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The paper considers the differential pump—probe spectra due to excitons in linear molecular
aggregates taking into account simultaneously effects of both exciton—exciton interaction and
higher molecular levels. The theoretical analysis, carried out in terms of the Green function
technique, provides analytical expressions for the line shape of the pump—probe spectrum valid for
an arbitrary numberN of molecules forming the aggregate. Furthermore, the theory can
accommodate any number of molecular states with higher energies. This incdhideslia, the

most common situation in which the higher lying states form a dense set of sublevels of electronic,
vibrational, etc. origin. It has been demonstrated that incorporation of such higher molecular levels
introduces widths to biexciton peaks formed below the two-exciton continuum. In addition, the
indirect interaction between the excitons via the higher molecular levels can facilitate formation of
a biexciton at lower than usual values of the direct exciton—exciton coupliig extreme cases

even for negativey values characterizing repulsion rather than attraction between the excitons. On
the other hand, in the region around the exciton band-edge, the differential spectrum can be
described reasonably well in terms of the model of noninteracting excitons for a wide range of
parameters of the system, subject to the replacement of an actual number of molecules per aggregate
N by the effective ondN ;. The latterNg is shown to be influenced both by the direct coupling
between the excitons and also by the indirect coupling via the higher molecular leve99®
American Institute of Physic§S0021-9608)70638-5

I. INTRODUCTION 14, 16-18, excitons have been considered as noninteracting
Paulions, and the influences of higher molecular levels have
Optical properties of molecular aggregates due to théeen neglected.
transition between the ground electronic and the excited one- Recently the effects of the exciton—exciton interaction
exciton states have been a subject of interest over mangn the(two color pump—probe spectra has been considered
yearst~8 However, only in the past decade more attentionfor molecular aggregates with linéar*® and circula?® ge-
has been drawn to the nonlinear optical properties of sucRmetries. The analysis has been carried out in terms of two-
systems involving quantum states with more than one exciparticle Green functions adopting the continuum limit for the
ton per aggregat®?! The interest was motivated, to a con- States forming the exciton bariéi** To take into account the
siderable degree, by the application of the time-resolvedinite size of the aggregates, both numerical simulations of
pump—probe spectroscopy in studying the molecular aggrél'® PUmp—probe spectra have been ac_complft%h%”dand
gates in organfé-2°and biological®>! systems. In such ex- explicit analysis of the transition dipoles has been

periments, a blue shift has been observed for the excitecperforme85for transitions between the one- and two-exciton
state abéorption of one-dimensional-aggregates of states. The numerical calculatiSfé* have shown that the

pseudoisacyanine df&2and of complexes of the bacterio- differential spectrum can experience significant changes if

chiorophyll (BCh) molecules®® The effect has been ex- the strength of the exciton—exciton coupling is close to a

lained he basis of ) idin of the ab o i critical value corresponding to the onset of biexciton forma-
plained on the basis of exciton-origin of the absorption liN€S g, e\ the band of dissociated two-exciton states. It is

analyzing the one- to two-exciton transition in the molecular _
e irsrictereresliiunndniishiihosn noteworthy that the calculated pump—probe spe&f&ﬁhas
ggreg P Y appeared to be almost independent of the magnitude of the
with the pump—probe experiments provides information oneyciton—exciton couplingy if the latter does not exceed a
the delocalization lengths of excitons in molecular critical valuey,;. This can be understood from the analysis
aggregates) the degree of the intersite correlation of the of the dipole moments for the optical transition between the
inhomogeneous broadening in aggregateé$,as well as  one- and two-exciton manifold showing that the exciton—
other characteristics of the systefig211t is noteworthy  exciton interaction can be taken into account in an effective
that in most of the previous studies, such as in Refs. 9, 11manner through the replacement of the actual nunhberf
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molecules forming the aggregate by an effective nunigr  ties if one is interested not only in biexcitdig* i.e., local-
(with |[Neg—N|<N if y is away from y.). In other ized states for the relative motion of two excitpnisut also

investigations>3 the two-photon absorptidh and the in the dissociated two-exciton states at firfite In fact, one
pump—prob# spectra have been considered for noninteractcan choose readily incorrect boundary conditions for the
ing excitons in large molecular chains of three-level mol-relative motion of the two excitongsubsequently affecting
ecules. A similar chain of three level molecules has been alsthe eigenvalue spectrum of the dissociated two-exciton
treated in a classic paper by Merrifigifiyet the analysis has States, as discussed in detail recentfylt is noteworthy that
been restricted to the stationary two-quantum excited state§)e present approach does not face all these difficulties, as
no specific spectrgtwo-photon, pump—probe, elcbeing the fermionization carried out before the separation into the
considered. “center of mass” and the relative motion solves the prob-
In the present paper we shall examine jointly the effectdems automat.ical!y. In Sec. Il the line shape of thg excited-
of the exciton—exciton interaction and the higher moleculasState absorption is presented through the two-particle Green
levels on the differential pump—probe spectrum of onefunctions. The latter Green functions are subsequently de-
dimensional molecular aggregates. The theoretical analysfé/ed in terms of those for the free excitons, details of the
carried out in terms of the Green function technique, is valigdérivation being placed in Appendix A. The summations
for an arbitrary numbeN of molecules forming the aggre- €Merging in th_e free-exm_ton Green_functlons are then explic-
gate and accommodates any number of molecular states withy calculatgd(m Appendix B adapting a4r€rs1_ethod_ suggested
higher energies as well. This includéster alia, the most  BY Montrof*® and Lakatos-Lindenbergt al:™ in their studies
common situation in which the higher-lying states are charOf random walks on lattices. As a result, in Sec. IV one
acterized by a dense set of sublevels of electronic, vibra@'1Ves at analytical expressions for the differential spectrum
tional, etc. origin. In such a case the higher molecular level€f the combined system containing interacting excitons and
play the role of a dissipative system that quenches pairs diigher molecular excitations. The expressions are valid for
lower lying excitons, thus making the exciton—exciton anni-any number of moleculel in the aggregate. Specific calcu-
hilation an irreversible process, as usually observed ifations are also pre;ented in Sec. IV to'lllustrate'thg general
experiments® In the spectroscopic context, the inclusion of theory- The concluding Sec. V summarizes the findings.

