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Pump–probe spectrum of molecular assemblies of arbitrary structure
and dimension
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Using the hard-core boson approach, we study the pump-probe spectrum of molecular assemblies
carrying Frenkel excitons of arbitrary structure and dimension. We present a rigorous justification
of the hard-core boson approach by using the Agranovich–Toshich transformation from paulions to
bosons. The resulting two-exciton Green function is used to derive a general expression of the
assembly’s pump–probe spectrum. We show that this expression considerably simplifies for ordered
systems occupying a lattice, where we allow for the occurrence of more than one equivalent
molecule in the unit cell~Davydov components!. Explicit semianalytical expressions are given for
the pump–probe spectrum of linear chains with alternating dipoles, ring aggregates, chains with a
herringbone structure, and monolayers. In the analysis of these expressions, we focus on the overall
shape of the spectrum and on the effects of probe polarization. It is shown that relaxation during the
pump–probe delay time may drastically affect the pump–probe spectrum. ©2000 American
Institute of Physics.@S0021-9606~00!70804-X#
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I. INTRODUCTION

The collective optical dynamics of molecular assembl
supporting Frenkel excitons1–3 is a field that continues to
attract attention. Among the systems arousing most inte
areJ aggregates of cyanine dyes, Langmuir–Blodgett mo
layers, and biomolecular systems such as antenna comp
consisting of chlorophyll molecules. Recently, ma
theoretical4–15 and experimental16–24 studies have been de
voted to the pump–probe spectrum of these systems. In
weak-pump limit, this is a third-order nonlinear optical tec
nique, which allows one to probe transitions between o
exciton states and two-exciton states. ForJ aggregates, this
transition is blueshifted compared to the ground state abs
tion band~the J band!, which is a consequence of the fa
that excitons are paulions, i.e., two excitations cannot re
on the same molecule. For one-dimensionalJ aggregates,
this blueshift allows one to estimate the extent of the exci
wave function imposed by the size of the aggregate or
static disorder, provided that dynamic~homogeneous! broad-
ening does not dominate the spectrum.4,12–14,22

Most of the work on molecular aggregates has been
formed in the context of one-dimensional Frenkel excit
models, which has often led to a good comparison betw
theory and experiment. Still, the dimensionality ofJ aggre-
gates is not a settled issue. Although absorption experim
in streaming solutions25 and on mixed PIC-aza-PIC
aggregates26 support a one-dimensional structure, expe
ments involving relaxation, such as exciton–excit
annihilation27–29 and temperature dependent fluorescenc30

question this picture. It is conceivable that on the len
scale of exciton coherence, which is relevant to coher
optical experiments, J aggregates behave as on
2320021-9606/2000/112(5)/2325/14/$17.00
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dimensional, whereas on larger length scales, probed by
fusion, they reveal a more complicated structure. Such a
erarchy of length scales, involving domains and me
aggregates has been suggested by several authors.27,29,31–33

In addition, techniques exist which produce well-defined
semblies with a structure that is not linear. As examples,
mention Langmuir–Blodgett films,34 which obviously call
for a two-dimensional description, and the helical aggrega
lying on a cylindrical surface reported in Refs. 35 and 36

In this paper, motivated by the above observations,
will study the pump–probe spectrum for Frenkel exciton s
tems of arbitrary dimension and structure. Although our g
eral formulation also applies in the presence of disorder,
will pay special attention, to the case of ordered aggrega
where we derive explicit~semi-!analytical expressions fo
the pump–probe spectrum of various types of assem
structures. We believe that their simplicity renders these
pressions useful tools in the analysis of experiments on m
complicated molecular structures.

Our method is based on the hard-core boson approac
which the paulions are treated as bosons, with an infin
on-site repulsion taking care of the kinematic interaction~the
exclusion principle! felt by the paulions. This method wa
first proposed by Van Kranendonk37 when dealing with spin
waves, but was criticized as naive by Dyson.38 Subsequently,
working in the context of Frenkel excitons, Agranovich a
Toshich2,39 suggested an exact~yet complicated! transforma-
tion converting paulions to bosons, which lended further s
port to the hard-core boson approach. The method has
been advocated by Mukamel and co-workers. Leegwater
Mukamel introduced the hard-core potential to calculate
general four-wave mixing optical susceptibility of molecul
5 © 2000 American Institute of Physics
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assemblies,40 while more recently the pump–probe spectru
was also studied using this approach.13

In spite of the amount of earlier work, in our opinion
rigorous justification of the hard-core boson approach is
lacking. In this paper, we fill this void by using th
Agranovich–Toshich transformation and by showing that
many-boson interactions which result from this transform
tion may, up to the two-particle level, indeed be replaced
a hard-core interaction. Crucial ingredients in this derivat
are the Heitler–London approximation and the fact t
third-order optical response only is sensitive to one- and t
exciton states.

The second goal of this paper is to use the hard-c
boson method to derive explicit semianalytical expressi
for the pump–probe spectrum of various examples of
dered aggregate structures. In this analysis we accoun
structures with more than one molecule in a unit cell. T
situation often occurs in organic molecular systems and le
to the well-known formation of Davydov components in t
one-exciton subspace.1 The effect on two-exciton states an
the pump–probe spectrum has thus far not been conside

The outline of this paper is as follows. In Sec. II, w
present the Hamiltonian, justify the hard-core boson
proach, and calculate the two-exciton Green function us
this method. This Green function is used in Sec. III to der
the formal expression for the differential absorption sp
trum. In Sec. IV, we restrict ourselves to ordered aggrega
and derive an expression for the pump–probe spect
which only involves the manipulation~diagonalization and
inversion! of S3S matrices, whereS is the number of mol-
ecules per unit cell. Sections V–VII are devoted to the
plicit expressions and their analysis for the pump–pro
spectra of specific examples. We consider linear chains w
alternating dipoles~Sec. V A!, ring aggregates~Sec. V B!,
linear aggregates with a herringbone structure~two mol-
ecules per unit cell, Sec. VI!, and molecular monolayer
~Sec. VII!. One of the aspects receiving particular attention
the dependence on the probe polarization. Finally, we c
clude in Sec. VIII. Appendixes A, B, and C contain technic
details that are of importance but which would break the l
of the main text too much if included there.

II. GENERAL FORMULATION

A. Hamiltonian and bosonification

We consider an aggregate ofN two-level molecules with
electronic excitations described by the Frenkel exci
Hamiltonian:1–3

Hexc5(
n

«nPn
†Pn1 (

nÞn8
Ln,n8Pn

†Pn8 . ~1!

Here, Pn
† (Pn) is the Pauli operator for creation~annihila-

tion! of an electronic excitation, with energy«n , at the mol-
eculen, while Ln,n8 is the excitation transfer interaction be
tween the moleculesn and n8. At this stage, we do no
impose any restriction on the system’s dimension and st
ture; in addition, no translational symmetry is assumed.

