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Pump–probe spectra of linear molecular aggregates: Effect
of exciton–exciton interaction and higher molecular levels
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The paper considers the differential pump–probe spectra due to excitons in linear molecular
aggregates taking into account simultaneously effects of both exciton–exciton interaction and
higher molecular levels. The theoretical analysis, carried out in terms of the Green function
technique, provides analytical expressions for the line shape of the pump–probe spectrum valid for
an arbitrary numberN of molecules forming the aggregate. Furthermore, the theory can
accommodate any number of molecular states with higher energies. This includes,inter alia, the
most common situation in which the higher lying states form a dense set of sublevels of electronic,
vibrational, etc. origin. It has been demonstrated that incorporation of such higher molecular levels
introduces widths to biexciton peaks formed below the two-exciton continuum. In addition, the
indirect interaction between the excitons via the higher molecular levels can facilitate formation of
a biexciton at lower than usual values of the direct exciton–exciton couplingg, in extreme cases
even for negativeg values characterizing repulsion rather than attraction between the excitons. On
the other hand, in the region around the exciton band-edge, the differential spectrum can be
described reasonably well in terms of the model of noninteracting excitons for a wide range of
parameters of the system, subject to the replacement of an actual number of molecules per aggregate
N by the effective oneNeff . The latterNeff is shown to be influenced both by the direct coupling
between the excitons and also by the indirect coupling via the higher molecular levels. ©1998
American Institute of Physics.@S0021-9606~98!70638-5#
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I. INTRODUCTION

Optical properties of molecular aggregates due to
transition between the ground electronic and the excited o
exciton states have been a subject of interest over m
years.1–8 However, only in the past decade more attent
has been drawn to the nonlinear optical properties of s
systems involving quantum states with more than one e
ton per aggregate.9–21 The interest was motivated, to a co
siderable degree, by the application of the time-resol
pump–probe spectroscopy in studying the molecular ag
gates in organic22–29 and biological30,31 systems. In such ex
periments, a blue shift has been observed for the exci
state absorption of one-dimensionalJ-aggregates of
pseudoisocyanine dye22–29and of complexes of the bacterio
chlorophyll ~BChl! molecules.30,31 The effect has been ex
plained on the basis of exciton-origin of the absorption lin
analyzing the one- to two-exciton transition in the molecu
aggregates.9,10,12–14,16,20,24,31The comparison of the theor
with the pump–probe experiments provides information
the delocalization lengths of excitons in molecu
aggregates,10 the degree of the intersite correlation of th
inhomogeneous broadening in aggregates,13,14 as well as
other characteristics of the systems.14,16,21 It is noteworthy
that in most of the previous studies, such as in Refs. 9,
6910021-9606/98/109(16)/6916/13/$15.00
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14, 16–18, excitons have been considered as nonintera
Paulions, and the influences of higher molecular levels h
been neglected.

Recently the effects of the exciton–exciton interacti
on the~two color! pump–probe spectra has been conside
for molecular aggregates with linear32–35 and circular35 ge-
ometries. The analysis has been carried out in terms of t
particle Green functions adopting the continuum limit for t
states forming the exciton band.33,34To take into account the
finite size of the aggregates, both numerical simulations
the pump–probe spectra have been accomplished32–34 and
explicit analysis of the transition dipoles has be
performed35 for transitions between the one- and two-excit
states. The numerical calculations33,34 have shown that the
differential spectrum can experience significant change
the strength of the exciton–exciton coupling is close to
critical value corresponding to the onset of biexciton form
tion below the band of dissociated two-exciton states. I
noteworthy that the calculated pump–probe spectrum33,34has
appeared to be almost independent of the magnitude of
exciton–exciton couplingg if the latter does not exceed
critical valuegcrit . This can be understood from the analys
of the dipole moments for the optical transition between
one- and two-exciton manifold35 showing that the exciton–
exciton interaction can be taken into account in an effect
manner through the replacement of the actual numberN of
6 © 1998 American Institute of Physics
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molecules forming the aggregate by an effective numberNeff

~with uNeff2Nu!N if g is away from gcrit!. In other
investigations,15,36 the two-photon absorption15 and the
pump–probe36 spectra have been considered for nonintera
ing excitons in large molecular chains of three-level m
ecules. A similar chain of three level molecules has been
treated in a classic paper by Merrifield,37 yet the analysis has
been restricted to the stationary two-quantum excited sta
no specific spectra~two-photon, pump–probe, etc.! being
considered.

In the present paper we shall examine jointly the effe
of the exciton–exciton interaction and the higher molecu
levels on the differential pump–probe spectrum of on
dimensional molecular aggregates. The theoretical ana
carried out in terms of the Green function technique, is va
for an arbitrary numberN of molecules forming the aggre
gate and accommodates any number of molecular states
higher energies as well. This includes,inter alia, the most
common situation in which the higher-lying states are ch
acterized by a dense set of sublevels of electronic, vib
tional, etc. origin. In such a case the higher molecular lev
play the role of a dissipative system that quenches pair
lower lying excitons, thus making the exciton–exciton an
hilation an irreversible process, as usually observed
experiments.38 In the spectroscopic context, the inclusion
such a dissipative system introduces some widths to the b
citon levels formed below the two-exciton continuum. In a
dition, the indirect interaction between the excitons via
higher molecular levels can facilitate the formation of a bie
citon at lower than usual values of the direct exciton–exci
couplingg, in extreme cases even for negativeg values char-
acterizing repulsion rather than attraction between the e
tons. On the other hand, in the region around the exc
band-edge, the differential spectrum can be described rea
ably well in terms of the model of noninteracting excito
for a wide range of the parameters of the system, subjec
the replacement of the actual number of molecules
aggregate39 N by the effective oneNeff , the latterNeff being
now influenced both by the direct coupling between the
citons and also the indirect coupling via the higher molecu
levels. In this way, effects such as the blue shift of the ex
ton absorption band established originally for noninteract
excitons,9,10,12–14persist also within the present more com
plicated model.