such a dissipative system introduces some widths to the biex-

citon levels formed below the two-exciton continuum. In ad-

dition, the indirect interaction between the excitons via thel|, HAMILTONIAN

higher molecular levels can facilitate the formation of a biex-

citon at lower than usual values of the direct exciton—exciton ~ Consider a system of interacting molecular excitons
couplingy, in extreme cases even for negatiyealues char- coupled to higher excited molecular levels in a one-
acterizing repulsion rather than attraction between the excidimensional molecular aggregate. The Hamiltonian for such

tons. On the other hand, in the region around the excito® System is

band-edge, the differential spectrum can be described reason- N

ably well in terms of the model of noninteracting excitons H= gt:tn—L(t:+ltn+t:tn+l)— 7tn+t§+1tn+1tn
for a wide range of the parameters of the system, subject to n=1

the replacement of the actual number of molecules per

aggregat® N by the effective ondN, the latterN being + 2 [84C1 Crat XalCh + Cint 1)a)tns1tn

now influenced both by the direct coupling between the ex-

citons and also the indirect coupling via the higher molecular

levels. In this way, effects such as the blue shift of the exci- Xt tar1(Cat Cnsnya) 1t 2.1

ton absorption band established originally for noninteracting

excitons?1%12-persist also within the present more com- whereN is the number of molecules in the aggregae(t,)

plicated model. are Pauli operators for the creati@mnihilatior) of an elec-
The analysis is carried out through the following steps.tronic excitation at molecul®, e being the excitation en-

In Sec. Il, after defining the Hamiltonian, the Jordan—Wignerergy. Another set of operators., and c,, describes the

transformatioh®'#4%~434s applied to convert molecular elec- creation and annihilation of molecular excitations with

tronic excitations with lower energy into fermions. Next we higher energies f,>¢), the summation over covering

separate the “center of mass” of the two Fermi-excitonsmolecular levels of interest. The Hamiltonié®.1) incorpo-

from their relative motion via the introduction of operators rates(within nearest neighbor approximatjoboth the reso-

for the creation and annihilation of exciton pairs. This allowsnance transfer of the low-energy excitons between the mol-

us to avoid difficulties in counting the two-exciton states.ecules and their mutual coupling, wherel() and (— y) are

Such difficulties can arise if one separates the “center othe corresponding coupling constants. For higher molecular

mass” from the relative motion in a usual way"*>*4using  levels the resonance energy transfer is usually of much less

the original (paulion representation for the two-exciton importance and hence has been disregarded in the Hamil-

states. For instance, the cases with even andMddquire  tonian (2.1). The two types of excitations interact via the

separate analysis®® even for the case of noninteracting annihilation of two low-energy excitons at neighboring sites,

excitons'® Inclusion of the exciton—exciton interactiqdas  accompanied by the promotion of one of the two molecule to

well as the higher molecular levg¢ladds additional difficul- a higher excited levek, with x, being the coupling con-
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stant; the Hermitian conjugate terms in the Hamiltorn@d) ~ mation®1%14.17.18414¢ gnsider now the boundary terms. The
describe the opposite process. Finally, cyclic boundary conappropriate pair-operators featured in the Hamiltonian ac-
ditions imply that quire now a phase factor|1)9, as presented in Ref. 41
analyzing a system of noninteracting excitons in one dimen-
sion, ty, tn=tty= a1 an(—1)% and tytyii=aga;
together with analogous relationships for the creation operac—1)9, the operatorsyty,,; andty ity transformlng in a
tors. It is noteworthy that in contrast to a recent study bysimilar way. Here the parametgrcan assume two different
Knoester and Spand,the Hamiltonian(2.1) incorporates the  values; specifically,q=0 (q=1) in the case where the
exciton—exciton couplingx#0) and also can take into ac- HamiltonianH acts on the state-vector characterized by the
count an arbitrary number of higher molecular level$Spe-  odd(even number of Fermi-excitons. To eliminate the phase
cifically, the present model can describe the most commofactor, we shall introduce the Fermi operatag,,; and
situation where the levela comprise a dense set of higher ay, , related toa, anda; as follows:

molecular sublevelof electronic, vibrational, etc. origjrin

resonance with the two-exciton states. Note also some simi- ays1=a;(—1)% ay,,;=a; (—1)% (2.9
larities between the present Hamiltionian and the one used in

the theory of biphonons and Fermi resonance in the vibralsing condition (2.5, the whole Hamiltonian retains its

tn+1=t; and c(n+1)a=Cias (2.2

tional spectra of crystafy:*8 original form (2.1) and can hence be represented as
A. Fermionization H = H&*+ Hhighy high-ex pjex-high (2.6)
For the present purposes, it is sufficient to consider th%vith
Hilbert space comprising the quantum states with up to two
low-lying excitons and up to one molecular excitation with N
higher energy. The operator$, and t, describing the H®™= > [eata,—L(a’,,a,+a; an.q)
n

former type of the quasiparticles obey mixed Fermi and Bose
commutation relations known as the Pauli commutation
relations!®1441-434%herefore the Pauli operators andt,

are not convenient when dealing with the states containing
more than one exciton. To facilitate the analysis, we shall high_ +

invoke the Jordan—Wigner transformaﬁ&ﬁ“'l;{“o"‘lcon- : nzl ; #aCnaCna: 28
verting the original Pauli operators into a set of operasrs
anda, obeying exact Fermi commutation relations, as

=78, 854180+ 180], 2.7

N

Hhighoc ' Xa(cna+c(n+l)a)an+lan’ (2.9
=(=1)t,; t,=(—=1)ra, 2.3 n=1 «a
(n=1,2,...,N), with and
n—1 n—1
Un_izl tJ tJ J§=:1 % @4 Hexhigh= E 2 X*a+a;+1 (ChotcC n+1)a)1 (2.10

The operatoan describes the annihilation of a Fermi-exciton
at the siten, a’ being the corresponding creation operator.where the factor £ 1)4 is hidden in the boundary condition
Note that the other set of operatarg, and c,, does not (2.5 for the operatorsy; anday, ;. Condition(2.5) will
require any fermionization, as our consideration is restrictedead to two different sets of the wave number vallesor-
to states with up to one molecular electronic excitation ofresponding to states with an even and odd number of Fermi-
this type. In fact, the present paper concentrates on pumpexcitons, as presented in .12 below. It is to be empha-
probe spectroscopy probing the excited-state manifold thadized that parametey can indeed be used to classify the
contains a superposition of two Fermi-excitons and oneeigenstates of the Hamiltonia# in which operators for the
higher molecular excitation. The states in which two or morecreation and annihilation of Fermi-excitons appear always in
molecules are promoted to higher excited levels, are charagairs.
terized by much larger energies than those of two Fermi- The separation of the full Hamiltonian into the terms in
excitons. Such states are not accessible via the pump—prok]. (2.6), corresponds to the division of the full system into
spectroscopy of interest due to detuning effects. a subsystem of interacting Fermi-excitons and into that due
To represent the Hamiltonia(2.1) via the new opera- to the higher molecular states; Both subsystems are charac-
tors, consider first the terms of the Hamiltonian that do noterized by their Hamiltoniangi®* and H"'9" respectively.
contain the Pauli operators belonging to the boundary Bites The remaining termsi "9 and H®*"9" describe the inter-
and N+ 1. Such nonboundary terms preserve their originalaction between the two subsystems. The former operator
form, i.e., one can simply change the lettetreferring to  H™9""®*corresponds to processes involving the destruction of
Pauli operatorsinto the lettera (denoting Fermi operators two Fermi-excitons accompanied by the promotion of the
in the corresponding terms of the Hamiltonig®.1); this  system to a higher molecular stakt®*"9"being the Hermit-
is a consequence of the one-dimensionality of the systerian conjugated counterpart representing the opposite pro-
along with the adopted nearest-neighbor approxi-cesses.
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B. Transition into the momentum space