In the above Hamiltonian, we have invoked the Heitle
London approximation, which neglects terms of the fo
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Ln,n8Pn
†Pn8

† andLn,n8PnPn8 .1–3,41The effect of such terms is
small in exciton systems, owing to the fact that the molecu
transition frequencies are typically much larger~by one to
two orders of magnitude! than the transfer interactions
Within this approximation, the eigenstates of the Ham
tonian can be classified according to the number of exc
tions shared by the molecules. In particular, the ground s
ug& is the state with all molecules in their ground state. T
lowest excitations occur in a band of one-exciton states
which the molecules share one excitation. The next hig
band is the two-exciton band, etc. This classification will
a crucial element in the justification of the hard-core bos
approach.

As is well-known, the Pauli operatorsPn
† and Pn obey

mixed Fermi and Bose commutation relations.1–3 In particu-
lar, they behave as bosons if they belong to different si
whereas for operators belonging to the same site, Fermi c
mutation relations apply. The latter describes the exclus
of doubly excited molecules~Pauli exclusion!. By using the
Agranovich–Toshich transformation, however, it is possi
to represent the Pauli operators in terms of Bose operatoran

†

andan :2,39,42,43

Pn
†5an

†F (
n50

`
~22!n

~11n!!
~an

†!n~an!nG1/2

, ~2!

and the hermitian conjugate forPn . Although this transfor-
mation is exact, the expansion contains many-boson op
tors ~quartic and higher order!, which complicates its practi-
cal use. As we will restrict ourselves to nonlinear optic
spectroscopies of order three or lower, however, it suffice
give an exact description of states that are one- and t
photon allowed from the ground state. These are the one-
two-exciton states. Thus, it is sufficient to retain then50
andn51 terms in Eq.~2!, leading to the Holstein–Primako
transformation:

Pn
†5an

†~12an
†an!1/25an

†~12an
†an!, ~3!

where the last equality holds because we limit ourselves
one- and two-particle states, so thatPn

† operates at most on
one-particle state.

The Hamiltonian Eq.~1! may now be rewritten in terms
of Bose operators as

Hexc5H01Vkin , ~4!

with

H05(
n

«nan
†an1 (

nÞn8
Ln,n8an

†an8 ~5!

and

Vkin52(
n

«nan
†an

†anan2 (
nÞn8

Ln,n8~an
†an

†anan8

1an
†an8

† an8an8!. ~6!

H0 describes a system of noninteracting Bose excito
whereas the operatorVkin introduces the kinematic interac
tion between these bosons. The role of the latter interac
is to cancel exactly any contributions of states of the fo
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an
†an

†ug&, in which two bosons occur at one molecule. Su
states are unphysical in the sense that they do not hav
equivalent in the original~physical! paulion system; they
rather arise as auxiliary states after the transformation
bosons. Due to the kinematic interaction, unphysical sta
are not coupled to the physical ones:Hexcan

†an
†ug&50.

B. Green operator and the hard-core boson method

In order to calculate the pump–probe spectrum, we w
need the Green operator in the one- and two-exciton s
space. The general Green operator is given by

Gexc~x!5~x2Hexc1 ih!21 ~7!

with h→10. In the two-exciton subspace, the kinema
interaction Vkin renders the calculation ofGexc nontrivial.
This problem may be solved in two steps. First, we repl
the kinematic interaction in Eq.~4! for Hexc by a hard-core
potential between the bosons. This leads to the new ‘‘ha
core boson’’ Hamiltonian

Hhcb5H01AQ, ~8!

with A→6` and

Q5
1

2 (
n

an
†an

†anan , ~9!

the operator for projection onto the unphysical states. It
pears to be intuitive that the hard-core potential added to
noninteracting boson termH0 takes care of the Pauli exclu
sion principle for two excitons residing at the same site.
Appendix A, we prove rigorously that this is indeed the ca
In particular, we show that the Green operatorGexc for the
original Hamiltonianwithin the subspace of one and tw
excitonsequals the Green operator for the hard-core bo
model:

Gexc~x!5Ghcb~x![~x2Hhcb1 ih!21. ~10!

It should be realized that this identification of the orig
nal paulion system with the hard-core boson system depe
crucially on the fact that we could classify the eigenstates
the original Hamiltonian according to the number of partic
~paulions! shared by the molecules and that we only need
one- and two-particle states to calculate the pump–pr
spectrum at relatively weak pump pulses. For spin syste
the Heitler–London approximation is not valid~the site en-
ergy vanishes in zero magnetic field! and the steps betwee
Eqs.~2! and ~6! are meaningless.

The second step in solving the two-exciton Green fu
tion lies in expressingGhcb in terms of the Green operatorG0

for the free Bose excitons by using the Dyson equation
Appendix B, we show how this can be done quite genera
and in a somewhat more formal way than was used in R
40. The result reads

Ghcb5G02G0~QG0Q!21G0 , ~11!

with

G05~x2H01 ih!21. ~12!

In Eq. ~11!, the operator (QG0Q)21 is to be understood a
the inverse of the Green operatorG0 projected on the sub
an
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space of unphysical states, i.e., (QG0Q)(QG0Q)215Q.
The action of the operator (QG0Q)21 on the subspace o
physical states is understood to yield zero. Combining E
~10! and ~11!, we now have obtained the Green opera
within the one- and two-exciton subspace.

III. GENERAL EXPRESSION FOR THE PUMP–PROBE
SPECTRUM

In this section, we will derive a general expression f
the weak-pulse pump–probe spectrum, which is valid
arbitrary dimension and structure of the aggregate as we
for arbitrary realization of static disorder. The pump–pro
or differential absorption spectrum is defined as

DI in~E!5I in~E!2I g~E!. ~13!

Here, I in(E) denotes the linear probe absorption at pho
energyE of the system which has been brought into the st
u in& by the pump pulse, whileI g(E) is the ground state linea
absorption spectrum~i.e., the probe absorption spectru
taken in the absence of a pump!. In the weak-pulse case,u in&
is a one-exciton state. The above approach treats the th
order nonlinear spectrum as a sequence of two linear abs
tion processes, which implies the neglect of coher
artifacts.44

If the spectra are taken by resolving the absorption o
spectrally broad~white! probe pulse, they take the form

I in~E!5(
fin

6u^finuM u in&u2d~Ein2Efin6E!. ~14!

