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One- to two-exciton transitions have been examined in molecular aggregates with linear and circular
geometries at various strengths of the exciton–exciton interaction. For the interaction parametera
sufficiently different from its critical valueacrit51, the exciton–exciton interaction has been shown
to have little influence on the transition dipole moments, as well as on the corresponding transition
energies between the one-exciton states and the dissociated two-exciton states. The interaction
between the excitons then may be represented in an effective manner by the replacement of the
actual numberN of molecules per aggregate by a nearby effective numberNeff , the latter being
a-dependent. Hence, inclusion of the exciton–exciton coupling does not affect substantially the
previous analysis of one- to two-exciton transitions based on the model of noninteracting
one-dimensional excitons. That is, effects such as the blue shift of the excited-state absorption and
the enhancement of nonlinear susceptibilities are not sensitive to the exciton–exciton interaction.
These findings are relevant,inter alia, to J-aggregates in which there is no evidence for the coupling
parametera to be in the critical region or beyond. On the other hand, for the critical value of the
exciton–exciton interaction (a5acrit), the blue shift is either totally absent in the excited-state
absorption, or extremely small compared with the ordinary case. The above is in full agreement with
earlier calculation of the pump–probe spectrum showing a weak dependence on the exciton–exciton
interaction for a,1, as well as a strong bleaching of the exciton band in the critical region.
© 1997 American Institute of Physics.@S0021-9606~97!03847-6#
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I. INTRODUCTION

Recently there has been a great deal of interest in op
properties of molecular aggregates due to states with m
than one exciton. The interest was motivated, to a consi
able extent, by time resolved experiments performed
J-aggregates.1–8 The J-aggregates are one-dimensional m
lecular structures exhibiting a narrow absorption band~the
J-band! of excitonic origin shifted to the red from the mono
mer band.9 The J-band is due to absorption to the bottom
the exciton band of one-dimensional J-aggregates,10 the
sharpness of the absorption line being due to motio
narrowing.10,11

The two color pump–probe technique serves as a con
nient means to study exciton states in J-aggregates. In
pump–probe experiments by Gadonas and co-authors,1,2 a
transient blue shift of the J-band has been observed. A s
lar effect has been reported in a number of rec
experiments.3–8 The blue shift of the J-band may be unde
stood on the basis of the optical transitions between one-
two-exciton states,12,13 invoking the concept of one
dimensional Fermi-excitons:14 The analysis of such
transitions12,13 demonstrated an increase of energy of
excited-state absorption, as compared with the ground-s
absorption. The influence of static disorder15,16 and
phonons16 on the phenomenon has also been considered.
noteworthy that the shiftlike optical changes have been
served in the transient absorption for other molecular co
plexes as well, including the bacteriochlorophyll~BChl!
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molecules in the light harvesting antenna of the photos
thetic purple bacteria.17 To explain the differential spectra,
circular structure has been proposed18 for the BChl aggre-
gates.

Recently, questions have been raised with respect to
influence of the exciton–exciton interaction on the~two
color! pump–probe spectrum of molecular aggregates w
linear geometries.19–22 The analysis has been carried out
terms of two-particle Green functions adopting the co
tinuum limit for the states forming the exciton band.21,22 To
take into account the finite size of the aggregates, numer
simulations have also been accomplished.20–22 The calcula-
tions showed that the differential spectrum experiences
nificant changes if the strength of the exciton–exciton int
action is close to a critical value corresponding to t
formation of biexcitonic states below the band of two diss
ciated excitons. It is noteworthy that the calculated pum
probe spectrum appeared to be almost independent of
magnitude of the exciton–exciton coupling21,22 if the latter
does not exceed the critical value.