Next we shall transform the Fermi-operators into the
momentum space,

N
+_N-12 + Aikn.
by =N nZl aekn;

where the boundary conditiof2.5) provides the following
set ofk values:

@

k=m(2j+q)/IN, (2.12

the numbelj assumedN consecutive integer values, and the
parameterg can again take one of the two values O or 1(2)
depending on whether the exciton number in the system is
odd (@=0) or even 1=1). Note that the tilde has been

placed here over the wave numberto reserve the usual
lower casek for the wave number of the relative motion of
two excitons introduced in Eg$2.15 and(2.16) below.

In terms of the new operators, the Hamiltonian for the
exciton subsysten.7) reads

H®= > Exb; by—y>, Bi B, (2.13
k K ©)
where
w=e—2L cosk (2.14

is the energy of a free Fermi-exciton. Here the coupling be-
tween the Fermi-excitons has been expressed via the auxil-
iary operators

+_ N —1/2 + + ik.
Bk =N ; B2+ kOK2— K€"

BK:N&/Z; b 2—kbr2+ k€™ (2.19
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HEMI=>" 2 cogK/2) >, x%By Cx a (2.20
K @

with K as in Eq.(2.16).

+_N-12 +a—ik
ai =N Zk bye ™ (211 ¢ Eigenstates

The eigenstates of the system split into the following

manifolds:

The electronic ground statgy) containing no Fermi-
excitons and no higher molecular excitations, so that

an| g> = Cn,a| g> =0.
One-exciton states containing one Fermi-exciton

[K)=bx|g), (2.21)

where the wave vectd( is as in Eq.(2.16); this corre-
sponds to the casg=0 (the number of excitons is odd

in the general relation for the wave vect@.12). Note
that the higher-molecular levels are not yet involved, as
at least two Fermi excitons are required for the coupling
with the higher-excited states to come into play via the
interaction operator.19 and (2.20.

In what follows, we shall concentrate on the next set of
the excited states representing superpositions between
the states with two Fermi-excitons and one molecular
excitation with higher energies, ; it is this manifold of

the excited states to which the aggregate is promoted in
the pump—probe experiments via the upward optical
transitions from the one-exciton states. The pump—probe
spectra will be treated by means of the Green function
technique bypassing the explicit analysis of the eigen-
value problem for such a manifold.

lll. LINE SHAPE OF THE EXCITED-STATE
ABSORPTION

describing the creation and annihilations of exciton pairs ajy General

neighboring molecules, with

1. Dipole operator

K=2ml/IN; k=m(2j—1+q)IN, (2.19

The dipole operator, inducing the optical transitions

being, respectively, the wave number for the motion of thewithin the aggregate, reads

“center of mass” of the two excitons and that for their rela-

tive motion,| andj takingN consecutive integer values, and M=M,+M_=| u*J, +>, M1a31+a>
q=0,1 as in Eq(2.12. a
Transforming also the other set of creation and annihila-
tion operators into the momentum space + ,U“JJLE Maljla), (3.2
N (23
Clz :Nflle ¢ elkn. ¢o* :N71/22 C|J<r e iKn, with
,a =1 n,a n,a e ,a \ N
(2.17 -
Ji=2 =2 (~D)7ay; I =37, (3.2

the remaining component2.8)—(2.10 of the Hamiltonian
take the form

HOh=>" &,> Cg oCkia (2.18
a K

N
Jie= 21 Craln= 2 Cn o(—1)%na,; JH=(319)".
n= n

=1
3.3

HM =D 2 cogK/2) D, xuCr o Bk, (2.19
K a ’

and

Here the operatod, (J_) describes creatioannihilation

of Fermi-excitons by lightu* (u) being the corresponding
molecular transition dipole along the polarization of light. As
discussed earlie¥’® such an operator acquires a many-
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particle character after the fermionization due to the emerg-

ing factor (—1)?n, the factor playing an important role in IM(E)=7""1m % (in|M fin)
one- to two-exciton transitions. The operathf* describes
the annihilation of a Fermi-exciton accompanied by the cre- X (Ejn* E—Egn—is) " Xfin|M . |in). 3.7

ation of an excitation with higher enerdie., promotion of Note that the retention of a smalyet finite) quantity s

the system from a lOW_Iyllrlg excited state to a hlg'her I’n()lecu'makes it possible to introduce phenomenologically a finite
lar level ), the operatod-“ represents the opposite process

e and 4 being th ding t ition dinol 'homogeneous linewidth for the molecular spectral lines char-
pand p €ing the corresponding transition GIPOIES o a7 by Lorentzian shapes. Furthermore, depending on
along the polarization of light. For the present purposes th%xperimental conditions, the finite may represent other

_ o . s ala .
factor (—1)°» can be omitted i, as we restrict ourselves broadening effects, like an inhomogeneous segment distribu-

to optical transitions originating from the quantum Statestion or laser pulse widthgor more details see, e.g., Ref.)36

Wlthlrlljp\)/vtr(i)tir?g?hlzee;rt?(l)-\?exig?z;ionships the transition dipolesm the simpliest case of optical transitions from the ground
L ' electronic state, one ham)=|g) andE;,=E,=0, givin
of individual molecules are assumed to be parallel to each 4m)=lg) moe gving

other. As a result, the indaxis not featured in the quantities 19(E)=19 (E)=| 7 Y ul’N
wandut®. Furthermore, the size of the aggregate is consid- (B)=15(E)=Im E—(e—2L)—is’
ered to be small as compared to the wavelength, so the re- . .
tardation factors are not featured in the operatbrsand |._e., only _upward transition to the one exciton state vKih
J1*. Note also that the dipole operai®.1) does not include =0 contribute to the line shagé(E).

the processes of direct creation or annihilation of the high-

energy excitations: These transitions are characterized by eff: Sum rule

ergies that are much higher than the energy of Fermi- We complete the subsection by writing a general sum
excitons, and hence do not contribute to the pump—probeule obeyed by the absorption line shages),®*°

spectrum in the exciton area of interest.