The analysis is carried out through the following ste
In Sec. II, after defining the Hamiltonian, the Jordan–Wign
transformation10,14,40–42is applied to convert molecular elec
tronic excitations with lower energy into fermions. Next w
separate the ‘‘center of mass’’ of the two Fermi-excito
from their relative motion via the introduction of operato
for the creation and annihilation of exciton pairs. This allo
us to avoid difficulties in counting the two-exciton state
Such difficulties can arise if one separates the ‘‘center
mass’’ from the relative motion in a usual way14,37,43,44using
the original ~paulion! representation for the two-excito
states. For instance, the cases with even and oddN require
separate analysis15,33 even for the case of noninteractin
excitons.14 Inclusion of the exciton–exciton interaction~as
well as the higher molecular levels! adds additional difficul-
t-
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ties if one is interested not only in biexcitons43,44 ~i.e., local-
ized states for the relative motion of two excitons!, but also
in the dissociated two-exciton states at finiteN. In fact, one
can choose readily incorrect boundary conditions for
relative motion of the two excitons~subsequently affecting
the eigenvalue spectrum of the dissociated two-exci
states!, as discussed in detail recently.35 It is noteworthy that
the present approach does not face all these difficulties
the fermionization carried out before the separation into
‘‘center of mass’’ and the relative motion solves the pro
lems automatically. In Sec. III the line shape of the excite
state absorption is presented through the two-particle Gr
functions. The latter Green functions are subsequently
rived in terms of those for the free excitons, details of t
derivation being placed in Appendix A. The summatio
emerging in the free-exciton Green functions are then exp
itly calculated~in Appendix B! adapting a method suggeste
by Montrol45 and Lakatos-Lindenberget al.46 in their studies
of random walks on lattices. As a result, in Sec. IV o
arrives at analytical expressions for the differential spectr
of the combined system containing interacting excitons a
higher molecular excitations. The expressions are valid
any number of moleculesN in the aggregate. Specific calcu
lations are also presented in Sec. IV to illustrate the gen
theory. The concluding Sec. V summarizes the findings.

II. HAMILTONIAN

Consider a system of interacting molecular excito
coupled to higher excited molecular levels in a on
dimensional molecular aggregate. The Hamiltonian for su
a system is

H5 (
n51

N H «tn
1tn2L~ tn11

1 tn1tn
1tn11!2gtn

1tn11
1 tn11tn

1(
a

@«acna
1 cna1xa~cna

1 1c~n11!a
1 !tn11tn

1xa* tn
1tn11

1 ~cna1c~n11!a!#J , ~2.1!

whereN is the number of molecules in the aggregate,tn
1 (tn)

are Pauli operators for the creation~annihilation! of an elec-
tronic excitation at moleculen, « being the excitation en-
ergy. Another set of operatorscna

1 and cna describes the
creation and annihilation of molecular excitations wi
higher energies («a.«), the summation overa covering
molecular levels of interest. The Hamiltonian~2.1! incorpo-
rates~within nearest neighbor approximation! both the reso-
nance transfer of the low-energy excitons between the m
ecules and their mutual coupling, where (2L) and (2g) are
the corresponding coupling constants. For higher molec
levels the resonance energy transfer is usually of much
importance and hence has been disregarded in the Ha
tonian ~2.1!. The two types of excitations interact via th
annihilation of two low-energy excitons at neighboring site
accompanied by the promotion of one of the two molecule
a higher excited levela, with xa being the coupling con-
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stant; the Hermitian conjugate terms in the Hamiltonian~2.1!
describe the opposite process. Finally, cyclic boundary c
ditions imply that

tN11[t1 and c~N11!a5c1a , ~2.2!

together with analogous relationships for the creation op
tors. It is noteworthy that in contrast to a recent study
Knoester and Spano,15 the Hamiltonian~2.1! incorporates the
exciton–exciton coupling (gÞ0) and also can take into ac
count an arbitrary number of higher molecular levelsa. Spe-
cifically, the present model can describe the most comm
situation where the levelsa comprise a dense set of high
molecular sublevels~of electronic, vibrational, etc. origin! in
resonance with the two-exciton states. Note also some s
larities between the present Hamiltionian and the one use
the theory of biphonons and Fermi resonance in the vib
tional spectra of crystals.47,48

A. Fermionization

For the present purposes, it is sufficient to consider
Hilbert space comprising the quantum states with up to
low-lying excitons and up to one molecular excitation w
higher energy. The operators,tn

1 and tn describing the
former type of the quasiparticles obey mixed Fermi and B
commutation relations known as the Pauli commutat
relations.10,14,41–43,49Therefore the Pauli operatorstn

1 and tn

are not convenient when dealing with the states contain
more than one exciton. To facilitate the analysis, we sh
invoke the Jordan–Wigner transformation10,14,17,40,41 con-
verting the original Pauli operators into a set of operatorsan

andan
1 obeying exact Fermi commutation relations, as

an5~21!sntn ; tn5~21!snan ~2.3!

(n51,2,. . . ,N), with

sn5 (
j 51

n21

t j
1t j5 (

j 51

n21

aj
1aj . ~2.4!

The operatoran describes the annihilation of a Fermi-excito
at the siten, an

1 being the corresponding creation operat
Note that the other set of operatorscna

1 and cna does not
require any fermionization, as our consideration is restric
to states with up to one molecular electronic excitation
this type. In fact, the present paper concentrates on pum
probe spectroscopy probing the excited-state manifold
contains a superposition of two Fermi-excitons and o
higher molecular excitation. The states in which two or mo
molecules are promoted to higher excited levels, are cha
terized by much larger energies than those of two Fer
excitons. Such states are not accessible via the pump–p
spectroscopy of interest due to detuning effects.

To represent the Hamiltonian~2.1! via the new opera-
tors, consider first the terms of the Hamiltonian that do
contain the Pauli operators belonging to the boundary siteN
and N11. Such nonboundary terms preserve their origi
form, i.e., one can simply change the lettert ~referring to
Pauli operators! into the lettera ~denoting Fermi operators!
in the corresponding terms of the Hamiltonian~2.1!; this
is a consequence of the one-dimensionality of the sys
along with the adopted nearest-neighbor appro
n-
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mation.9,10,14,17,18,41,42Consider now the boundary terms. Th
appropriate pair-operators featured in the Hamiltonian
quire now a phase factor (21)q, as presented in Ref. 4
analyzing a system of noninteracting excitons in one dim
sion, tN11

1 tN[t1
1tN5a1

1aN(21)q and tN
1tN115aN

1a1

(21)q, the operatorstN
1tN11

1 and tN11tN transforming in a
similar way. Here the parameterq can assume two differen
values; specifically,q50 (q51) in the case where the
HamiltonianH acts on the state-vector characterized by
odd~even! number of Fermi-excitons. To eliminate the pha
factor, we shall introduce the Fermi operatorsaN11 and
aN11

1 related toa1 anda1
1 as follows:

aN11[a1~21!q; aN11
1 [a1

1~21!q. ~2.5!

Using condition ~2.5!, the whole Hamiltonian retains its
original form ~2.1! and can hence be represented as

H5Hex1Hhigh1Hhigh-ex1Hex-high, ~2.6!

with

Hex5 (
n51

N

@«an
1an2L~an11

1 an1an
1an11!

2gan
1an11

1 an11an#, ~2.7!

Hhigh5 (
n51

N

(
a

«acna
1 cna , ~2.8!

Hhigh-ex5 (
n51

N

(
a

xa~cna
1 1c~n11!a

1 !an11an , ~2.9!

and

Hex-high5 (
n51

N

(
a

xa* an
1an11

1 ~cna1c~n11!a!, ~2.10!

where the factor (21)q is hidden in the boundary conditio
~2.5! for the operatorsaN11 andaN11

1 . Condition~2.5! will
lead to two different sets of the wave number valuesk̃ cor-
responding to states with an even and odd number of Fe
excitons, as presented in Eq.~2.12! below. It is to be empha-
sized that parameterq can indeed be used to classify th
eigenstates of the HamiltonianH in which operators for the
creation and annihilation of Fermi-excitons appear always
pairs.