Here, M denotes the total dipole operator of the aggreg
which, for aggregates small compared to an optical wa
length, is given by

M5(
n

mn~Pn
†1Pn!, ~15!

with mn the ~real! transition dipole matrix element, along th
direction of the polarization of the light, of moleculen. Fur-
thermore, the sum in Eq.~14! extends over all final states
ufin&, which are dipole allowed from the initial stateu in&.
Both u in& and ufin& are eigenstates of the HamiltonianHexc,
with energiesEin andEfin , respectively. IfEin,Efin , the 1
sign is selected in thed function in Eq.~14! and, correspond-
ingly, the upper~1! sign is selected for the prefactor occu
ring under the summation over final states: the process
corresponds to real~positive! absorption. In the opposite
case, we are dealing with stimulated emission, giving a ne
tive contribution to the absorption spectrum.I g(E) is simply
a special case of Eq.~14! with u in& replaced byug&. Then, of
course, stimulated emission cannot occur. Thus, the we
pulse pump–probe spectrum shows positive resonance
energies of allowed transitions between the one-excitonu in&
and the two-exciton band~induced absorption! and negative
resonances at all one-exciton energies~bleaching of the
ground state and stimulated emission!.

Using the delta function representation:d(x)
52p21 Im(x1 ih)21 with h→10, we may rewrite Eq.
~14! as
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I in~E!5p21 Im(
fin

7^ inuM ufin&

3~Ein6E2Efin1 ih!21^finuM u in&

52p21 Im^ inuMGexc~y1!M u in&

1p21 Im^ inuMGexc~yu!M u in&, ~16!

with

y65Ein6E. ~17!

Equation~16! defines the absorption spectrum from an ar
trary initial state in terms the Green operator Eq.~7! and the
dipole operator Eq.~15! formulated for the paulions. The
next step is to rewrite Eq.~16! in terms of operators appro
priate to the hard-core boson system. To this end, we
advantage of Eq.~10! demonstrating the equivalence of th
original and the hard-core Green operators (Gexc5Ghcb) in
the subspace of one- and two-particle states~which are the
only relevant states in the weak-pulse experiment!. Further-
more, within this subspace, Eq.~3! may be used to write the
dipole operator as

M5(
n

mn@an
†~12an

†an!1~12an
†an!an#. ~18!

Finally, introducingR5I 2Q, the operator for projec-
tion on the space of physical states, and

M 15M 2
† [(

n
mnan

† , ~19!

it is easily shown that for the relevant transitions between
ground state and the one-exciton states and between the
exciton states and the two-exciton states, Eq.~18! is equiva-
lent to

M5RM11M 2R. ~20!

Combining the above, one arrives at the absorption spect
from stateu in& in terms of operators appropriate to the ha
core boson system:

I in~E!52p21 Im^ inuM 2RGhcb~y1!RM1u in&

1p21 Im^ inuRM1Ghcb~y2!M 2Ru in&. ~21!

Here, we used the fact thatGhcb(y6) can contribute to the
spectrum only if the dipole operator increases~for the upper
sign! or decreases~for the lower sign! by one the number o
excitons relative to the initial state.

Realizing thatRGhcbR5Ghcb and Ru in&5u in&, the pro-
jection operators may be dropped in Eq.~21!, so that, after
substituting Eq.~11!, we obtain

I in~E!5I 0
in~E!1p21 Im^ inuM 2G0~y1!

3~QG0~y1!Q!21G0~y1!M 1u in&, ~22!

with

I 0
in~E![2p21 Im^ inuM 2G0~y1!M 1u in&

1p21 Im^ inuM 1G0~y2!M 2u in&. ~23!

In deriving Eq. ~22!, we have used the fact thatM 2u in&
;ug&, which is a physical state, so tha
(QG0Q)21G0M 2u in&50.
-

ke

e
ne-

m
-

It should now be noted thatI 0
in(E) represents the absorp

tion spectrum of a noninteracting boson system, start
from stateu in&; the effect of the kinematic exciton–excito
interaction is fully contained in the second term of Eq.~22!.
As the noninteracting boson system is in fact a collection
harmonic oscillators, its absorption spectrum should not
pend on the initial state~a harmonic oscillator only has linea
response!. To show this explicitly, it is useful to note that Eq
~23! can be rewritten as

I 0
in~E!5p21 ReE

0

`

ei (E1 ih)t

3^ inu@M 2 ,~e2 iH 0tM 1eiH 0t!#2u in&dt. ~24!

Because the operatorsM 6 are linear in Bose creation an
annihilation operators andH0 is a quadratic form in these
operators, the commutator@M 2 ,(e2 iH 0tM 1eiH 0t)#2 is a
c-number. Thus, the right-hand side of Eq.~24! does not
depend on the specific initial state, giving

I 0
in~E!5I 0

g~E!5I g~E!. ~25!

Here, the last equality holds because the spectrumI g(E)
only involves transitions between the ground state and
one-exciton states, for which the kinematic exciton–exci
interaction is ‘‘switched off.’’

If we now combine Eqs.~13!, ~22!, and~25!, we finally
find for the differential absorption spectrum:

DI in~E!5p21 Im^ inuM 2G0~QG0Q!21G0M 1u in& ~26!

where the argumenty15Ein1E has been omitted in the
above Green operatorG0. Clearly, the entire pump–prob
spectrum results from the scattering of the bosons on
hard-core potential. More generally, this scattering is resp
sible for all nonlinear optical response in the Frenkel exci
system.40

In the general case of a system that lacks translatio
symmetry, for instance due to energy disorder, the ac
evaluation of Eq.~26! involves manipulating matrices of di
mensionN (N the number of molecules in the system!. In
particular, anN3N diagonalization is needed to find th
one-boson energies occurring inG0 and the matrix elements
of M 1 andM 2 . Furthermore, the evaluation of (QG0Q)21

requires the inversion of anotherN3N matrix ~for each en-
ergy E!, as the space of doubly occupied states (an

†an
†ug&)

has dimensionN. As was also pointed out by Mukamel an
Leegwater,40 this is an appreciable gain over a brute for
calculation of the two-exciton states through diagonalizat
of Hexc, which involves matrices of dimensionN(N
21)/2. For systems with translational symmetry, theN
3N matrices involved in Eq.~26! can, too a large extent
even be handled analytically, as we will show in the ne
section.

As noted below Eq.~15!, the differential absorption
spectrumDI in(E) by construction has positive resonances
E equals the transition energy between the one-excitonu in&
and one of the states of the two-exciton band, while it h
negative resonances at one-exciton energies. In our fina
sult Eq.~26! the one-exciton resonances are contained in
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free-exciton Green operatorG0, while the middle factor
(QG0Q)21 ~involving inversion of the projected Green op
erator! yields new resonances at the energies of one- to t
exciton transitions. We finally note that the above derivat
of the differential absorption spectrum equally well holds
we keeph finite, which is a simple way of including a line
width for all optical transitions.