(3.8

f IN(E)E=N|u2~| 2/ul?~ 3 [u?|m, (39

wherem is the number of the excitons in the initial state, i.e.,
m=0 in the case of transitions from the ground electronic

Consider the line shape of optical absorption of the agstate (in)=|g)), andm=1 for transitions from one-exciton
gregate from a yet unspecified initial staite), states [in)=|K)). In terms of the differential spectrum
(3.6), the sum rulg3.9) reads

2. Line shape

IM(E)=1"(E)—I"(E), (3.4)
with | arEde=—2lu+ S [ (3.0
. showing that the integral over the differential spectrum is
17(E)= fE |[(fin|M ..[in)|28(Ejn— Egn = E), (3.9  determined by the transition dipolgsand s only. In other

" words, the integra(3.10 does not depend on other param-

where the summation is over all optically accessible fina€ters of the system, such as the energies of resonance cou-
states|fin), both initial and final states being eigenstates ofPling (—L) and the exciton—exciton interaction-(y), as
the full Hamiltonian(2.19 with eigenenergie&;, andEq,.  Well as the energy of the coupling between the Fermi-
The positive contribution™ (E) represents the usual absorp- €xcitons and the higher molecular excitationg,). It is
tion involving the upward optical transitions in the aggre-noteworthy that the sum rule for the line shay¥E) has
gate. The negative contributidff (E) describes the induced Peen originally derived analyzing a system of noninteracting
emission that can be understood as the negative absorptiGiCitons in one dimensiot.” Yet, its derivation is based
due to the downward transitions in the aggregate. Subtractingly ©n the general commutation relations for the Pauli-
from Eq. (3.5 the line shape of the ground-state absorptionOPerators entering the dipole operatdrl), as well as on the
I9(E), one arrives at the differential pump—probe spectrurASSUmption that the transition dipoles of individual mol-
(associated with the optical transition from the one excitorfcules are parallel to each other. As a result, the sum rule
state|in)=|K) to which the system is promoted by the ini- (3-9 [or (3.10] is applicable to a much wider range of mo-

tially applied pump-pulse !ecular systems, il_"nclu_ding the one considered here, systems
influenced by static disorder and phonons, and also systems
AIK(E)=I'§(E)—I'§(E)—I9(E), (3.6) with higher dimensions. The above sum-rules demonstrate

that |fAIX(E)dE|/[19(E)dE~1/N, i.e., for large aggre-
whereE denotes the energy of a probe photon. Such a difgates N\>1) the integrated change of the absorption line
ferential spectrum is relevant to pump—probe experimentsshape is much smaller than the integrated line shape itself.
see, e.g., Refs. 22—-24, 30, 31. This goes along with the pump—probe experimentsJon
Since 8(x)=m"1 Im(x—is) ! (with s—+0), Eq. (3.5  aggregates showing a blue-shitith almost no bleaching
may be rewritten in a form that is more convenient for theof the excitonJ-band?2~%° Previous theoretical analyses of
subsequent analysis, the one- to two-exciton transition does indeed yield such a
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blue shift?1012-143436the effect being retained in many where
cases in the present model incorporating both the exciton— G=G(E+E ) =[(E+Ex)—H—is]"! (s—+0)
exciton coupling and an arbitrary number of higher molecu-

lar levels, as will be demonstrated in Sec. IV. . . . (3'13)
is the Green operatdcorresponding to the Hamiltoniat),

Ek being the energy of the initial one-exciton state, as given
by Eqg. (2.14 subject to the substitutiok— K.

In Appendix A, the Green operat@ has been deter-
mined in terms of the Green operator for free excit@f3,
invoking the projection operator technique. We shall substi-
|5(E)=5K,o|3(E). (3.11) tute the resultSA6) and (Al4) for G into the line shape
(3.12, subsequently exploiting Eq$3.1)—(3.3) for the di-
pole operators, as well as Eq2.18—(2.20 for the terms

B. Line shape for transitions from one-exciton states

In what follows, we shall concentrate on optical transi-
tions from the one-exciton statd$). In such a situation, the
contribution due to the induced emission reads

where |9 (E) is the line shape of ground-state absorption

given by Eq.(3.8). The Kronecker delta reflects the fact that ¢,mprising the Hamiltonian. As a result, one arrives then at
downward transitions to the ground electronic stalﬂé)(. the following absorption line shap@hese results will be
—|9)) are possible only from the optically active state with giscssed in detail in Sec. IV in connection with the repre-

K=0. On the other hand, the line shape due to the upwardeniation of the differential pump—probe spectum
transitions cannot be written in such a simple form, since the

final eigenvectordfiny represent a complex superposition of 15 (E)=1% feeed E) + 150 (E) +15 100 (E) +15 1igr(E).
the two-exciton states and the states containing one molecu- (3.14
lar excitation with higher energy. To bypass the explicit Here the constituent terms read
analysis of the state-vectoffin), we shall make use of the _

Y bﬁn IKfree-eiE):W l|/u’|2 |m<K|J—Gf6r)e(3 +|K>' (3.19

fact that they comprise a complete basis, and can thus be

discarded from Eq(3.7) to yield By m il m 2Lac((K|J_GE By |g))? 216
IK(E)=7"1 Im(KIM_GM_|K), (312 # 1+2Lak(g|BkGhsBxla)]”
|
1K (E)=m"11m (K|I_Gfe }JE|9>(MUK_#*TK)+<9|BKG?£ ;|9>UKl~JK (317
L+2La(0B«Crii[0) | |
|
| 1al? pendix A. In the following we shall concentrate on optical

g E) =71 1m X ETE.—s —is’ (3.18 transitions from the one-exciton state with=0. In fact, due
“ K T to theK =0 selection rule, only such a state can be populated
with during the ground-state absorption of a photon from the
2wy, codK/2) pump pulse. As a result, the subsequent absorption of a
Ug=>, o . probe photon does take place from this one-exciton state, as
« E+Ex—e,ls long as the aggregate does not undergo thermal transitions to
Ug=2>

2yt COSKI2) other one-exciton levels with higher energtészor K=0,
a E+ EK_ Eq— |S ’

(3.19 the Green functions given by Eq6A16)—(A18) reduce to
the following:

and

1 1
ax=yy(E)/2L=yl2L (0]3-Gfre +|0>:—ZE[N—(D+1)30(P)],
2 (3.2
4cod(K)S, XL (3.20 .
= E+Ex—e,—Is ex o4t i
(K[3-GrreeBo [0)= 5 [So(P) +S1(P)], (3.22

where yx(E) has been defined by EA11), and the opera-
tor G is given by Eq.(A12) in Appendix A. The dimen- 1
sionless parameter, contains contributions due to both the (0|BoGEY, g|o>: — H[So(p)—sz(p)]' (3.23
direct coupling between the Fermi-excitong2l. and also
the additional(indirecy coupling between the excitons via \,iih
the the higher molecular levels. The latter indirect coupling
is represented by the second term in E20. 1 exp(ikn)