The separation of the full Hamiltonian into the terms
Eq. ~2.6!, corresponds to the division of the full system in
a subsystem of interacting Fermi-excitons and into that
to the higher molecular states; Both subsystems are cha
terized by their HamiltoniansHex and Hhigh, respectively.
The remaining termsHhigh-ex andHex-high describe the inter-
action between the two subsystems. The former oper
Hhigh-excorresponds to processes involving the destruction
two Fermi-excitons accompanied by the promotion of t
system to a higher molecular state,Hex-highbeing the Hermit-
ian conjugated counterpart representing the opposite
cesses.
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B. Transition into the momentum space

Next we shall transform the Fermi-operators into t
momentum space,

bk̃
1

5N21/2(
n51

N

an
1eik̃n; an

15N21/2(
k̃

bk̃
1

e2 i k̃n, ~2.11!

where the boundary condition~2.5! provides the following
set of k̃ values:

k̃5p~2 j 1q!/N, ~2.12!

the numberj assumesN consecutive integer values, and th
parameterq can again take one of the two values 0 or
depending on whether the exciton number in the system
odd (q50) or even (q51). Note that the tilde has bee
placed here over the wave numberk̃ to reserve the usua
lower casek for the wave number of the relative motion o
two excitons introduced in Eqs.~2.15! and ~2.16! below.

In terms of the new operators, the Hamiltonian for t
exciton subsystem~2.7! reads

Hex5(
k̃

Ek̃bk̃
1

bk̃2g(
K

BK
1BK , ~2.13!

where

Ek̃5«22L cos k̃ ~2.14!

is the energy of a free Fermi-exciton. Here the coupling
tween the Fermi-excitons has been expressed via the a
iary operators

BK
15N21/2(

k
bK/21k

1 bK/22k
1 eik;

BK5N21/2(
k

bK/22kbK/21ke
2 ik ~2.15!

describing the creation and annihilations of exciton pairs
neighboring molecules, with

K52p l /N; k5p~2 j 2 l 1q!/N, ~2.16!

being, respectively, the wave number for the motion of
‘‘center of mass’’ of the two excitons and that for their rel
tive motion,l and j takingN consecutive integer values, an
q50,1 as in Eq.~2.12!.

Transforming also the other set of creation and annih
tion operators into the momentum space

CK,a
1 5N21/2(

n51

N

cn,a
1 eiKn; cn,a

1 5N21/2(
K

CK,a
1 e2 iKn,

~2.17!

the remaining components~2.8!–~2.10! of the Hamiltonian
take the form

Hhigh5(
a

«a(
K

CK,a
1 CK,a , ~2.18!

Hhigh-ex5(
K

2 cos~K/2!(
a

xaCK,a
1 BK , ~2.19!

and
is

-
il-

t

e

-

Hex-high5(
K

2 cos~K/2!(
a

xa* BK
1CK,a , ~2.20!

with K as in Eq.~2.16!.

C. Eigenstates

The eigenstates of the system split into the followi
manifolds:

~1! The electronic ground stateug& containing no Fermi-
excitons and no higher molecular excitations, so t
anug&5cn,aug&50.

~2! One-exciton states containing one Fermi-exciton

uK&5bK
1ug&, ~2.21!

where the wave vectorK is as in Eq.~2.16!; this corre-
sponds to the caseq50 ~the number of excitons is odd!
in the general relation for the wave vector~2.12!. Note
that the higher-molecular levels are not yet involved,
at least two Fermi excitons are required for the coupl
with the higher-excited states to come into play via t
interaction operators~2.19! and ~2.20!.

~3! In what follows, we shall concentrate on the next set
the excited states representing superpositions betw
the states with two Fermi-excitons and one molecu
excitation with higher energies«a ; it is this manifold of
the excited states to which the aggregate is promote
the pump–probe experiments via the upward opti
transitions from the one-exciton states. The pump–pr
spectra will be treated by means of the Green funct
technique bypassing the explicit analysis of the eig
value problem for such a manifold.

III. LINE SHAPE OF THE EXCITED-STATE
ABSORPTION

A. General

1. Dipole operator

The dipole operator, inducing the optical transitio
within the aggregate, reads

M5M 11M 25S m* J11(
a

m1aJ1
1aD

1S mJ21(
a

ma1J2
1aD , ~3.1!

with

J15 (
n51

N

tn
15 (

n51

N

~21!snan
1 ; J25~J1!1, ~3.2!

J1
1a5 (

n51

N

cn,a
1 tn5 (

n51

N

cn,a
1 ~21!snan ; J2

1a5~J1
1a!1.

~3.3!

Here the operatorJ1(J2) describes creation~annihilation!
of Fermi-excitons by light,m* ~m! being the corresponding
molecular transition dipole along the polarization of light. A
discussed earlier,9,10 such an operator acquires a man
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particle character after the fermionization due to the eme
ing factor (21)sn, the factor playing an important role i
one- to two-exciton transitions. The operatorJ1

1a describes
the annihilation of a Fermi-exciton accompanied by the c
ation of an excitation with higher energy~i.e., promotion of
the system from a low-lying excited state to a higher mole
lar levela!, the operatorJ2

1a represents the opposite proces
m1a and ma1 being the corresponding transition dipol
along the polarization of light. For the present purposes
factor (21)sn can be omitted inJ1

1a , as we restrict ourselve
to optical transitions originating from the quantum sta
with up to one Fermi-exciton.

In writing the above relationships, the transition dipol
of individual molecules are assumed to be parallel to e
other. As a result, the indexn is not featured in the quantitie
m andm1a. Furthermore, the size of the aggregate is cons
ered to be small as compared to the wavelength, so the
tardation factors are not featured in the operatorsJ1 and
J1

1a . Note also that the dipole operator~3.1! does not include
the processes of direct creation or annihilation of the hi
energy excitations: These transitions are characterized by
ergies that are much higher than the energy of Fer
excitons, and hence do not contribute to the pump–pr
spectrum in the exciton area of interest.

2. Line shape

Consider the line shape of optical absorption of the
gregate from a yet unspecified initial stateuin&,

I in~E!5I 1
in~E!2I 2

in~E!, ~3.4!

with

I 6
in~E!5(

fin
u^finuM 6u in&u2d~Ein2Efin6E!, ~3.5!

where the summation is over all optically accessible fi
statesufin&, both initial and final states being eigenstates
the full Hamiltonian~2.19! with eigenenergiesEin andEfin .
The positive contributionI 1

in (E) represents the usual absor
tion involving the upward optical transitions in the aggr
gate. The negative contributionI 2

in (E) describes the induce
emission that can be understood as the negative absor
due to the downward transitions in the aggregate. Subtrac
from Eq. ~3.5! the line shape of the ground-state absorpt
I g(E), one arrives at the differential pump–probe spectr
~associated with the optical transition from the one exci
stateu in&5uK& to which the system is promoted by the in
tially applied pump-pulse!,

DI K~E!5I 1
K ~E!2I 2

K ~E!2I g~E!, ~3.6!

whereE denotes the energy of a probe photon. Such a
ferential spectrum is relevant to pump–probe experime
see, e.g., Refs. 22–24, 30, 31.