In the present paper we shall examine further the effe
of the exciton–exciton interaction on the one- to two-excit
transitions in molecular aggregates with linear geometr
the circular arrangement of the transition dipoles will also
considered. We shall explicitly derive and analyze the ma
elements for one- to two-exciton transitions in the prese
of exciton–exciton coupling: These quantities, lacking a p
vious systematic treatment, are the key elements in stud
9801)/9801/6/$10.00 © 1997 American Institute of Physics
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9802 G. Juzeliūnas and P. Reineker: Molecular aggregates
size-dependent quantities, such as the third-order susc
bilities due to exciton effects in molecular aggregates.23,24

The investigation is carried out analytically and also witho
adopting the continuum limit in which size-dependent effe
are lost. It will be demonstrated,inter alia, that the exciton–
exciton interaction may be taken into account in an effect
manner through the replacement of the actual numberN of
molecules forming the aggregate by an effective numberNeff

~with uNeff2Nu!N! for a wide range of system paramete
beyond the critical regime. This fact provides a natural
planation of the weak dependence of the pump–probe s
trum on the magnitude of the exciton–exciton coupling
ported in Refs. 21 and 22. The brief outline of the paper is
follows. In the next section the system is defined. Sect
III A contains the general consideration of the two-excit
eigen-states and the matrix elements for the one- to t
exciton transitions. Section III B analyzes the specific ca
at various strengths of the exciton–exciton coupling. T
concluding Sec. IV summarizes the findings.

II. FORMULATION OF THE MODEL

Consider a molecular aggregate consisting ofN two-
level molecules. The dipole operator for the interaction
the aggregate with light is

M5 (
n51

N

~mn* tn
†1mntn!, ~2.1!

wheretn (tn
†) is the Pauli operator for annihilation~creation!

of an excitation at the moleculen, mn being the correspond
ing transition dipole moment. For cyclic or linear geometr
of interest, the lattermn can be represented as

mn5m'x cos~2pn/N!1m'y sin~2pn/N!1m iz, ~2.2!

~x, y, and z being the unit Cartesian vectors!, where the
componentm' rotates in thexy plane; another componen
m i is parallel to thez axis for all the moleculesn forming the
aggregate. In the case wherem'50, the above arrangemen
of dipoles is relevant to aggregates with linear geometrie
well. In that case we choosez to be parallel tomn . In what
follows, we shall use the term ‘‘linear aggregate’’ to refer
such a situation. In passing we note that the size of the
gregate is supposed to be much smaller than the wavele
of light. Hence, the retardation factors have not been
cluded in the operator~2.1!: Incorporation of such factors i
straightforward. Denoting

J1~q!5 (
n51

N

tn
† exp~ i2qpn/N!, ~2.3!

(q50,61), the transition operator~2.1! takes the form

M5m'
*

x2 iy

2
J1~1!1m'

*
x1 iy

2
J1~21!1m i* zJ1~0!

1h.c. ~2.4!

We shall deal with interacting Frenkel excitons and co
sider nearest-neighbor interaction only. The Hamiltonian
such a system is
J. Chem. Phys., Vol. 107, N
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H5 (
n51

N

@«tn
†tn2L~ tn

†tn111tn11
† tn!2gtn

†tntn11
† tn11#,

~2.5!

where2L is the resonance coupling energy and2g is the
~dynamical! interaction energy between the excitons.

In solving the Hamiltonian~2.5!, we shall assume cyclic
boundary conditionstN11[t1 . In fact, it is quite common to
exploit the periodic Hamiltonian in studies of the multiexc
ton states in linear geometries as well:24–26 For finite aggre-
gates, the cyclic boundary conditions alter to some extent
energies and transition matrix elements of excitons, as c
pared to excitons under free-end boundary conditions. N
ertheless, effects such as the blue shift of the excited-s
absorption13 persist also in the case of cyclic bounda
conditions.25,28

For one-exciton states, the eigen-vectors and eig
energies read29

u l 0&5N21/2(
n51

N

un&exp~ i2p l 0n/N!, ~2.6!

E~2p l 0 /N!5«22L cos~2p l 0 /N!, ~2.7!