Equations(3.14—(3.18 define the absorption line shape Sn(P)= N Ek: p—cosk’ (3.24
in terms of the Green functions for free excitons, the latter
functions are given explicitly by EqgA16)—(A18) in Ap-  and



6922 J. Chem. Phys., Vol. 109, No. 16, 22 October 1998 G. Juzeliunas and P. Reineker

p=(e+2L—E-+is)/4L. (3.25 In the case ofK=0, the contributionAlf....(E) and the

K .« .
The above summatio&,(p) has the form of the familiar term 1% inu(E) read explicitly

one-exciton Green function. In dealing with such functions, 0 | u|? 1 1+b~*\/1-b~N

the summation ovek is normally replaced by an integration ~ Alfree-el B)= 570 IM o3| 3=p=1 1+bN)’
(see, e.g., Refs. 14-16, 33, 34, 36, 44), &8suming that the 4.3
numberN is sufficiently large. To retain the effects of finite

N, we shall make use of another method originally suggested _ lwl?  2ab ! [1-b (N"V]?

by Montrol*® and Lakatos-Lindenberet al*® in their studies ina(B)= =57 Im (p—1)| 1+b N

of random walk on lattices. Note that in the present situation ~(N=2)7) -1

the wave numbek, characterizing the relative motion of the > { 1—ab ! 1+b ] (4.4)
two excitons, can assume values different from those in Refs. 1+b~" '

45 and 46. In fact, there are two possible set& given by
Eq. (2.16 depending on a specific value of the full wave
vectorK=2#l/N [with q=1 in Eq.(2.16, as we deal with
the states containing even number of Fermi-excitolmsthe
case of odd, Eq.(2.16 yields a set ok values considered
in Refs. 45 and 46. However for evén(e.g., forl =K=0),
one arrives at another set in which the vake0 does not
appear. The summatiof8.24) has been carried out in Ap-
pendix B for the present purposes. Using B8f), one finds

wherea=a, is given by Eq(3.20 (with K=0), and use has
been made of Eq$3.8), (3.11), (3.15), (3.16), (3.21)—(3.23),
and(3.26. If the influences of higher molecular levels can be
neglected, these two terms describe completely the differen-
tial spectrum, the contributioHﬁiml(E) representing the ef-
fects due to the exciton—exciton interaction. In particular, for
b~N<1, Egs.(4.3) and(4.4) reproduce the results by Spano
and Mana¥*** which were obtained when analyzing a sys-
tem of interacting excitons in the limit of large.

for K=0, The two additional terms;,(E) and I%,(E) are
b~"—p~(N=M defined by Eqs(3.17—(3.18, together with Eqs(3.22—
Sn(p)= b—pb 1 1+p N (326 (3.23 and (3.26 for the Green functions. To simplify the
with expressions, we note that in the electric-dipole approxima-

tion, the energy of resonance coupling () and the cou-
b=p++p?—1, b~ '=p-p?—1. (3.27  Ppling parametely,, are related to the appropriate transitions
dipoles (up to orientational factojsas L — uu*/R® and

Equation(3.26) is an exact result valid for an arbitrary Yo . /R, Accordingly, one can write

numberN. It is instructive that the Green functidB.26) is
not affected by the interchandge—b 1. In other words, the Xo=—Lduq,/p*, (4.5
sign of the square root/p’—1 can be reversed simulta-
neously both irb andb 2. In Eq.(3.27 the specific sign of
the square root has been chosen in such a waylthatl, if
the energyE of a probe photon lies within the exciton zone
or below E<e+2L). This spectral area is most important
for the optical absorption involving predominantly the lowest
levels of the exciton bantt. (If the energyE is situated
above the exciton zonE>¢+2L, the sign of the square
root is to be reversed in E€B.27) to get|b|>1.) The choice
|b|>1 allows us to neglect the terbm (N"™ in Eq. (3.26 at
sufficiently largeN. Note that for the energies lying within
the exciton zone — 2L <E<e+2L, the limit of largeN is

where the parametat is of the order of unity in the case
whereu and w4, do not differ significantly in their orienta-
tions. It is noteworthy that the relationshig.5 holds be-
yond the dipole approximation as well, provided the higher
levels a represent the vibrational sublevels of a single elec-
tronic state. Under this condition, both the transition dipole
M1, and the coupling energy, are characterized by the
same Condon factors, so one arrives immediately at the re-
lationship(4.5) in which d is some dimensionless parameter.
The case accommodatdnter alia, a situation where only
one higher electronic levéWithout a vibrational structupas

achieved in the case where the linewidthf the individual ~ considered. Such a model has been treated recently by

molecules exceeds considerably the distances between tﬁgoestgr apd Spanoin Fhelr analysis of the two-phqton
exciton levels sN/AL|1— p2| /2 1. absorption in a long chain of three level molecules without

including the direct exciton—exciton interaction. Using the
relationship(4.5), both coefficientsi, anduy , given by Eq.

IV. ANALYSIS OF THE DIFFERENTIAL PUMP—PROBE (3.19, can be expressed via a single functQ(E),
SPECTRUM

~ dlul?

Using Eq.(3.14 for the line shapeX (E), the differen- plUo= p* Up= 5 Q(E), (4.6

tial spectrum(3.6) can be written as
K K K K with
AIN(E) = Alfeeel E) T 1 jna (B) + 1 in(E) | |2
K _ _ M1l
1 high(E), (4.1 Q=QEB)=2 =7 a0 47

where both the induced emission and the ground-state ab- ] ) )
sorption are now contained in the free-exciton term, whereK=0 is taken in Eq.(4.6), and p=p(E) as in Eq.

K K K (3.29. In a similar way, forK=0 the coupling parameter
Alfreeed E) =15 freeef E) —IZ(E) = 14(E). (4.2 (3.20 can be expressed through the same func@¢),



J. Chem. Phys., Vol. 109, No. 16, 22 October 1998

a=ag=y/2L+d>Q(E)/2. (4.9

The line shape‘ihigh(E) given by Eq.(3.18 is also related
to the functionQ(E), as

el
|9+high(E):_7T II Im Q(E). (4.9
Finally, the remaining ternh%, ,(E) takes the form,
2 202 —(N-2)
d 1+b
1% in2(E)=— L Im Q- =N
27L 4 1+b
.1t p~(N=2]) 1
X 1-ab™ | — x| (4.10

with b as in Eq.(3.27).