Sinced(x)5p21 Im(x2is)21 ~with s→10!, Eq. ~3.5!
may be rewritten in a form that is more convenient for t
subsequent analysis,
-

-

-
,

e

s

h

-
re-

-
n-
i-
e

-

l
f

ion
ng
n

n

f-
s,

I 6
in~E!5p21 Im (

fin
^ inuM 7ufin&

3~Ein6E2Efin2 is!21^finuM 6u in&. ~3.7!

Note that the retention of a small~yet finite! quantity s
makes it possible to introduce phenomenologically a fin
homogeneous linewidth for the molecular spectral lines ch
acterized by Lorentzian shapes. Furthermore, depending
experimental conditions, the finites may represent othe
broadening effects, like an inhomogeneous segment distr
tion or laser pulse widths~for more details see, e.g., Ref. 36!.
In the simpliest case of optical transitions from the grou
electronic state, one hasu in&5ug& andEin5Eg50, giving

I g~E!5I 1
g ~E!5Im

p21umu2N

E2~«22L !2 is
, ~3.8!

i.e., only upward transition to the one exciton state withK
50 contribute to the line shapeI g(E).

3. Sum rule

We complete the subsection by writing a general s
rule obeyed by the absorption line shape~3.4!,9,10

E I in~E!dE5Numu22S 2umu22(
a

um1au2Dm, ~3.9!

wherem is the number of the excitons in the initial state, i.
m50 in the case of transitions from the ground electro
state (u in&5ug&), andm51 for transitions from one-exciton
states (u in&5uK&). In terms of the differential spectrum
~3.6!, the sum rule~3.9! reads

E DI K~E!dE522umu21(
a

um1au2, ~3.10!

showing that the integral over the differential spectrum
determined by the transition dipolesm andm1a only. In other
words, the integral~3.10! does not depend on other param
eters of the system, such as the energies of resonance
pling (2L) and the exciton–exciton interaction (2g), as
well as the energy of the coupling between the Ferm
excitons and the higher molecular excitations (xa). It is
noteworthy that the sum rule for the line shapeI in(E) has
been originally derived analyzing a system of noninteract
excitons in one dimension.9,10 Yet, its derivation is based
only on the general commutation relations for the Pau
operators entering the dipole operator~3.1!, as well as on the
assumption that the transition dipoles of individual mo
ecules are parallel to each other. As a result, the sum
~3.9! @or ~3.10!# is applicable to a much wider range of mo
lecular systems, including the one considered here, syst
influenced by static disorder and phonons, and also syst
with higher dimensions. The above sum-rules demonst
that u*DI K(E)dEu/* I g(E)dE;1/N, i.e., for large aggre-
gates (N@1) the integrated change of the absorption li
shape is much smaller than the integrated line shape it
This goes along with the pump–probe experiments onJ-
aggregates showing a blue-shift~with almost no bleaching!
of the excitonJ-band.22–29 Previous theoretical analyses o
the one- to two-exciton transition does indeed yield suc
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blue shift,9,10,12–14,34,36the effect being retained in man
cases in the present model incorporating both the excit
exciton coupling and an arbitrary number of higher mole
lar levels, as will be demonstrated in Sec. IV.

B. Line shape for transitions from one-exciton states

In what follows, we shall concentrate on optical tran
tions from the one-exciton statesuK&. In such a situation, the
contribution due to the induced emission reads

I 2
K ~E!5dK,0I 1

g ~E!, ~3.11!

where I 1
g (E) is the line shape of ground-state absorpti

given by Eq.~3.8!. The Kronecker delta reflects the fact th
downward transitions to the ground electronic state (uK&
→ug&) are possible only from the optically active state w
K50. On the other hand, the line shape due to the upw
transitions cannot be written in such a simple form, since
final eigenvectorsufin& represent a complex superposition
the two-exciton states and the states containing one mol
lar excitation with higher energy. To bypass the expli
analysis of the state-vectorsufin&, we shall make use of the
fact that they comprise a complete basis, and can thus
discarded from Eq.~3.7! to yield

I 1
K ~E!5p21 Im^KuM 2GM1uK&, ~3.12!
e

a
in

e
te
–
-

-

rd
e

u-
t

be

where

G[G~E1EK!5@~E1EK!2H2 is#21 ~s→10!

~3.13!
is the Green operator~corresponding to the HamiltonianH!,
EK being the energy of the initial one-exciton state, as giv
by Eq. ~2.14! subject to the substitutionk̃→K.

In Appendix A, the Green operatorG has been deter
mined in terms of the Green operator for free excitonsGfree

ex

invoking the projection operator technique. We shall sub
tute the results~A6! and ~A14! for G into the line shape
~3.12!, subsequently exploiting Eqs.~3.1!–~3.3! for the di-
pole operators, as well as Eqs.~2.18!–~2.20! for the terms
comprising the Hamiltonian. As a result, one arrives then
the following absorption line shape~These results will be
discussed in detail in Sec. IV in connection with the rep
sentation of the differential pump–probe spectrum!:

I 1
K ~E!5I 1free-ex

K ~E!1I 1 int1
K ~E!1I 1 int2

K ~E!1I 1high
K ~E!.

~3.14!
Here the constituent terms read

I 1free-ex
K ~E!5p21umu2 Im^KuJ2Gfree

ex J1uK&, ~3.15!

I 1 int1
K ~E!5p21umu2 ImF 2LaK~^KuJ2Gfree

ex BK
1ug&!2

112LaK^guBKGfree
ex BK

1ug&G , ~3.16!
I 1 int2
K ~E!5p21 ImF ^KuJ2Gfree

ex BK
1ug&~muK2m* uK̃!1^guBKGfree

ex BK
1ug&uKũK

112LaK^0uBKGfree
ex BK

1u0&
G , ~3.17!
al

ted
the
f a
, as
s to
I 1high
K ~E!5p21 Im (

a

um1au2

E1EK2«a2 is
, ~3.18!

with

uK5(
a

2xa* m1a cos~K/2!

E1EK2«a2 is
,

uK̃5(
a

2xama1 cos~K/2!