IV. ORDERED SYSTEMS WITH SEVERAL DAVYDOV
COMPONENTS

In this section, we consider aggregates which occup
d-dimensional Bravais lattice consisting ofN unit cells. Each
unit cell containsS molecules, a situation which leads to th
occurrence of S separate one-exciton bands~Davydov
components!.1–3 The total number of molecules is thusN
5NS. It is now most convenient to replace the labeln of the
molecules byns, wheren denotes the position vector of th
unit cell to which the molecule belongs, whiles51, . . . ,S
specifies the molecules within each cell. We shall assu
translational symmetry~i.e., absence of disorder!, so that
«ns5«s andLns,n8s85Ls,s8(n2n8). Finally, we impose peri-
odic boundary conditions on the Bravais lattice in the us
way.45

Under these conditions, the free-boson HamiltonianH0

of Eq. ~5! can be diagonalized via the transformation:1–3

bqs
† 5N21/2(

ns
fss~q!exp~ iq–n!ans

† , ~27!

~and the hermitian conjugate forbqs), the inverse transfor-
mation being given by

ans
† 5N21/2(

qs
fss* ~q!exp~2 iq–n!bqs

† . ~28!

Herebqs
† (bqs) are the Bose operators for creation~annihi-

lation! of an exciton in the sth Davydov band (s
51, . . . ,S), andq denotes one of theN allowed wave vec-
tors in the first Brillouin zone. Furthermore,fss(q) is thesth
component of thesth eigenvector~normalized to unity! of
the S3S matrix

Hs,s8~q!5«sds,s81( 8
n

Ls,s8~n!exp~2 iq–n!. ~29!

The corresponding set of eigenenergies will be denotedEqs .
The prime on the summation in Eq.~29! excludes the term
with n50 and simultaneouslys5s8. After the above trans-
formation, the Hamiltonian of Eq.~5! takes the diagona
form:

H05(
q,s

Eqsbqs
† bqs . ~30!
o-
n

a

e

l

On the new basis, the matrix elements of the Green
erator G0 (5G0(Ein1E)) in the subspace of two-excito
states are easily calculated to be

^gubq1s1
bq2s2

G0bq3s3

† bq4s4

† ug&

5
dq1s1 ,q3s3

dq2s2 ,q4s4
1dq1s1 ,q4s4

dq2s2 ,q3s3

E1Ein2Eq3s3
2Eq4s4

1 ih
. ~31!

Furthermore, the dipole raising and lowering operators
fined in Eq.~19! take the form

M 15M 2
† 5(

qs
mqsbqs

† , ~32!

with

mqs5N21/2(
ns

mnsfss* ~q!exp~2 iq–n!. ~33!

Here,mns denotes the dipole matrix element of moleculens.
Finally, to evaluate the spectrum Eq.~26!, we need the

operator (QG0Q)21. To this end, we first note that Eq.~9!
for the projection operatorQ ~which also represents the hard
core interaction!, may be written

Q5
1

2 (
ns

ans
† ans

† ug&^guansans5(
Ks

BKs
† ug&^guBKs ,

~34!

where

BKs
† [~2N!21/2 (

k,s,s8
fss* ~K /21k!

3fs8s
* ~K /22k!bK /21k,s

† bK /22k,s8
† ~35!

and the hermitian conjugate forBKs . The insertion of the
projection operatorug&^gu is legitimate in Eq.~34!, since we
are dealing with states containing up to two excitons. Th
the hard-core boson interaction has been expressed u
auxiliary operators,BKs

† and BKs . These new operators de
scribe, respectively, creation and annihilation of spatially
tended unphysical boson pairs located at the same molec
of the types and characterized by the center of mass mom
tum K . TheN allowed values forK are identical to those for
q ~the one-boson momenta!, while theN allowed values for
k are the same as those forq2K /2.

Using Eqs.~34!, ~35!, and~31!, one now easily arrives a

QG0Q5 (
K ,s,s8

Ds,s8~K !BKs
† ug&^guBKs8 , ~36!

where theS3S matrix Ds,s8(K ) is defined by
Ds,s8~K !5
1

N (
k,s,s8

fss* ~K /21k!fss8~K /21k!fs8s
* ~K /22k!fs8s8~K /22k!

E1EK0s0
2EK /21k,s2EK /22k,s81 ih

. ~37!
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Here, we have assumed that when the probe pulse arr
the system resides in the one-exciton state with momen
K0 in bands0,

u in&5bK0s0

† ug&[uK0s0&, ~38!

characterized by the energyEin5EK0s0
. This ‘‘initial state’’

may result either directly from excitation by the pump pu
or from relaxation after this excitation. We note that the fin
result Eq.~40! is modified in a straightforward way if the
initial state is an incoherent superposition of one-exci
states.

As the operatorsBKs
† produce an orthonormal set of two

boson states,̂guBKsBK8s8
† ug&5dKs,K8s8 , the operatorQG0Q

can be inverted to yield@see remark below Eq.~12!#:

~QG0Q!215 (
K ,s,s8

Ds,s8
21

~K !BKs
† ug&^guBKs8 , ~39!

whereDs,s8
21 (K ) denotes the (s,s8) component of the inverse

of the matrixDs,s8(K ).
We now have all ingredients to evaluate the differen

absorption spectrumDI (E) given by Eq.~26!. With the ini-
tial state Eq.~38! and using Eqs.~39!, ~35!, ~32!, and ~31!,
we arrive at~from now on we will drop the superscript re
ferring to the initial state!:

DI ~E!5Im
2

pN (
q,s,s8

f̃ s~q!Ds,s8
21

~K01q! f s8~q!, ~40!
.

th
d
at
uc

a
th
es,
m

l

n

l

with

f s~q!5(
s

mqsfs0s~K0!fss~q!

E2Eqs1 ih
~41!

and

f̃ s~q!5(
s

mqs* fs0s* ~K0!fss* ~q!

E2Eqs1 ih
. ~42!

Here the E-dependence is implicit in the quantitie
Ds,s8(K01q), f̃ s(q), and f s8(q). As pointed out below Eq.
~26!, the original pump–probe spectrum involves the diag
nalization of anN3N matrix and the inversion of anothe
N3N matrix. By taking advantage of the translational sym
metry, the problem has been reduced to the diagonaliza
of theS3S matrix Hs,s8(q), which determines the eigenvec
torsfss(q) and eigenenergiesEqs . In addition, inversion of
anotherS3S matrix Ds,s8 is needed to determine the pump
probe spectrum given by Eq.~40!.

We conclude this section by presenting the results
the simple case of one molecule per unit cell (S51). Then
the indicess and s become redundant andfss(q)[1, so
that Eq.~40! reduces to
DI ~E!5Im
2

p (
q

umqu2

~E2Eq1 ih!2 F(
k

1

E1EK0
2E(K01q)/21k2E(K01q)/22k1 ihG21

, ~43!
he

xi-
with

Eq[«1(
nÞ0

L~n!exp~2 iq–n! ~44!

and

mq5N21/2(
n

mn exp~2 iq–n!. ~45!