The terms(4.3), (4.4), and (4.9 —(4.10 define the full
differential spectrum\1°(E) given by Eq.(4.1). The terms
Al feeeA E) andl$ (E) represent, respectively, contribu-

tions due to the free Fermi-excitons and the higher molecular -¢.6 0.5 -0.4

levels. Note that the bleaching contributiddue to the
ground state depletigndoes not show up in the term

Iﬂhigh(E), as the corresponding transition dipoles have been

omitted in the transition operator given by E¢3.1)—(3.3).

Inclusion of such transition dipoles is straightforward, yet the
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ground-state absorption to the higher molecular levels is be-
yond the spectral region of interest and can therefore be dis-
regarded. The other term$ . ,(E) and1%,.,(E) are due to
coupling of the Fermi-excitons to the higher molecular lev-
els, as well as due to the direct coupling between the Fermi-
excitons. It is noteworthy that the coupling parameteEq.
(4.9, entering the line shape§ ,.,(E) and1?,,,(E), con-
tains an addition toy/2L which reflects indirect coupling
between the Fermi-excitons via the higher molecular levels.
The strength of the indirect coupling depends on the function
Q(E) generally given by Eq4.7). The specific form of the
function Q(E) depends on what kind of distribution applies
to the energieg , of higher molecular states and the corre-
sponding transition dipoleg,,. For instance, in the case
where the transitions to higher levels are distributed accord-

ing to a Lorentzian centered aﬂigh and characterized by the
width A, Eq. (4.7) simplifies to

2
Q=Q(E)=~ x—ALIL';:SZ/LﬂJiAML ’ .13
where
Azpgn=[emgn—2(e—2L)] (4.12
is the detuning energy, and the quantity
x=[E—(e—2L)]/4L (4.13

is the energy(in 4L units) calculated from the bottom of the
exciton zone.

FIG. 1. Relative differential spectrum vs relative energy for N=12,
yl2L=1.7, Asﬁigh=0, fnigh/ u=d=1 and s=0.02. The relative widths
A/4L are(a) 0.02 (solid line), 0.05 (dotted ling, 0.1 (dashed ling (b) 0.3
(solid line), 1 (dotted ling, 3 (dashed ling (c) 10 (solid line), 30 (dotted
line), 100 (dashed ling

width A/4L of the distribution of higher molecular levels. In
all three cases a value off2L=1.7 has been used for the
direct exciton—exciton coupling. In other wordg/2L ex-
ceeds the critical value of 1 which corresponds to the onset

Figures 1-5 show plots of the relative pump—probeof formation of a biexcitor(below the exciton band-edge at

spectrum

y=4LAI%E)/|u|? (4.14

vs the relative energy, calculated using the Lorentzian dis-

tribution (4.11) for Q(E). Figure 1 gives the spectra for
small (a), medium(b), and large(c) values of the relative

x=0) in the case where the influences of the higher molecu-
lar levels can be neglectéd®***For A/4L<1 [Fig. 1(a)],

the differential spectrum around the band-edg®.15<x
<0.15 exhibits a blue shift of the ground-state absorption
positioned atx=0, such a shift being familiar from the
analysis of noninteracting excitord®121421:24n fact, the
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FIG. 3. Relative differential spectrum vs relative energy gl =0.05,
FIG. 2. Exact(solid line) and the approximatédashed ling differential Nle,Asﬂigh:O, Mhigh/ p=d=1 ands=0.02. The parametey/2L equals
spectra around the exciton band-edgexatO for A/4L=0.02, N=12, — 0.5 (solid line), 1 (dotted ling, and 1.7(dashed ling
yl2L=1.7, Asﬂigh: 0, ppign/ u=d=1 ands=0.02. The approximate spec-
trum has been calculated using E4.3) for Al%.. .(E) subject to the re-
placemeniN— N . The parametea featured in Eq(4.15 for N has been

calculated ak=0 giving Net=9.998-0.0799. an underestimation, the sum rut.10 is preserved for the
overall differential spectrum, the missing oscillator strength
being transferred to the biexciton peak positioned at lower
pump—probe spectrum presented in Fi¢p) fits fairly well  energies.
(at —0.15<x<0.1H to the spectrum for the noninteracting Figure Xc) shows another limiting case where the distri-
Fermi-excitonsA 9., (E) given by Eq.(4.3), subject to the  bution of the higher molecular levels is large compared to
replacement of the actual size of the aggregdtdy the the resonance coupling/4L>1. Here the coupling param-
effective one etera is close toy/2L, the indirect coupling between the
Fermi-excitons providing a small imaginary partdo This
New=N-+2a/(1-a), (4.15 introduces some broadening to the biexciton peak positioned
as illustrated in Fig. 2 for the case wheké4L =0.02. Such atx~—0.15 in Fig. 1c). The linewidth of the biexciton peak
a replacement has been recently suggested in Ref. 35 analyincreases with decreasint/4L until the peak becomes al-
ing the influence of the exciton—exciton interaction on themost unresolvable in the case of intermediate widtelL
optical transitions between the one-exciton and two-excitor- 1, as depicted in Fig.(b). In this way, the higher molecu-
states. In the present situation, the concept of the effectiviar levels can broaden considerably the biexciton peaks mak-
numberNgs has been extended to include the contributioning it difficult to identify them in the pump—probe spectra.
due to the higher molecular levels into the coupling param-Decreasing further the paramet&f4L, one returns back to
etera. This makes the quantiti.; entering the line shape the limit A/AL<1 in which a biexciton peak reappears at
AI?,ee_e)(E), a complex quantity. Since the widtldid4L are much lower energies arounxk~—0.52, as shown in Fig.
taken to be extremely small in Figs(al and 2, the coupling 1(a). It is noteworthy that in the formation of such a biexci-
parameter given by Eq.(4.8) acquires a very large imagi- ton, an important role is played by the indirect interaction
nary part arounc=0. As a result, the effective numbR;  between the excitons shifting the biexciton peak additionally
depends weakly on the magnitugé2L of the direct cou- downwards from the two-exciton continuum. For instance, in
pling, and appears to be close Nb-2. In other words, the the situation corresponding to Fig(al, the real part of the
strong indirect coupling between the excitons excludes theoupling parametern calculated atx=—0.525 equals ap-
two-exciton states containing the excitons at the neighboringroximately 2.6, exceeding substantially the magnitude of
sites from the formation of the differential spectrum. In thisthe direct exciton—exciton coupling/2L=1.7. It this way,
way, the effective number of molecules contributing to thethe indirect attraction between the Fermi-excitons allows the
one- to two-exciton transitions in the spectral area around théormation of a biexciton fory/2L<1 and even for negative
exciton band-edge is reduced by’?2For instance, in the values of the constany/2L, as one can see from Fig. 3
situation presented in Fig. 2, one hdgz=9.998-0.0799, showing the differential spectrum A¥4L = 0.05 for various
i.e., the effective size of the aggregate is reduced from 12 twalues ofy/2L. A similar effect is known in the theory of
10, and a small imaginary part emergedig;. The approxi- biphonons and Fermi resonance in the vibrational spectra of
mated spectrum represented by a dashed curve in Fig. 2, fitsystals*” 8 This point was also noted in Ref. 36 analyzing a
well the exact result at energigs-0.02 corresponding to the system of three level molecules without the direct exciton—
excitation by a probe photon of the dissociated two-excitorexciton interaction. On the other hand, for larger relative
states. However, at lower energies 0.02 the approximated widths A/4L, the onset of biexciton formation depicted in
spectrum underestimates to some extent the contributiorfSig. 4 occurs as usuil****at the critical values ofy/2L
due to the induced emission to the ground electronic statesqual to approximately 1, yet the formation of a biexciton is
and also the depletion of the ground state absorption, as faomewhat smoothened by the influences of higher molecular
both of these spectra the actual numbégrather than the levels (see Fig. 4 Note also that the indirect interaction
effective ong is more relevant. Note also that despite suchbetween the excitons might reduce to some
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FIG. 5. Relative differential spectrum vs relative energy $é2L equal to
—3 (solid line), —1 (dotted ling, and 0.5(dashed ling other parameters
being A/AL=3,N=12, Ae{ =0, phign/ w=0d=1, ands=0.02.
hY% .. . .
b role of a dissipative system that quenches pairs of lower
(b) N lying excitons. This makes the exciton—exciton annihilation
A an irreversible decay process, as usually observed in
et el L% experiments? In the spectroscopic context, the existence of
0.6 -0.5 -0.4 -0.3 -0.2 -0:1y \|/# 0.1 * such a dense set of higher molecular levels introduces widths
1" A H to biexciton peaks. In some situatiofmiuch as the one de-
- IS . . . . .
VL picted in Fig. 1b)] the broadened biexciton peaks become
200t difficult to identify in the pump—probe spectra. In addition,
- 1 . . . . . . .
L the indirect interaction between the excitons via the higher
L] . . . .
304}t molecular levels can facilitate the formation of a biexciton at
! . . .
W lower than usual values of the direct exciton—exciton cou-
pling 7, in extreme cases even for negativ@alues charac-

