys 1971, 20, 1; 9.
29. Gineityte, V. J Mol Struct (Theochem) 1995, 343, 183.
30. Gineityte, V. J Mol Struct (Theochem) 2001, 546, 107.
31. Gineityte, V. J Mol Struct (Theochem) 2002, 585, 15.
32. McWeeny, R.; Sutcliffe, B. T. Methods of Molecular Quantum

Mechanics; Academic Press: London, 1969.
33. Gineityte, V. J Mol Struct (Theochem) 1998, 434, 43.
34. Minkin, V. I.; Simkin, B. J.; Mineev, R. M. Teorija stroenija

molekul; Visshaja shkola: Moscow, 1979.
35. Becker, H. G. O. Einfürung in die Elektronentheorie Organ-

isch Chemischen Reaktionen; Deutscher Verlag der Wis-
senschaften: Berlin, 1974.

36. Gineityte, V. J Mol Struct (Theochem) 2004, 680, 199.
37. Karafiloglou, P. J Comput Chem 2006, 27, 1883.
38. Karafiloglou, P.; Papanikolaou, P. Chem Phys 2007, 342, 288.
39. Gineityte, V. Int J Quant Chem 1998, 68, 119.
40. Gineityte, V. Int J Quant Chem 1999, 72, 559.

VOL. 110, NO. 7 DOI 10.1002/qua INTERNATIONAL JOURNAL OF QUANTUM CHEMISTRY 1343