The values over whichq andk run in the summations in Eq
~43! have been specified below Eqs.~28! and ~35!. We note
that if all molecular transition dipoles are taken equal (mn
[m), we havemq5mN1/2dq,0 , so that the summation overq
collapses to a single term. It is useful, however, to keep
more general form Eq.~43!, in order to describe circular an
cylindrical aggregates, in which the molecular dipoles rot
along with the position of the molecule on the curved str
ture.

V. ONE-DIMENSIONAL AGGREGATE WITH ONE
MOLECULE PER UNIT CELL

In this section, we consider ordered one-dimensional
gregates with one molecule per unit cell. In this situation,
e

e
-

g-
e

pump–probe spectrum is descibed by Eqs.~43!–~45! in
which the wave vectorsk, q, andK0 reduce to scalarsk, q,
andK0. If we use the lattice constant as unit of length, t
wave numbersq and K0 can take the values 2p l q /N and
2p l 0 /N, respectively, wherel q and l 0 both take the values
0,1, . . . ,N21. The allowed values fork also can be written
ask52p l k /N, but nowl k50,1, . . . ,N21 if l q1 l 0 is even,
whereasl k5 1

2,
3
2, . . . ,N2 1

2 if l q1 l 0 is odd.
For simplicity, we adopt the nearest-neighbor appro

mation,L(n)52L(dn,11dn,21), giving

Eq5«22L cosq. ~46!

Using this dispersion relation, Eq.~43! reduces to

DI ~E!52
1

2pL
Im(

q

umqu2/N

cos~K/2!

@SK~p!#21

@p2cos~K0/22q/2!#2
,

~47!

with K[K01q,

p5
«12L cosK02E2 ih

4L cos~K/2!
, ~48!

and the functionSK(z) defined through
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SK~z!5
1

N (
k

1

z2cosk
. ~49!

Here, the dependence onK derives from the fact that the
values taken byk in the right-hand-side summation depe
on K5K01q ~see above!. This summation can be evaluate
analytically to yield:46

SK~z!5
2

g~z!2g21~z!
S 11g2N~z!eiKN/2

12g2N~z!eiKN/2D
5

1

z21 S g~z!21

g~z!11D S 11g2N~z!eiKN/2

12g2N~z!eiKN/2D , ~50!

with g(z)5z1Az221 andg21(z)5z2Az221.
The specific form of the transition dipolesmq entering

the line shape Eq.~47!, depends on the geometry of the a
gregate. Below we will consider two special examples
this geometry.

A. Chain with alternating dipoles

We first consider a linear molecular aggregate with
ternating dipoles, as depicted in Fig. 1. Specifically, the m
lecular transition dipoles contain a constant componentm i
along the aggregate axis and an alternating compo
m'(21)n perpendicular to it. The resulting transition dipol
of the aggregate aremq

i 5dq,0m iAN andmq
'5dq,pm'AN for

the electric field polarized parallel and perpendicular to
aggregate axis, respectively. Thus, forL.0, the ground-state
absorption takes place to the bottom~top! of the one-exciton
band for light that is polarized parallel~perpendicular! to the
aggregate axis, and with corresponding stren
Nm i

2(Nm'
2 ). This situation is believed to be realized inJ

aggregates of pseudo-isocyanine,47,48 for which the q50
transition~polarized along the aggregate axis! yields the nar-
row ~zero-phonon! J band in the long-wavelength area of th
spectrum, while theq5p transition is responsible for th
short-wavelength absorption of the aggregate in the perp
dicular polarization.

Before proceeding with the pump–probe spectrum,
note that the structure depicted in Fig. 1 may equally well
considered an example of a system with two molecules
unit cell, with theq50 and theq5p transitions correspond
ing to the allowed transitions in the two different Davydo
bands. From the point of view of the Hamiltonian~the ener-
gies and interactions!, however, this separation into Davydo
bands is not necessary, which is why we prefer to regard
as a system with one molecule per unit cell. Of course,
results do not depend on what point of view one takes
long as the dipole orientations are properly taken i
account.

FIG. 1. Linear aggregate with alternating dipoles.
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Let us now suppose that in the pump–probe experim
the aggregate resides in theuK050& one-exciton state when
the probe arrives~for instance due to using a pump puls
with parallel polarization!. Then Eq.~47! yields the follow-
ing differential absorption spectra for the probe pulse po
ized parallel and perpendicular to the aggregate axis, res
tively,

DI i~E!52
um iu2

2pL
Im

1

p21 S g~p!11

g~p!21D S 12g2N~p!

11g2N~p!
D ,

~51!

@p as in Eq.~48! with K5K050] and

DI'~E!5
2um'u2

p
Im

1

E2«22L1 ih
. ~52!

Equation~52! may be derived by taking the limitq→p in
Eq. ~47! or, alternatively, directly from Eq.~43! by noting
that for q5p the summation overk is trivial, as then the
summand does not depend onk.

The above result forDI i(E) agrees with the line shap
obtained if one uses the Jordan–Wigner transformation
transform the original paulions to fermions@cf. Eq. ~4.3! of
Ref. 11#.49 As is seen in Fig. 2~a!, this line shape exhibits, in
addition to the one-exciton bleaching peak, the well-kno
blueshifted induced-absorption peak characteristic of thJ
band ~Sec. I!. For h small enough, the intensities of th
bleaching and induced-absorption peaks scale proportion
N, due to the superradiant nature of the corresponding t
sitions. Figure 2~a! also clearly displays the sensitivity of th
blueshift of the induced absorption to the size of the agg
gate. On the other hand, in the limit of large aggregatesN
@A3p2L/h), the differential absorption spectrum becom
size independent.8,50 This is clear from the fact that for larg

FIG. 2. ~a! Differential absorption spectrum according to Eq.~51! for a
linear chain of alternating dipoles probed with light polarized parallel to
chain direction and starting from an initial condition with wave numb
K050. The three different spectra correspond to chain sizesN515
~dashed–dotted!, 20 ~dashed!, and 30~solid!, respectively. In all cases the
linewidth was set toh50.01L. ~b! As in ~a! but now for a probe pulse
polarized perpendicular to the chain direction@Eq. ~52!#. The spectrum then
does not depend on the size of the chain.
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N the last factor in Eq.~51! approaches 1@if g(p).1] or
21 @if g(p),1]. We finally note that the spectrum obey
the sum-rule:4

E DI i~E!dE522um iu2, ~53!

which is independent of the strengthL of the transfer inter-
action and would also hold in the presence of disorder
~or! exciton-phonon coupling.