FIG. 4. Relative differential spectrum vs relative energy AgdL =3 (a) terizing repulsion rather than attraction between the excitons.

and A/4L=10 (b), other parameters being=12, _A«sﬂigh=0, Hhigh/ p=d It is noteworthy that a similar manifestation of the indirect

=1 ands=0.02. In each of these plots the coupling constdlt equals 1 jhteraction is known in the theory of biphonons and Fermi
resonance in the vibrational spectra of crystaf€ This

(solid line), 1.7 (dotted ling and 2.5(dashed ling
point was also noted by Knoester and Sp&ror a system

extent the critical value for the biexciton formation even in _Of threg level mt;leculhes vk\:lthgut. thﬁ dlreqt exuton:je)r(]cnon
the case of a wider distribution of higher molecular sublev-'nteragt'og' %n 1 ehot er hand, 'E the region aro#rt;_ 1 ekﬁx'
els, provided these sublevels are distributed above the bo?—'tpn and-edge, the pump-=probe spectrum exhl _|ts a blue

shift of the exciton absorption line for various situations
[such as in Figs. (&), 2, and 3, the shift being familiar from
the analysis of noninteracting excitoh¥12142124The djf-
ferential spectrum can then be described reasonably well in

erms of the model of noninteracting excitons, subject to the
number of molecules per

tom of the two-exciton continuurm(eﬂigh> 0) thus generat-
ing the attractive indirect interaction between the Fermi
excitons. Finally, below the critical values of/2L, the
differential spectrum around the band-edgeO can be once
again represented fairly well by the one for noninteractingt
Fermi-exciton®® for A/4L=2 (see Fig. % subject to the sub- replacement of the aqtual .
stitution of the actual length of the aggregatdy the effec- agg'refgar%g N by the effective ondly (with |'_\l9ff_ N|<N for
sufficiently large aggregatesThe latterNgg is shown to be

tive oneNgi given by Eq.(4.15.
eft 9 y Eq.(4.15 influenced both by the direct coupling between the excitons
and by the indirect coupling via the higher molecular levels.

In this way, the pump—probe spectroscopy probing the mani-

V. CONCLUSION
The differential pump—probe spectrum has been COnSidf_old of the two-exciton states and the higher molecular exci-

ered taking into account simultaneously effects of exciton-{ations provides information on the effective numbég,
exciton interaction and of higher molecular levels. The thethat might be somewnhat different frohh.

oretical analysis performed in terms of the Green function

technique, provides analytical expressions for the PUMP A K NOWLEDGMENTS
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M. Agranovich for comments on the manuscript. tive Hamiltonian(A9) can be written explicitly as
APPENDIX A: DETERMINATION OF THE GREEN &=, Eqby bp— > vkBglg)(g|Bk, (A10)
OPERATOR k K

The Green operator in the expressi@il? for the line ~ With
shape acts on the excited-state manifold containing either Mk
two Fermi-excitons or one excitation with higher-energy. To  y =y (E)=y—4 cod(K2) Y, —————,

. . @ E+ EK_S —IS
determine such a Green operator, let us divide the full @ A11
Hamiltonian (2.6) into the zero-order Hamiltonian and the (A11)
interaction operator, where the second term in EGA11) describes the additional
(indirech coupling between the excitons via the the higher

H=Ho+V (AD) molecular levels. Obviously the effective HamiltonigkiL0)
with has the same form as the original Hamilton{&rL3 for the
Ho=H® Hhigh (A2) exciton subsystem' subject .to 'the replacemen% Yk In
other words, both direct and indirect interactions between the
and excitons are characterized by the same combination of the
/= Hhigh-ex,_ pyex-high (A3) two-exciton operator8y and Bg . This will facilitate the

. hiah _ subsequent analysis. Note also that the oper@for when
where the zero-order Hamiltoniam$™ and H"" describe,  acting on the state-vectors containing two Fermi-excitons,
respectively, the subspaces of t_wo—exciton states and highgg, produce only the ground state-vedty. Therefore, in-
molecular levels, and the coupling operatbinduces tran-  gartion of the projection operatdg)(g| into the coupling
sitions between the two sets of states. In a similar way, thearm has no effect on the effective Hamiltoniékl0).