( l 050,61,... taking N integer values!, where the state-
vectors un&[tn

†ug& form a basis for the one-exciton state
ug& denoting the ground electronic state. For transitions
tween the ground and the one-exciton states, the matrix
ments for the operators~2.3! forming the dipole operator
~2.4! are

^ l 0uJ1~q!ug&5N1/2d l 0 ,q , ~2.8!

so that the optically allowed transitions can take place to
one-exciton statesuq& with q50,61.

In what follows we shall concentrate on the states w
two excitons. Separating the motion of the ‘‘center of mas
from the relative motion in the usual way,19,27,30a basis set
of the two-exciton states is

u l ,s&5 (
m51

N

um,m1s&exp@ ip l ~2m1s!/N#, ~2.9!

with um,m1s&[tm
† tm1s

† ug&, where the indexl , characteris-
ing the motion of the center of mass, can takeN integer
values 0,61,... . Since

u l ,s&5u l ,N2s&~21! l , ~2.10!

there are up to

smax5 H ~N21!/2, for odd N
N/2, for even N , ~2.11!

different values ofs describing physically different states. I
the case whereN is even andl is odd, one hasu l ,smax&[0.
Accordingly, the total number of different basis states
N(N21)/2 both for even and odd values ofN, as required.
o. 23, 15 December 1997
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III. ANALYSIS OF TWO-EXCITON STATES AND
TRANSITION DIPOLE MOMENTS

A. General

1. Two-exciton eigenstates

The eigenstates

Hu l ,k&5E~ l ,k!u l ,k& , ~3.1!

may be written in terms of the basic set~2.9!, as

u l ,k&5~2N!21/2(
s51

N21

u l ,s&Us~ l ,k!, ~3.2!

wherek is an index~to be specified later! characterizing the
relative motion of the two excitons.

To avoid double counting of the basis states, the exp
sion coefficients fors>smax are to be related to those fo
s<smax through the following constraint:31

UN2s~ l ,k!5Us~ l ,k!~21! l . ~3.3!

In addition, the normalization condition (^ l ,ku l ,k&51)
yields

(
s51

N21

uUs~ l ,k!u251. ~3.4!

The eigenvalue Eq.~3.1! is equivalent to the following
infinite set of difference equations:

Us21~ l ,k!1yUs~ l ,k!1Us11~ l ,k!50, ~3.5!

where the finiteness of the system and the exciton–exc
interaction are reflected via boundary conditions

U0~ l ,k!5aU1~ l ,k!, UN~ l ,k!5aUN21~ l ,k!, ~3.6!

with

y5@E~ l ,k!22«#/2L cos~p l /N! ~3.7!

and

a5g/2L cos~p l /N!. ~3.8!

The boundary conditions~3.6! incorporate effects of
both the kinematical repulsion between the excitons~due to
the Pauli exclusion principle! and also the dynamica
exciton–exciton interaction, the latter acting at the separa
distancess51 ands5N21. It is to be emphasized that fo
s>N ~or s<0!, the coefficientsUs( l ,k) are fictitious quan-
tities that have been introduced for mathematical con
nience only in order to convert the original finite set of d
ference equations forUs( l ,k) (s51,2, . . . ,N21) into the
infinite one ~3.5!.32 In particular, the auxiliary coefficients
U0( l ,k) and UN( l ,k), that are generally not equal to ze
unlessa50, by no means represent the probability amp
tudes for two excitons to reside at the same site.

Substituting

y522 cosk, ~3.9!

a solution to Eq.~3.5!, subject to the constraint~3.3!, is

Us~ l ,k!521/2C cos@~s2N/2!k1 lp/2#, ~3.10!

the boundary conditions~3.6! leading to
J. Chem. Phys., Vol. 107, N
n-

n

n

-

-

exp~ ikN!5~21! l
a exp~ ik !21

12a exp~2 ik !
. ~3.11!

Equation~3.11! determines the possible values ofk. ~Evi-
dentally, k and 2k describe the same physical state.! The
corresponding eigen-energies of the two-exciton states
through Eqs~3.7! and ~3.9!