In contrast to the ‘‘parallel’’ spectrum, its perpendicul
counterpart DI'(E) only displays a single Lorenztia
bleaching peak, which is centered at the top of the o
exciton band@Fig. 2~b!#. The intensity of the bleaching pea
does not depend onN. This agrees with the sum-rule Eq
~53!, which is obeyed byDI'(E) as well, except thatm i is
replaced bym' . The explanation whyDI'(E) only has a
single bleaching peak and does not exhibit the common
persive shape characteristic ofJ-aggregates, lies in the stron
degeneracy of the two-exciton states of interest. This is b
understood using the fermion picture resulting from t
Jordan–Wigner transformation~this method can be applie
in the present special case of one dimension and nea
neighbor interaction!. In the fermion picture, the induced
absorption resonances occur atE5Ek1

1Ep2k1
2EK050,

where we used the selection ruleK05k11k22p, which is
appropriate for excitation with light of perpendicular pola
ization (k1 and k2 are fermion wave numbers!. Using Eq.
~46!, one finds that the quantityEk1

1Ep2k1
52« is indepen-

dent of k1. Consequently, all induced-absorption contrib
tions with perpendicular polarization take place atE5«
12L, which is in exact resonance with the only one-excit
bleaching peak that is visible in perpendicular polarizati
This explains why only a single net bleaching feature is
served. We note that in our hard-core boson approach
degeneracy of many bleaching and induced-absorption p
can be seen by comparing the variousk contributions in Eq.
~43! with q5p andK050.

B. Ring aggregate

Next we consider aggregates with a circular geome
~Fig. 3!, as is realized in bacterial antenna complexes.51 The
molecular transition dipoles have a constant componentmz

5m i parallel to the aggregate axis and a componentm' ly-
ing in the plane of the ring and rotating perpendicular to
axis. Arbitrarily assigning thex direction to the in-plane di-

FIG. 3. Ring aggregate with the molecular dipoles indicated by the th
arrows. The projection of the dipoles along the direction perpendicula
the plane of the ring has magnitudem i , while the projection on the plane o
the ring has magnitudem' .
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pole component belonging to moleculen50 and they direc-
tion perpendicular to it, we havemn,x5m' cos(q0n) and
mn,y5m' sin(q0n), with q052p/N.

For electric fields polarized parallel to the aggrega
axis, the transition dipoles of the total aggregate are n
given bymq

i 5dq,0m iAN. For electric fields polarized perpen
dicular to the aggregate axis, we have

mq,x5~dq,q0
1dq,2q0

!
m'

2
AN,

mq,y5~dq,q0
2dq,2q0

!
m'

2i
AN. ~54!

Consequently, the optically allowed transitions from t
ground state take place to the one-exciton states withq50
~parallel polarization! or q56q0 ~perpendicular polariza-
tion!. The latter two states are degenerate.

If the aggregate resides in the one-exciton state w
K050 when the probe pulse arrives, the differential sp
trum in parallel polarization is once again given by Eq.~51!.
This is not surprising, as light of this polarization on
‘‘sees’’ the molecular dipole components perpendicular
the plane of the ring, which are all identical. Thus, the ri
becomes equivalent to a linear chain with periodic bound
conditions and with all molecular dipoles parallel to ea
other. This indeed is exactly the situation in the previo
subsection, provided we probe the chain with parallel po
ization. In view of this equivalence, we will not analyze th
spectrum in more detail.

On the other hand, if we use a probe pulse with perp
dicular polarization, the situation is drastically different fro
the linear chain with alternating dipoles. This is due to t
fact that in the ring light of this polarization probes the com
ponent of the molecular dipole that rotates around the r
axis ~wave numbers6q0), while in the linear chain of the
previous subsection, it probes the alternating componen
the dipole~wave vectorp). Using Eqs.~47! and ~54!, we
find

DI x~E!5DI y~E!

52
um'u2

4pL
Im

1

cos~p/N!

p21

@p2cos~p/N!#2

3S g~p!11

g~p!21D S 11g2N~p!

12g2N~p!
D , ~55!

wherep is taken from Eq.~48! with K050 andK56q0.
Without showing figures, we note that these perpendicu
spectra are again of the familiar dispersive shape@cf. Fig.
2~a!#, except that~for L.0) the entire spectrum is blue
shifted compared to the spectrum Eq.~51!, while also the
spectral separation between the bleaching and the indu
absorption is increased. This is due to the change in selec
rules. However, one easily checks that in the limit of largeN,
the spectrum Eq.~55! becomes identical to Eq.~51! ~with m i
replaced bym'). This is understood from the fact that in th
limit the curvature of the ring is not important anymore o

k
o
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the scale of the coherence lengthA3p2L/h. We finally note
that the spectra Eq.~55! obey the sumrule*@DI x(E)
1DI y(E)#dE522um'u2.

VI. LINEAR AGGREGATE WITH HERRINGBONE
STRUCTURE

We next consider linear aggregates with two molecu
per unit cell. The studied structure is of the herringbone ty
depicted in Fig. 4, in which the unit cell contains two ide
tical molecules (s51 and s52), which only differ in the
orientation of their transition dipoles. The latter all ha
identical componentsm i along the aggregate axis and a co
ponentm'(21)s11 perpendicular to it. We assume the fo
lowing nonzero transfer interactions:Lns,(n11)s[2L,
Ln1,n2[La , Ln1,(n11)25L (n11)1,n2[2Lb , together with the
hermitian conjugated contributions. Here the signs have b
chosen to make the quantitiesL, La , andLb positive if the
dipole–dipole coupling dominates and the dipoles are
ented relatively close to the aggregate axis. If the interacti
are assumed real, the matrix Eq.~29! takes the form:

Hs,s8~q!5~«22L cosq!ds,s81~La22Lb cosq!~12ds,s8!,
~56!

FIG. 4. One-dimensional aggregate with a herringbone structure. The
rows indicate the molecular transition dipoles. Also indicated are the th
different types of transfer interactions that are taken into account.
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where« is the molecular transition energy, which is equal f
both molecules. The one-exciton wave numberq takes the
same values as in Sec. V. For eachq, Hs,s8(q) represents a
232 matrix, which is easily diagonalized to yield

Eqs5«22L cosq1s~La22Lb cosq! ~57!

and

fss5~s!s11/A2, ~58!

with s561 labeling the two dispersion branches. It is no
worthy that the eigenvectors Eq.~58! are independent ofq.
This considerably simplifies the following analysis.

We now turn to the transition dipoles of the aggrega
For the electric field polarized along the chain, one has

mqs
i 5m iA2Ndq,0ds,1 , ~59!

so that the ground-state absorption exhibits a peak atE0,11

5«22L1La22Lb with strength 2Nm i
2 . On the other hand

for the electric field polarized perpendicular to the chain
transition dipoles read:

mqs
' 5m'A2Ndq,0ds,21 , ~60!

giving a ground-state absorption of strength 2Nm'
2 and po-

sitioned atE0,215«22L2La12Lb . Thus, provided that
La22LbÞ0, a Davydov splitting is observed between t
absorption lines with different polarizations.