Green operator can be represented in terms of its components Introducing the Green operator for free excitons

as
Giiee=Gired E+Ex)

G=G+ Ghigh+ Gex-high+ Ghigh-ex. (A4)

-1
Applying the left and right Dyson equations [ (E+ EK)_E Eb*;r b;—is} (s—+0),
G=Gy+GyVG;, G=Gy+GVG, (A5) k

the component&M9n-eX, G andG"9" of the full Green (A12)
operatorG can be expressed in terms of its project®f  one can relate it to the full Green opera@f* for the exciton
onto the subspace of the two-exciton states. As a result, theubsystem via the effective Dyson equation,

Green operatofA4) can be represented as

G =G+ (1+ GHIHNgh-ex Gex 1 + Hexhighghioh) G¥=Giree™ G?rxee( ; 7Bk 19)(g|Bk | G*, (A13)
(AB)
whereGy is the zero-order Green operator, giving
Go=Go(E+E ) =[(E+Ex) —Hg—is] "} (s—+0), cooge S GreeBk 19) 71(9|BkGrree (ALD)
(A7) free 1+ y(9|BkGedBk 9)

G5 andGBig“ being its projections onto the subspaces of the, here the solutioiA14) has been obtained by taking advan-
two-exciton states and the higher molecular levels, respeggqe of the local characf@r®* of the perturbation featured in
tively. Egs.(A10) and(A13). Equations(A6) and (A14) determine

. ox .
To determine the compone@™, we shall substitute ¢ )| Green operato6 in terms of the Green operator of
recursively the left-hand side of one of the Dyson equationg,aa axcitonsGe*

(A5) into its right-hand side, projecting the resulting equa- g4y sinfcr:eg.
tion onto the subspace of the two-exciton states. As a result, ’

one arrives at a closed equation f&* the solution of
g 3K =N"VZS b, by [ 0)cOUKIA—KI2),
k

which reads
G¥=G*(E+Ey) (A15)
_ e _ie1-1 . we shall write down explicitly the matrix elements Gfs,
~LEFE) = HerTs] (s=+0), (A8) entering Eqs(3.14—(3.17) of the main text,
where
ex ex eX-higf‘Ghigh high-ex <K | J_ G?r)ée"] - | K>
Heg=H®+H 09H (A9)

. . o ) 1 cot(K/4—k/2) — cot( K/4—k/2)cot K/4+k/2)
is the effective Hamiltonian for the two-exciton subsystem. = )

. S S N +Eq— —i
The second term in EGA9) represents the indirect interac- N E+Ec—EB(Kk)—is
tion between the Fermi-excitons due to the other subsystem. (Alo6)
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(K|I_GfeeB |9)

=—(9|BkGireed +[K)

1 [explik) —exp(—ik)]cot(K/4—k/2)

_Ng E+E«—E(K,k)—is » (ALD)

1 1—exp(—2ik)
ex pt _ =

<g|BKGfre K|g>_ N ; E-+ EK—E(K,k)—iS’ (Als)
where

E(K,k):EK/2+k+ EK/Z*k:28_4L COiK/Z)COik)

(A19)

G. Juzeliunas and P. Reineker 6927

1E. G. McRae and M. Kasha, iRhysical Processes in Radiation Biolggy
edited by L. Augenstein, R. Mason, and B. Rosenb@rgademic, New
York, 1969, p. 23.

2J. S. Briggs and A. Herzenberg, Mol. Phy4, 865(1973); J. S. Briggs,

Z. Phys. Chem., Neue Folgéb, 214(1971).

3p. ReinekerExciton Dynamics in Molecular Crystals and Aggregates:
Stochastic Liouville Equation Approach: Coupled Coherent and Incoher-
ent Motion, Optical Line Shapes, Magnetic Resonance Phenomena
(Springer, Berlin, 198p

4E. W. Knapp, Chem. Phy$5, 73 (1984.

5P. 0. J. Scherer and S. F. Fisher, Chem. Phys. B6{t269 (1984).

6A. M. Jayannavar, P. Reineker, and B. Kaiser, Z. Phyg7B229(1984.

V. Kraus and P. Reineker, Phys. Rev.48, 4182(1991).

8p. Reineker, Ch. Warns, Th. Neidlingen, and I. Barvik, Chem. Phy&.
715(1993.

9G. Juzelimas, Liet. Fiz. Rink27, 261 (1987 [English translation, Sov.
Phys. Collect27, 7 (1987].

is the energy for a pair of noninteracting excitons, and usé°G. Juzelimas, Z. Phys. [8, 379 (1988.

has been made of EgR.15 and(A12).

APPENDIX B: CALCULATION OF THE SUM S\ (P)

The sum(3.24) can be rewritten as
exp(ikn)
[1-b texpik)][1-b~ ! exp —ik)]’
(B1)

2
Si(P)=pN >

with b as in Eq.(3.27), the sign of the square root being
chosen in such a way th#t|>1. Representing the denomi-

nators in terms of the geometrical progressions, one has

Sn(|0)=i > > elkintrpp-rte), (B2)
bN k r=0 p=0

The summation over the relative wave vedtocovers a set

of values defined by Eq2.16 (in which g=1, as we are

dealing with the two-exciton statesAs a result, only the

terms withn+r—p=Nm contribute to the sum, whenm

take integer values, giving

Sn(p)ZZb_l 2 2 2 ei(KN/2+7T)mb—(r+p)
m="« =0 p=0
X8n+r7p,Nm. (B3)

HereK=2I/N is the full wave vector of the two excitons
featured in Eq.(2.16), i.e., at this stage we do not restrict

ourselves to the specific caBe=0 corresponding té=0.
Since 0<n<N, the summation ovem can be split into
the part withm<1 and that withm>0 as
2 ei(KN/2+7r)mb—(2r—Nm-%—n)
m=0r=0

Sn(p)=2b~*

o ©

+ ei(KN/2+w)mb7(2p+Nmfn) ]

(B4)

Performing summations oven andr (and overm and p),
one arrives at the final result f&,(p),

2 pN—p- (N-mgiKN/2
Si(p)= b—b * 1+p NgKN72

(BS)

In the case wherkis even(e.g.,| =0 which corresponds to
K=0), the above result reduces to E§.26).
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where the coupling between the excitons and the higher molecular levels
exceed considerably the magnitude of the resonance interaction. In the
presented situatiofFigs. 1@ and 2 the coupling between the two sub-
systems is not so strong, yet an additional indirect attraction between the
excitons leads to a similar effect. It is to be pointed out that in calculating
Figs. Xa), 2, and 3, the spectral width of higher molecular levels is taken
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the exciton absorption line around the exciton band-e@gfs. 9, 10,
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