E1EK2«a2 is
, ~3.19!

and

aK[gK8 ~E!/2L5g/2L

24 cos2~K/2!(
a

uxau2/2L

E1EK2«a2 is
, ~3.20!

wheregK8 (E) has been defined by Eq.~A11!, and the opera-
tor Gfree

ex is given by Eq.~A12! in Appendix A. The dimen-
sionless parameteraK contains contributions due to both th
direct coupling between the Fermi-excitonsg/2L and also
the additional~indirect! coupling between the excitons vi
the the higher molecular levels. The latter indirect coupl
is represented by the second term in Eq.~3.20!.

Equations~3.14!–~3.18! define the absorption line shap
in terms of the Green functions for free excitons, the lat
functions are given explicitly by Eqs.~A16!–~A18! in Ap-
g

r

pendix A. In the following we shall concentrate on optic
transitions from the one-exciton state withK50. In fact, due
to theK50 selection rule, only such a state can be popula
during the ground-state absorption of a photon from
pump pulse. As a result, the subsequent absorption o
probe photon does take place from this one-exciton state
long as the aggregate does not undergo thermal transition
other one-exciton levels with higher energies.51 For K50,
the Green functions given by Eqs.~A16!–~A18! reduce to
the following:

^0uJ2Gfree
ex J1u0&52

1

2L

1

p21
@N2~p11!S0~p!#,

~3.21!

^KuJ2Gfree
ex B0

1u0&5
i

2L
@S0~p!1S1~p!#, ~3.22!

^0uB0Gfree
ex B0

1u0&52
1

4L
@S0~p!2S2~p!#, ~3.23!

with

Sn~p!5
1

N (
k

exp~ ikn!

p2cosk
, ~3.24!

and
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p5~«12L2E1 is!/4L. ~3.25!

The above summationSn(p) has the form of the familiar
one-exciton Green function. In dealing with such functio
the summation overk is normally replaced by an integratio
~see, e.g., Refs. 14–16, 33, 34, 36, 44, 50! assuming that the
numberN is sufficiently large. To retain the effects of finit
N, we shall make use of another method originally sugges
by Montrol45 and Lakatos-Lindenberget al.46 in their studies
of random walk on lattices. Note that in the present situat
the wave numberk, characterizing the relative motion of th
two excitons, can assume values different from those in R
45 and 46. In fact, there are two possible sets ofk given by
Eq. ~2.16! depending on a specific value of the full wav
vectorK52p l /N @with q51 in Eq. ~2.16!, as we deal with
the states containing even number of Fermi-excitons#. In the
case of oddl , Eq. ~2.16! yields a set ofk values considered
in Refs. 45 and 46. However for evenl ~e.g., for l 5K50!,
one arrives at another set in which the valuek50 does not
appear. The summation~3.24! has been carried out in Ap
pendix B for the present purposes. Using Eq.~B5!, one finds
for K50,

Sn~p!5
2

b2b21

b2n2b2~N2n!

11b2N , ~3.26!

with

b5p1Ap221, b215p2Ap221. ~3.27!

Equation~3.26! is an exact result valid for an arbitrar
numberN. It is instructive that the Green function~3.26! is
not affected by the interchangeb↔b21. In other words, the
sign of the square rootAp221 can be reversed simulta
neously both inb andb21. In Eq. ~3.27! the specific sign of
the square root has been chosen in such a way thatubu.1, if
the energyE of a probe photon lies within the exciton zon
or below (E,«12L). This spectral area is most importa
for the optical absorption involving predominantly the lowe
levels of the exciton band.51 ~If the energyE is situated
above the exciton zoneE.«12L, the sign of the square
root is to be reversed in Eq.~3.27! to getubu.1.! The choice
ubu.1 allows us to neglect the termb2(N2n) in Eq. ~3.26! at
sufficiently largeN. Note that for the energies lying within
the exciton zone«22L,E,«12L, the limit of largeN is
achieved in the case where the linewidths of the individual
molecules exceeds considerably the distances between
exciton levels,sN/4Lu12p2u1/2@1.

IV. ANALYSIS OF THE DIFFERENTIAL PUMP–PROBE
SPECTRUM

Using Eq.~3.14! for the line shapeI 1
K (E), the differen-

tial spectrum~3.6! can be written as

DI K~E!5DI free-ex
K ~E!1I 1 int1

K ~E!1I 1 int2
K ~E!

1I 1high
K ~E!, ~4.1!

where both the induced emission and the ground-state
sorption are now contained in the free-exciton term,

DI free-ex
K ~E!5I 1free-ex

K ~E!2I 2
K ~E!2I g~E!. ~4.2!
,

d

n

s.

t

the

b-

In the case ofK50, the contributionDI free-ex
K (E) and the

term I 1 int1
K (E) read explicitly

DI free-ex
0 ~E!5

umu2

2pL
Im

1

~p21! S 11b21

12b21D S 12b2N

11b2ND ,

~4.3!

I 1 int1
0 ~E!52

umu2

2pL
Im

2ab21

~p21! F12b2~N21!

11b2N G2

3H 12ab21F11b2~N22!

11b2N G J 21

, ~4.4!

wherea[a0 is given by Eq.~3.20! ~with K50!, and use has
been made of Eqs.~3.8!, ~3.11!, ~3.15!, ~3.16!, ~3.21!–~3.23!,
and~3.26!. If the influences of higher molecular levels can
neglected, these two terms describe completely the diffe
tial spectrum, the contributionI 1 int1

K (E) representing the ef-
fects due to the exciton–exciton interaction. In particular,
b2N!1, Eqs.~4.3! and~4.4! reproduce the results by Span
and Manas33,34 which were obtained when analyzing a sy
tem of interacting excitons in the limit of largeN.

The two additional termsI 1 int2
K (E) and I 1high

K (E) are
defined by Eqs.~3.17!–~3.18!, together with Eqs.~3.22!–
~3.23! and ~3.26! for the Green functions. To simplify the
expressions, we note that in the electric-dipole approxim
tion, the energy of resonance coupling (2L) and the cou-
pling parameterxa are related to the appropriate transitio
dipoles ~up to orientational factors! as L}2mm* /R3 and
xa}mm1a /R3. Accordingly, one can write

xa52Ldm1a /m* , ~4.5!

where the parameterd is of the order of unity in the case
wherem andm1a do not differ significantly in their orienta-
tions. It is noteworthy that the relationship~4.5! holds be-
yond the dipole approximation as well, provided the high
levelsa represent the vibrational sublevels of a single el
tronic state. Under this condition, both the transition dipo
m1a and the coupling energyxa are characterized by th
same Condon factors, so one arrives immediately at the
lationship~4.5! in which d is some dimensionless paramete
The case accommodates,inter alia, a situation where only
one higher electronic level~without a vibrational structure! is
considered. Such a model has been treated recently
Knoester and Spano15 in their analysis of the two-photon
absorption in a long chain of three level molecules witho
including the direct exciton–exciton interaction. Using t
relationship~4.5!, both coefficientsuK anduK̃ , given by Eq.
~3.19!, can be expressed via a single functionQ(E),

mu05m* u0̃5
dumu2

2
Q~E!, ~4.6!

with

Q[Q~E!5(
a

um1a /mu2

p211@«a22~«22L !#/4L
, ~4.7!

where K50 is taken in Eq.~4.6!, and p[p(E) as in Eq.
~3.25!. In a similar way, forK50 the coupling paramete
~3.20! can be expressed through the same functionQ(E),
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a[a05g/2L1d2Q~E!/2. ~4.8!