The technical steps needed to derive from Eq.~40! the
differential absorption spectra for parallel and perpendicu
probe polarization are outlined in Appendix C. Here, we on
quote the results obtained if one assumes that at the mom
that the probe pulse arrives, the aggregate resides in the
exciton state with wave numberK050 and branch labels0

511. This state may be created by using a pump tha
polarized parallel to the chain. Following the steps in Appe
dix C, one arrives at

r-
e

DI i~E!5Im
2

p

m i
2

~E2E0,111 ih!2 S (
s561

1

8~L1sLb!

1

~ps21!

12g~ps!

11g~ps!

11g2N~ps!

12g2N~ps!
D 21

~61!
i-

on-
e
hich
all

a
si-

ly

the
and

DI'~E!5Im
8L

p

m'
2 ~p021!

~E2E0,211 ih!2

11g~p0!

12g~p0!

12g2N~p0!

11g2N~p0!
.

~62!

Here the functiong has been defined below Eq.~50!, while

pa[
«12L2La~122a!12Lb2E2 ih

4~L1aLb!
, ~63!

with a50,61.
One easily checks that forLa5Lb50, Eq. ~61! reduces

to Eq. ~51!, while Eq. ~62! reduces to Eq.~51! with m i re-
placed bym' . This should be expected, as in this limit th
herringbone structure falls apart into two noninteracting l
ear aggregates with all dipoles oriented in the same direct
Light of parallel~perpendicular! polarization will then probe
-
n.

the parallel~perpendicular! components of the molecular d
poles only.52 A second limiting case of interest isL5Lb

50, where the aggregate reduces to a collection of n
interacting dimers. It is easily verified that in this limit th
above general spectra indeed yield the dimer spectra, w
can be calculated in a straightforward way due to the sm
number of one-exciton states~2! and two-exciton states~1!
that occur in a dimer.

Away from these limiting cases, the spectra show
richer variety of structures, depending on the relative po
tion of the two Davydov bands. From Eq.~57! one finds that
for La22Lb,0 (La22Lb.0) the bottom of thes511
band lies lower~higher! than the bottom of thes521 band
~we assumeL.uLbu). Since in bleaching one observes on
the s511 band in parallel polarization and thes521
band in perpendicular polarization, one thus expects that
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bleaching in parallel polarization occurs at lower~higher!
frequency than the one in perpendicular polarization ifLa

22Lb,0 (La22Lb.0). This is indeed reflected in th
spectra displayed in Figs. 5 and 6. These figures also cle
show that, again, the induced-absorption contributions oc
mainly on the high-energy side of the bleaching peaks.

Interestingly, however, we observe some induced
sorption to the low-energy side of the bleaching peak in
parallel spectrum of Fig. 6. This is related to the fact that
initial state (uK050,s0511&) is not the lowest one-exciton
state, as the bottom of thes521 band lies lower for the
parameter values considered (La22Lb.0). As a conse-
quence, if the probe excites an additional exciton in thes
521 band, this may result in induced-absorption featu
below the initial state. Since in the case of the parallel sp
trum the bleaching occurs at the energy of the initial sta
this immediately explains why induced-absorption contrib
tions occur to the red of the bleaching peak. These contr
tions are weak~as observed!, because they depend on th
mixing of the two Davydov bands due to the kinematic
teraction between excitons. If it were not for this interactio
the lower one- to two-exciton transition originating from th
s521 band would not be observable in parallel polariz
tion. Therefore, the dominant induced-absorption featu
still occur blueshifted compared to the bleaching, as is co
monly the case for exciton bands which have their bottom
q50. We finally note that in perpendicular polarization n
redshifted induced absorption features occur, as in this
larization the bleaching really occurs at the lowest poss
one-exciton state.

FIG. 5. Differential absorption spectrum for a linear chain with a herrin
bone structure~Fig. 4!, taking as initial condition when the probe puls
arrives the one-exciton state with wave numberK050 residing in the Davy-
dov branchs0511. The solid line reflects the spectrum for a probe pu
polarized parallel to the chain direction, while the dashed line correspo
to a probe with perpendicular polarization. The spectra have have
calculated from Eqs.~61! and ~62!, using La50.5L and Lb50.3L for the
interactions,h50.05L for the line width, andN51000 for the chain size.
The units of absorption used along the vertical axis arem i

2/2ph and
m'

2 /2ph for DI i andDI', respectively.

FIG. 6. As Fig. 5, but now withLa5L, all other parameters unchanged.
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VII. MONOLAYER WITH ONE MOLECULE PER UNIT
CELL

As final example, we consider a two-dimensional squ
lattice of sizeN13N2 with one molecule per unit cell~Fig.
7!, so that we may use Eq.~43! for the pump–probe spec
trum. We will assume nearest-neighbor transfer interacti
2L1 in one of the lattice directions and2L2 in the other
direction. Then the one-exciton energies Eq.~44! take the
form

Eq5«22L1 cosq122L2 cosq2 , ~64!

whereq152p l 1 /N1 andq252p l 2 /N2 are the two compo-
nents of the wavevector in units of the inverse lattice co
stant (l 150,1, . . . ,N121; l 250,1, . . . ,N221). Moreover,
as we take all molecular transition dipoles equal~magnitude
m in the direction of the probe polarization!, we havemq
5mN1/2dq,0 , with N5N1N2. Substituting these results int
Eq. ~43! and denoting the wave vector of the initial state
K05(K1 ,K2), one finds

DI ~E!5
m2

p
Im

2

~E2«12L112L21 ih!2

3F 1

N (
k1 ,k2

1

E2«2L1h~K1 ,k1!2L2h~K2 ,k2!1 ihG2

~65!

with

h~Ki ,ki !52 cosKi24 cos~Ki /2!coski . ~66!

The allowed values for the wave vector componentsk1 and
k2 depend onK1 andK2, respectively, similar as discusse
in Sec. V for the wave numbers in the one-dimensional ca

The nature of the monolayer depends on the signs oL1

and L2. If both are positive, the optically allowed stateuq
50& is the lowest one-exciton and the monolayer then
haves as aJ aggregate. It is more common, however, that o
of the interactions is positive, while the other is negative~the
J–H aggregate!. This situtation arises if the transfer intera
tion is of dipolar nature and the molecular dipoles lie in t
plane of the monolayer. For explicitness we will from no
on assume thatL1.0, while L2,0. In that case, the lowes
one-exciton state is optically forbidden and has wave vec
(0,p), while the optically allowed state with wave vecto
(0,0) lies in a saddlepoint of the two-dimensional excit
dispersion manifold.