E2~ l ,k!5E~p l /N1k!1E~p l /N2k!, ~3.12!

where E(•••) are the one-exciton energies defined by E
~2.7!. It is noteworthy that for21,a,1, all the values ofk
are real. Under this condition, there can be no bound
exciton levels outside the band of the dissociated tw
exciton states. Fora,21 (a.1) a bi-exciton level is
formed below~above! the band. The bi-excitons have bee
analyzed in detail previously.19,27,30Hence the present pape
will concentrate on the dissociated states characterized
real values ofk. Exploiting the condition~3.4!, the normal-
ization constant reads for the dissociated states

C5FN211~21! l
sin~N21!k

sin k G21/2

. ~3.13!

2. Transitions between one- and two-exciton states

Consider the transition matrix elements between o
and two-exciton states. Using the state-vectors~2.6! and
~3.2!, the matrix elements of the operatorsJ1(q), forming
the dipole operator~2.4!, become

^ l ,kuJ1~q!u l 0&5~2!1/2d l ,l 01q (
s51

N21

Us* ~ l ,k!

3cos@p~ l 22q!s/N#, ~3.14!

with q50,61. Calling on Eq.~3.10! for U( l ,k), one finds
more explicitly

^ l ,kuJ1~q!u l 0&5Cd l ,l 01q~P11P2! ~3.15!

where

P656
sin~Nk/27d62 lp/2!

sin~d6!
, ~3.16!

d65@p~ l 22q!/N6k#/2, ~3.17!

andk is again assumed to be real. Alternatively, Eq.~3.16!
may be written as

P65~21!~q1 l /26 l /2!
sin@~N21!d6#

sin~d6!
. ~3.18!

In the case of linear geometry (m'50) only theq50
term contributes to the dipole operator~2.4!, giving for the
transitions originating from the lowest one-exciton lev
l 050

^ l ,kuM u0&52Cm izd l ,0

sin@~N21!k/2#

sin~k/2!
. ~3.19!

For such a geometry, the ground electronic state is optic
connected to a single one-exciton state withl 050. Hence
subsequent transitions to the two-exciton states do take p
o. 23, 15 December 1997
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9804 G. Juzeliūnas and P. Reineker: Molecular aggregates
from the stateu0&, unless other mechanism~phonons, etc.!
cause population of higher one-exciton levels during
excited-state lifetime.

We conclude the general analysis by noticing that
above expressions hold for arbitrary strength of excito
exciton couplinga, the a-dependence emerging implicitl
via the eigenvalue equation~3.11! that gives us the spectrum
for k.

B. Specific cases

Suppose first thata50, i.e., the exciton–exciton interac
tion is ignored.

Then the general equations lead to

k5~2 j 1 l 11!p/N ~3.20!

and

^ l ,kuJ1~q!u l 0&5~21! jN21/2d l ,l 01q@cot~d1!2cot~d2!#,
~3.21!

wherej can take integer values for whichkÞ0. The above is
in agreement with the previous results for the one- to tw
exciton transitions in the system of the noninteracting ex
tons in linear25,28 and cyclic18 geometries.

Consider next a specific, yet a very important case
the optical absorption where

uka~12a!21u!1. ~3.22!

Equation~3.11! then reduces to

exp~ ikN!52~21! l exp@ i2ka/~a21!#, ~3.23!

giving the following spectrum fork:

k5~2 j 1 l 11!p/Neff , ~3.24!

with

Neff5N12a/~12a!, ~3.25!

where j can take integer values subject to the condit
~3.22!. In passing we note that the condition~3.22! is always
obeyed in the absence of the exciton–exciton coup
(a50). In other words, the present case incorporates
previous case of the noninteracting excitons in the lim
a50.

Exploiting the condition~3.24!, the solution~3.10! takes
the form

Us~ l ,k!521/2C~21! j sin$@s1a/~12a!#k%, ~3.26!

with

C5$N1@2ka/~12a!#cot~k!%21/2, ~3.27!