The line shapeI 1high
0 (E) given by Eq.~3.18! is also related

to the functionQ(E), as

I 1high
0 ~E!52p21

umu2

4L
Im Q~E!. ~4.9!

Finally, the remaining termI 1 int2
0 (E) takes the form,

I 1 int2
0 ~E!52

umu2

2pL
Im

d2Q2

4
b21F11b2~N22!

11b2N G
3H 12ab21F11b2~N22!

11b2N G J 21

, ~4.10!

with b as in Eq.~3.27!.
The terms~4.3!, ~4.4!, and ~4.9!–~4.10! define the full

differential spectrumDI 0(E) given by Eq.~4.1!. The terms
DI 1free-ex

0 (E) andI 1high
0 (E) represent, respectively, contribu

tions due to the free Fermi-excitons and the higher molec
levels. Note that the bleaching contribution~due to the
ground state depletion! does not show up in the term
I 1high

0 (E), as the corresponding transition dipoles have b
omitted in the transition operator given by Eqs.~3.1!–~3.3!.
Inclusion of such transition dipoles is straightforward, yet t
ground-state absorption to the higher molecular levels is
yond the spectral region of interest and can therefore be
regarded. The other termsI 1 int2

0 (E) andI 1 int1
0 (E) are due to

coupling of the Fermi-excitons to the higher molecular le
els, as well as due to the direct coupling between the Fe
excitons. It is noteworthy that the coupling parametera, Eq.
~4.8!, entering the line shapesI 1 int2

0 (E) and I 1 int1
0 (E), con-

tains an addition tog/2L which reflects indirect coupling
between the Fermi-excitons via the higher molecular lev
The strength of the indirect coupling depends on the func
Q(E) generally given by Eq.~4.7!. The specific form of the
function Q(E) depends on what kind of distribution applie
to the energies«a of higher molecular states and the corr
sponding transition dipolesm1a . For instance, in the cas
where the transitions to higher levels are distributed acco
ing to a Lorentzian centered at«high

0 and characterized by th
width D, Eq. ~4.7! simplifies to

Q[Q~E!52
umhigh/mu2

x2D«high
0 /4L2 iD/4L

, ~4.11!

where

D«high
0 5@«high

0 22~«22L !# ~4.12!

is the detuning energy, and the quantity

x5@E2~«22L !#/4L ~4.13!

is the energy~in 4L units! calculated from the bottom of th
exciton zone.

Figures 1–5 show plots of the relative pump–pro
spectrum

y54LDI 0~E!/umu2 ~4.14!

vs the relative energyx, calculated using the Lorentzian dis
tribution ~4.11! for Q(E). Figure 1 gives the spectra fo
small ~a!, medium ~b!, and large~c! values of the relative
ar

n

e
e-
is-

-
i-

s.
n

d-

width D/4L of the distribution of higher molecular levels. I
all three cases a value ofg/2L51.7 has been used for th
direct exciton–exciton coupling. In other words,g/2L ex-
ceeds the critical value of 1 which corresponds to the on
of formation of a biexciton~below the exciton band-edge a
x50! in the case where the influences of the higher mole
lar levels can be neglected.33,34,44 For D/4L!1 @Fig. 1~a!#,
the differential spectrum around the band-edge20.15,x
,0.15 exhibits a blue shift of the ground-state absorpt
positioned atx50, such a shift being familiar from the
analysis of noninteracting excitons.9,10,12,14,21,24In fact, the

FIG. 1. Relative differential spectrumy vs relative energyx for N512,
g/2L51.7, D«high

0 50, mhigh /m5d51 and s50.02. The relative widths
D/4L are ~a! 0.02 ~solid line!, 0.05 ~dotted line!, 0.1 ~dashed line!; ~b! 0.3
~solid line!, 1 ~dotted line!, 3 ~dashed line!; ~c! 10 ~solid line!, 30 ~dotted
line!, 100 ~dashed line!.
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pump–probe spectrum presented in Fig. 1~a! fits fairly well
~at 20.15,x,0.15! to the spectrum for the noninteractin
Fermi-excitonsDI free-ex

0 (E) given by Eq.~4.3!, subject to the
replacement of the actual size of the aggregateN by the
effective one

Neff5N12a/~12a!, ~4.15!

as illustrated in Fig. 2 for the case whereD/4L50.02. Such
a replacement has been recently suggested in Ref. 35 an
ing the influence of the exciton–exciton interaction on t
optical transitions between the one-exciton and two-exc
states. In the present situation, the concept of the effec
numberNeff has been extended to include the contribut
due to the higher molecular levels into the coupling para
etera. This makes the quantityNeff entering the line shape
DI free-ex

0 (E), a complex quantity. Since the widthsD/4L are
taken to be extremely small in Figs. 1~a! and 2, the coupling
parametera given by Eq.~4.8! acquires a very large imagi
nary part aroundx50. As a result, the effective numberNeff

depends weakly on the magnitudeg/2L of the direct cou-
pling, and appears to be close toN22. In other words, the
strong indirect coupling between the excitons excludes
two-exciton states containing the excitons at the neighbo
sites from the formation of the differential spectrum. In th
way, the effective number of molecules contributing to t
one- to two-exciton transitions in the spectral area around
exciton band-edge is reduced by 2.52 For instance, in the
situation presented in Fig. 2, one hasNeff59.99820.0799i ,
i.e., the effective size of the aggregate is reduced from 1
10, and a small imaginary part emerges inNeff . The approxi-
mated spectrum represented by a dashed curve in Fig. 2
well the exact result at energiesx.0.02 corresponding to the
excitation by a probe photon of the dissociated two-exci
states. However, at lower energiesx,0.02 the approximated
spectrum underestimates to some extent the contribut
due to the induced emission to the ground electronic st
and also the depletion of the ground state absorption, as
both of these spectra the actual numberN ~rather than the
effective one! is more relevant. Note also that despite su

FIG. 2. Exact~solid line! and the approximate~dashed line! differential
spectra around the exciton band-edge atx50 for D/4L50.02, N512,
g/2L51.7, D«high

0 50, mhigh /m5d51 ands50.02. The approximate spec
trum has been calculated using Eq.~4.3! for DI free-ex

0 (E) subject to the re-
placementN→Neff . The parametera featured in Eq.~4.15! for Neff has been
calculated atx50 giving Neff59.99820.0799i .
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an underestimation, the sum rule~3.10! is preserved for the
overall differential spectrum, the missing oscillator streng
being transferred to the biexciton peak positioned at low
energies.