(C5Neff
21/2 for k!1!, so that thek50 value is again to be

excluded from the set~3.24!. The transition matrix element
are now

^ l ,kuJ1~q!u l 0&5~21! jNeff
21/2d l ,l 01q@cot d12cot d2#.

~3.28!

Obviously, the above matrix elements have the same form
the previous relationship~3.21! for noninteracting excitons
subject to the replacement
J. Chem. Phys., Vol. 107, N
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The replacement affects the quantization condition fork
~3.24! as well.~HoweverN is not to be altered in the expres
sion ~3.17! for d6 .!

For long aggregates (N@1), the dominant contribution
to the one- to two-exciton transitions is concentrated
d6!1. Thus, the assumption~3.22! implies that

uNeff2Nu/N!1, ~3.30!

in the case of transitions from the lowest levels of the o
exciton band:l 0!N.33 In this way, the exciton–exciton cou
pling has very little influence on the spectrum ofk values
~3.24!, on the transition dipole moments~3.28!, as well as on
the transition energiesE2( l ,k)2E(2p l 0 /N). The interac-
tion between the excitons appears in an effective man
through the replacement of the actual numberN of molecules
per aggregate by a nearby effective numberNeff . Therefore,
inclusion of the exciton–exciton coupling should not affe
considerably the previous theories12,13,18,23,24,28based on the
model of noninteracting one-dimensional excitons. Spec
cally, such effects as the blue shift of the excited-st
absorption12,13,18 and the enhancement of the nonline
susceptibilities23,24 persist in the present case of interacti
excitons.

The assumptions~3.22! and ~3.30! are relevant as long
as the parametera is not too close to its critical valueacrit51

ua21u@1/N. ~3.31!

For 0,a,1, the effective numberNeff is less thanN; for
a.1, one has the opposite:Neff.N. In the latter situation, a
biexcitonic level is formed below the band of the dissocia
two-exciton levels: The biexciton ‘‘borrows’’ some oscilla
tor strength from the optically active dissociated states at
bottom of the two-exciton band.33 Note that our analysis
does not cover the biexciton states~characterized by a purely
imaginary wave numberk! for which the localization length
uku21 is too small to comply with the assumption~3.22!.
Optical transitions due to biexcitons have been considere
detail recently;19 the present paper concentrates on tran
tions to the dissociated two-exciton states.

For a5acrit51 one has

k5~2 j 1 l !p/~N21!, ~3.32!

where j can take integer values. The solution~3.10! then
reads

Us~ l ,k!521/2C~21! j cos@~s21/2!k#, ~3.33!

with

C5 H ~N21!21/2, for 0,k,p
@2~N21!#21/2, for k50 . ~3.34!

Note that unlike in the previous cases, thek50 value is now
allowed providedl is even.

Consider first the one- to two-exciton transitions th
take place from one-exciton states different fromuq&. The
corresponding transition matrix elements are
o. 23, 15 December 1997
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^ l ,kuJ1~q!u l 0&

52~21! jd l ,l 01q~N21!21/2

3(
6

sin@p~ l 22q!/2N#

sin@p~ l 22q!/2N6p~ l 12 j !/2~N21!#
,

~3.35!

( l 0Þq). In the case of large aggregates (N@1), the matrix
elements withj 52q are the dominant ones, the other on
are smaller by at least a factor ofN. Neglecting the terms
with j Þ2q, the formula~3.35! may then be approximated
by

^ l ,kuJ1~q!uq&5~21! jd l ,l 01q~N27/2!1/2d j ,2q ,

~ l 0Þq!. ~3.36!

At this point it is instructive to mention quite general su
rules that apply for transitions from the excited states of
aggregates.12,13 For the ordered molecular aggregates
question, the following sum rule may be formulated for t
operatorJ1(q):

(
l ,k

u^ l ,kuJ1~q!u l 0&u25N221Nd l 0 ,q . ~3.37!