Figure 1~c! shows another limiting case where the dist
bution of the higher molecular levels is large compared
the resonance coupling,D/4L@1. Here the coupling param
eter a is close tog/2L, the indirect coupling between th
Fermi-excitons providing a small imaginary part toa. This
introduces some broadening to the biexciton peak positio
at x'20.15 in Fig. 1~c!. The linewidth of the biexciton peak
increases with decreasingD/4L until the peak becomes al
most unresolvable in the case of intermediate widths,D/4L
;1, as depicted in Fig. 1~b!. In this way, the higher molecu
lar levels can broaden considerably the biexciton peaks m
ing it difficult to identify them in the pump–probe spectr
Decreasing further the parameterD/4L, one returns back to
the limit D/4L!1 in which a biexciton peak reappears
much lower energies aroundx'20.52, as shown in Fig.
1~a!. It is noteworthy that in the formation of such a biexc
ton, an important role is played by the indirect interacti
between the excitons shifting the biexciton peak additiona
downwards from the two-exciton continuum. For instance
the situation corresponding to Fig. 1~a!, the real part of the
coupling parametera calculated atx520.525 equals ap-
proximately 2.6, exceeding substantially the magnitude
the direct exciton–exciton couplingg/2L51.7. It this way,
the indirect attraction between the Fermi-excitons allows
formation of a biexciton forg/2L<1 and even for negative
values of the constantg/2L, as one can see from Fig.
showing the differential spectrum atD/4L50.05 for various
values ofg/2L. A similar effect is known in the theory o
biphonons and Fermi resonance in the vibrational spectr
crystals.47,48This point was also noted in Ref. 36 analyzing
system of three level molecules without the direct excito
exciton interaction. On the other hand, for larger relat
widths D/4L, the onset of biexciton formation depicted
Fig. 4 occurs as usual33,34,44 at the critical values ofg/2L
equal to approximately 1, yet the formation of a biexciton
somewhat smoothened by the influences of higher molec
levels ~see Fig. 4!. Note also that the indirect interactio
between the excitons might reduce to some

FIG. 3. Relative differential spectrum vs relative energy forD/4L50.05,
N512, D«high

0 50, mhigh /m5d51 ands50.02. The parameterg/2L equals
20.5 ~solid line!, 1 ~dotted line!, and 1.7~dashed line!.
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extent the critical value for the biexciton formation even in
the case of a wider distribution of higher molecular sublev
els, provided these sublevels are distributed above the b
tom of the two-exciton continuum (D«high

0 .0) thus generat-
ing the attractive indirect interaction between the Ferm
excitons. Finally, below the critical values ofg/2L, the
differential spectrum around the band-edgex50 can be once
again represented fairly well by the one for noninteractin
Fermi-excitons53 for D/4L*2 ~see Fig. 5! subject to the sub-
stitution of the actual length of the aggregateN by the effec-
tive oneNeff given by Eq.~4.15!.

V. CONCLUSION

The differential pump–probe spectrum has been consi
ered taking into account simultaneously effects of exciton
exciton interaction and of higher molecular levels. The the
oretical analysis performed in terms of the Green functio
technique, provides analytical expressions for the pump
probe spectrum. These expressions are valid for an arbitra
numberN of molecules forming the aggregate and any num
ber of molecular states with higher energies, including,inter
alia, the most common situation in which the higher-lying
states are characterized by a dense set of sublevels of e
tronic, vibrational, etc. origin. The higher levels then play th

FIG. 4. Relative differential spectrum vs relative energy forD/4L53 ~a!
and D/4L510 ~b!, other parameters beingN512, D«high

0 50, mhigh /m5d
51 ands50.02. In each of these plots the coupling constantg/2L equals 1
~solid line!, 1.7 ~dotted line! and 2.5~dashed line!.
-
ot-

-

g

d-
–
-
n
–
ry
-

ec-

role of a dissipative system that quenches pairs of low
lying excitons. This makes the exciton–exciton annihilati
an irreversible decay process, as usually observed
experiments.38 In the spectroscopic context, the existence
such a dense set of higher molecular levels introduces wi
to biexciton peaks. In some situations@such as the one de
picted in Fig. 1~b!# the broadened biexciton peaks becom
difficult to identify in the pump–probe spectra. In additio
the indirect interaction between the excitons via the hig
molecular levels can facilitate the formation of a biexciton
lower than usual values of the direct exciton–exciton co
pling g, in extreme cases even for negativeg values charac-
terizing repulsion rather than attraction between the excito
It is noteworthy that a similar manifestation of the indire
interaction is known in the theory of biphonons and Fer
resonance in the vibrational spectra of crystals.47,48 This
point was also noted by Knoester and Spano36 for a system
of three level molecules without the direct exciton–excit
interaction. On the other hand, in the region around the
citon band-edge, the pump–probe spectrum exhibits a b
shift of the exciton absorption line for various situatio
@such as in Figs. 1~a!, 2, and 5#, the shift being familiar from
the analysis of noninteracting excitons.9,10,12,14,21,24The dif-
ferential spectrum can then be described reasonably we
terms of the model of noninteracting excitons, subject to
replacement of the actual number of molecules
aggregate39 N by the effective oneNeff ~with uNeff2Nu!N for
sufficiently large aggregates!. The latterNeff is shown to be
influenced both by the direct coupling between the excito
and by the indirect coupling via the higher molecular leve
In this way, the pump–probe spectroscopy probing the ma
fold of the two-exciton states and the higher molecular ex
tations provides information on the effective numberNeff

that might be somewhat different fromN.
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APPENDIX A: DETERMINATION OF THE GREEN
OPERATOR

The Green operator in the expression~3.12! for the line
shape acts on the excited-state manifold containing ei
two Fermi-excitons or one excitation with higher-energy.
determine such a Green operator, let us divide the
Hamiltonian ~2.6! into the zero-order Hamiltonian and th
interaction operator,

H5H01V ~A1!

with

H05Hex1Hhigh ~A2!

and

V5Hhigh-ex1Hex-high, ~A3!

where the zero-order HamiltoniansHex and Hhigh describe,
respectively, the subspaces of two-exciton states and hi
molecular levels, and the coupling operatorV induces tran-
sitions between the two sets of states. In a similar way,
Green operator can be represented in terms of its compon
as

G5Gex1Ghigh1Gex-high1Ghigh-ex. ~A4!

Applying the left and right Dyson equations

G5G01G0VG; G5G01GVG0 ~A5!

the componentsGhigh-ex, Gex-high, andGhigh of the full Green
operatorG can be expressed in terms of its projectionGex

onto the subspace of the two-exciton states. As a result
Green operator~A4! can be represented as

G5G0
high1~11G0

highHhigh-ex!Gex~11Hex-highG0
high!,

~A6!

whereG0 is the zero-order Green operator,

G0[G0~E1EK!5@~E1EK!2H02 is#21 ~s→10!,
~A7!

G0
ex andG0

high being its projections onto the subspaces of
two-exciton states and the higher molecular levels, resp
tively.

To determine the componentGex, we shall substitute
recursively the left-hand side of one of the Dyson equati
~A5! into its right-hand side, projecting the resulting equ
tion onto the subspace of the two-exciton states. As a re
one arrives at a closed equation forGex, the solution of
which reads

Gex[Gex~E1EK!

5@~E1EK!2Heff
ex2 is#21 ~s→10!, ~A8!

where

Heff
ex5Hex1Hex-highG0

highHhigh-ex ~A9!

is the effective Hamiltonian for the two-exciton subsyste
The second term in Eq.~A9! represents the indirect interac
tion between the Fermi-excitons due to the other subsys
.

er

ll

er

e
nts

he

e
c-

s
-
lt,

.

m.

Using Eqs.~2.13!, ~2.18!–~2.20!, ~A2!, and~A7!, the effec-
tive Hamiltonian~A9! can be written explicitly as

Heff
ex5(

k̃

Ek̃bk̃
1

bk̃2(
K

gK8 BK
1ug&^guBK , ~A10!

with

gK8 [gK8 ~E!5g24 cos2~K/2!(
a

uxau2

E1EK2«a2 is
,

~A11!

where the second term in Eq.~A11! describes the additiona
~indirect! coupling between the excitons via the the high
molecular levels. Obviously the effective Hamiltonian~A10!
has the same form as the original Hamiltonian~2.13! for the
exciton subsystem subject to the replacementg→gK8 . In
other words, both direct and indirect interactions between
excitons are characterized by the same combination of
two-exciton operatorsBK and BK

1 . This will facilitate the
subsequent analysis. Note also that the operatorBK , when
acting on the state-vectors containing two Fermi-excito
can produce only the ground state-vectorug&. Therefore, in-
sertion of the projection operatorug&^gu into the coupling
term has no effect on the effective Hamiltonian~A10!.

Introducing the Green operator for free excitons

Gfree
ex [Gfree

ex ~E1EK!

5F ~E1EK!2(
k̃

Ek̃bk̃
1

bk̃2 isG21

~s→10!,

~A12!

one can relate it to the full Green operatorGex for the exciton
subsystem via the effective Dyson equation,

Gex5Gfree
ex 2Gfree

ex S (
K

gK8 BK
1ug&^guBKDGex, ~A13!

giving

Gex5Gfree
ex 2(

K

Gfree
ex BK

1ug&gK8 ^guBKGfree
ex

11gK8 ^guBKGfree
ex BK

1ug&
, ~A14!

where the solution~A14! has been obtained by taking adva
tage of the local character50,54 of the perturbation featured in
Eqs.~A10! and ~A13!. Equations~A6! and ~A14! determine
the full Green operatorG in terms of the Green operator o
free excitonsGfree

ex .
Finally, since

J1uK&5N21/2(
k

bK/21k
1 bK/22k

1 u0&cot~K/42k/2!,

~A15!

we shall write down explicitly the matrix elements ofGfree
ex

entering Eqs.~3.14!–~3.17! of the main text,

^KuJ2Gfree
ex J1uK&

5
1

N (
k

cot2~K/42k/2!2cot~K/42k/2!cot~K/41k/2!

E1EK2E~K,k!2 is
,

~A16!
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^KuJ2Gfree
ex BK

1ug&

52^guBKGfree
ex J1uK&

5
1

N (
k

@exp~ ik !2exp~2 ik !#cot~K/42k/2!

E1EK2E~K,k!2 is
, ~A17!

^guBKGfree
ex BK

1ug&5
1

N (
k

12exp~22ik !

E1EK2E~K,k!2 is
, ~A18!

where

E~K,k!5EK/21k1EK/22k52«24L cos~K/2!cos~k!
~A19!

is the energy for a pair of noninteracting excitons, and
has been made of Eqs.~2.15! and ~A12!.

APPENDIX B: CALCULATION OF THE SUM SN„P…

The sum~3.24! can be rewritten as

Sn~p!5
2

bN (
k

exp~ ikn!

@12b21 exp~ ik !#@12b21 exp~2 ik !#
,

~B1!

with b as in Eq.~3.27!, the sign of the square root bein
chosen in such a way thatubu.1. Representing the denom
nators in terms of the geometrical progressions, one has

Sn~p!5
2

bN (
k

(
r 50

`

(
p50

`

eik~n1r 2p!b2~r 1p!. ~B2!

The summation over the relative wave vectork covers a set
of values defined by Eq.~2.16! ~in which q51, as we are
dealing with the two-exciton states!. As a result, only the
terms with n1r 2p5Nm contribute to the sum, wherem
take integer values, giving

Sn~p!52b21 (
m52`

`

(
r 50

`

(
p50

`

ei ~KN/21p!mb2~r 1p!

3dn1r 2p,Nm . ~B3!

HereK52p l /N is the full wave vector of the two exciton
featured in Eq.~2.16!, i.e., at this stage we do not restri
ourselves to the specific caseK50 corresponding tol 50.

Since 0,n,N, the summation overm can be split into
the part withm,1 and that withm.0 as

Sn~p!52b21F (
m50

2`

(
r 50

`

ei ~KN/21p!mb2~2r 2Nm1n!

1 (
m51

`

(
p50

`

ei ~KN/21p!mb2~2p1Nm2n!G . ~B4!

Performing summations overm and r ~and overm and p!,
one arrives at the final result forSn(p),

Sn~p!5
2

b2b21

b2n2b2~N2n!eiKN/2

11b2NeiKN/2 . ~B5!

In the case wherel is even~e.g., l 50 which corresponds to
K50!, the above result reduces to Eq.~3.26!.
e

1E. G. McRae and M. Kasha, inPhysical Processes in Radiation Biology,
edited by L. Augenstein, R. Mason, and B. Rosenberg~Academic, New
York, 1964!, p. 23.

2J. S. Briggs and A. Herzenberg, Mol. Phys.21, 865 ~1971!; J. S. Briggs,
Z. Phys. Chem., Neue Folge75, 214 ~1971!.

3P. Reineker,Exciton Dynamics in Molecular Crystals and Aggregate
Stochastic Liouville Equation Approach: Coupled Coherent and Incoh
ent Motion, Optical Line Shapes, Magnetic Resonance Phenom
~Springer, Berlin, 1982!.

4E. W. Knapp, Chem. Phys.85, 73 ~1984!.
5P. O. J. Scherer and S. F. Fisher, Chem. Phys. Lett.86, 269 ~1984!.
6A. M. Jayannavar, P. Reineker, and B. Kaiser, Z. Phys. B77, 229~1984!.
7V. Kraus and P. Reineker, Phys. Rev. A43, 4182~1991!.
8P. Reineker, Ch. Warns, Th. Neidlingen, and I. Barvik, Chem. Phys.177,
715 ~1993!.
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