Since now l 0Þq, the total strength of the one- to two
exciton transitions isN22, the share of the dominant one-
two-exciton transitions~3.36! beingN27/2. The energies o
the dominant transition (j 52q) read:

DE[E2~ l 01q,k!2E~2p l 0 /N!

5E~2pq/N!14Lp2~ l 02q!2/N3, ~3.38!

up to terms proportional toN23.
Consider next the transitions originating from the on

exciton stateuq&, i.e., the case wherel 05q. Then one has

^ l ,kuJ1~q!uq&5~21! jd l ,2q~2N22!1/2d l ,2 j , ~3.39!

i.e., transitions are strictly forbidden to two-exciton sta
with j Þ2q. The energy of the allowed one- to two-excito
transition (j 52q) is

DE5E~2pq/N!. ~3.40!

Note that the intensity of the one- to two-exciton transition
now proportional to 2N22, rather than toN22. An extraN
compensates a downward transitionuq&→ug& described by
the Hermitian conjugate operatorJ(q)† that features in the
transition operator~2.4! along withJ(q). It is also apparent
that the transition moments~3.39! comply with the sum rule
~3.37!.

The transition energy~3.40! appears to be precisel
equal to the energy of the allowed transitionug&→uq& from
the ground state. Note that this fact has been already
served by Spano and Manas22 who pointed out the absenc
of the frequency shift for the upward transitions from t
lowest one-exciton level (l 050) in the case of linear geom
etries (q50). On the other hand, for the first type of trans
tions (l 0Þq), there is some increase of the excitation ene
~3.38!. However, the energy shift~having an N23 size-
J. Chem. Phys., Vol. 107, N
s

e
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dependence! is small compared with the usua
N22-dependent increase of the excitation energy12,13,23,24

characteristic for noninteracting excitons in one dimensi
as well as for the previous case~3.22!.

In this way, the present situation exhibits a number
unusual features for the optical transitions from the exci
states. Nevertheless, this is a rather specific case that m
be relevant only in a very small narrow critical region
which the assumption~3.31! breaks down.

IV. CONCLUSION

One- to two-exciton transitions have been examined
molecular aggregates with linear and circular geometrie
various strengths of the exciton–exciton coupling. For
coupling parametera sufficiently different from its critical
value acrit51, the exciton–exciton interaction has be
shown to influence only slightly both the transition dipo
moments and the corresponding transitions energies betw
the one-exciton and the dissociated two-exciton states.
interaction between the excitons then may be represente
an effective manner through the replacement of the ac
numberN of molecules per aggregate by a closeby effect
number Neff which is a-dependent. Hence, inclusio
of the exciton–exciton coupling does not affect subst
tially the previous analysis of one- to two-excito
transitions12,13,18,23,24,28based on the model of noninteractin
one-dimensional excitons~some extra features might appe
for a.acrit from the contribution due to a bound bi-excito
level34!. That is, effects, such as the blue shift of the excite
state absorption12,13,18 and the enhancement of nonline
susceptibilities,23,24 are not sensitive to the exciton–excito
interaction for a,acrit . These findings are relevant,inter
alia, to J-aggregates in which there is no evidence for
coupling parametera to be in the critical region or beyond
On the other hand, for the critical value of the exciton
exciton coupling (a5acrit), the blue shift is either totally
supressed in the excited-state absorption of the aggregat
extremely small compared with the ordinary case. Th
findings are in full agreement with the calculation of th
pump-probe spectrum21,22showing a weak dependence of th
spectrum on the exciton–exciton interaction fora,acrit , as
well as a strong bleaching of the exciton band in the criti
region.

Note added in proof. After submitting the manuscript we
became aware of recent work by Schulten and co-worke35

demonstrating that the bacteriochlorophyll molecules fo
perfect cyclic aggregates in the photosynthetic units
purple bacteria.
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12G. Juzeliūnas, Liet. Fiz. Rink.27~3!, 261~1987! @Eng. transl.: Sov. Phys.-

Coll. 27~3!, 7 ~1987!#.
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