-

ds
en

FIG. 7. Two-dimensional aggregate with one molecule per unit cell. T
arrows indicate the molecular transition dipoles. Also indicated are the
nearest-neighbor transfer interactions that are taken into account in ou
plicit calculations.
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We will first consider the differential absorption spe
trum assuming that when the probe pulse arrives the mo
layer is in the stateu(K1 ,K2)&5u(0,0)&. This represents the
situation where the delay time between pump and prob
short enough to neglect relaxation of the optically allow
one-exciton state created by the pump–pulse to lower o
exciton states. With this initial condition,k1 and k2 in Eq.
~65! take the same values asq1 andq2, respectively, speci-
fied below Eq.~64!. After introducing

pk2
5

«12L112L224L2 cosk22E2 ih

4L1
, ~67!

the summation overk1 may be performed by using an analo
of Eq. ~50!, leading to

DI ~E!5
m2

p
Im

8L1

~E2«12L112L21 ih!2

3F 1

N2
(
k2

1

~pk2
21!

12g~pk2
!

11g~pk2
!

11g2N1~pk2
!

12g2N1~pk2
)
G21

,

~68!

with the functiong as defined below Eq.~50!.
Figure 8 displays the resulting spectrum for two differe

values ofuL2 /L1u in the limit of a large monolayer, wher
the spectrum has become size-independent. The most i
esting feature in these spectra is that the induced absorp
occurs both on the high- and the low-energy side of
bleaching peak. As in Sec. VI~Fig. 6! this is a consequenc
of the fact that the initial state is not the lowest one-exci
state. As the ratiouL2 /L1u determines how much the lowe
one-exciton state lies below the initial state, one expects
the amount of redshifted induced absorption grows at
expense of blueshifted induced absorption with grow
uL2 /L1u. This is indeed observed in Fig. 8.

We now turn to the other extreme situation, where
pump–probe delay time is long enough and the tempera
low enough to assume that the optically pumped state
relaxed completely to the lowest one-exciton state. Thus,
initial state when the probe pulse arrives isu(K1 ,K2)&
5u(0,p)&. Then the functionh(K2 ,k2) occurring in Eq.~65!
becomes a constant@h(p,k2)522# , so that the summand i

FIG. 8. Differential absorption spectrum for a monolayer~Fig. 7!, taking as
initial condition when the probe pulse arrives the optically allowed o
exciton state with wave vectorK05(0,0), created by the pump pulse. Th
spectrum has been calculated using Eq.~68!. The solid line corresponds to
the caseL2520.5L1, while the dashed line represents the caseL252L1.
In both cases the line width was set toh50.1L1, while the system size was
takenN13N251003100 molecules.
o-
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independent ofk2. This immediately reduces the summatio
to a single one~overk1, taking the same values asq1 above!,
which may be carried out in analogy to Sec. V. The fin
result is identical to the spectrum Eq.~51!, except that we
should replace:m i→m, L→L1 , N→N1, and E→E12L2.
Thus, the spectrum for the monolayer under these condit
is given by a shifted version of the parallel spectrum for t
chain with alternating dipoles. In particular, this implies th
after relaxation to the lowest one-exciton state the spectr
not surprisingly, only exhibits induced-absorption contrib
tions on the blue side of the bleaching peak. Figure 9 d
plays the resulting spectrum for the same parameter value
used in Fig. 8.

Comparing Figs. 8 and 9, it is clear that relaxati
through the one-exciton band has a strong influence on
shape of the pump–probe spectrum. Unravelling the res
ing ~ultrafast! time dependence of this spectrum in more d
tail involves a microscopic exciton–phonon couplin
model.53 Such a study, interesting as it may be, lies outs
the scope of the current paper.

VIII. CONCLUDING REMARKS

In this paper, we have studied the pump–probe spect
of Frenkel excitons in molecular assemblies with arbitra
structure and dimension. Our method is based on the h
core boson approach, in which the paulions~excitons! are
replaced by bosons with an infinite on-site repulsion. W
have justified this method rigorously by using th
Agranovich–Toshich transformation from paulions
bosons. Using the thus obtained two-exciton Green funct
we have derived a general expression for the differen
pump–probe spectrum@Eq. ~26!#. Although this general re-
sult does not assume translational invariance~and thus also
holds in the case of disorder!, in our detailed analysis we
have focused on ordered systems occupying a lattice. In
ticular, we have allowed for lattices containing more th
one molecule per unit cell, thus giving rise to different Dav
dov components. The resulting spectrum Eq.~40! only in-
volves the diagonalization and inversion ofS3S matrices,
whereS is the number of molecules per unit cell. While it
well-known that disorder often plays an important role
molecular assemblies, it also is well-appreciated that se
analytical spectra derived for ordered aggregates are us
to understand the salient spectral features observed in ex
ments. We hope that the explicit expressions presented b
for various types of aggregates will serve this purpose.

-

FIG. 9. As Fig. 8, but now assuming that by the time the probe pu
arrives, the system has relaxed to the lowest one-exciton state, i.e., the
with wave vectorK05(0,p). All other parameters as in Fig. 8.
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As specific applications, we have considered the lin
chain with alternating dipoles, the ring aggregate, the ch
with herringbone structure~two molecules per unit cell!, and
the monolayer. From these examples we have seen tha
differential absorption spectrum exhibits a variety of shap
depending on the structure of the assembly, the interac
parameters, and the polarization of the probe pulse. F
chain of alternating dipoles~as is believed to be a relevan
model for PICJ aggregates!, the differential absorption spec
trum probed with parallel polarization contains a one-
two-exciton induced absorption peak that is blueshifted co
pared to the one-exciton bleaching peak@Fig. 2~a!#. On the
other hand, perpendicular polarization only exhibits a sm
bleaching feature as a resultant of overlapping bleaching
induced-absorption contributions@Fig. 2~b!#. A different type
of behavior is observed in systems with several Davyd
branches or with a higher dimensional exciton dispers
manifold. In such systems, induced-absorption peaks ca
observed simultaneously on the red and the blue side of
bleaching and stimulated emission peak~Figs. 6 and 8!. This
is analogous to the observation of positive two-photon
sorption contributions on both sides of the one-exci
bleaching peak in the cw nonlinear absorption spectrum
culated by Leegwater and Mukamel.40 In the pump–probe
spectrum this phenomenon is dynamic and will, as a con
quence of relaxation, evolve to the genericJ aggregate dif-
ferential absorption spectrum with growing pump–probe
lay time ~Figs. 8 and 9!. These changes most likely tak
place on an ultrashort~femtosecond! time scale and may
yield interesting information on the exciton–phonon co
pling.

As discussed in Sec. II, the pump–probe signal wh
we derived originates from the kinematic interaction betwe
the excitons, which reflects the Pauli exclusion for dou
excitation of a single two-level molecule. Alternative cont
butions to the nonlinear response arise from dyna
exciton–exciton interactions ~quartic terms in the
Hamiltonian!,2,3 which may lead to the formation of boun
biexciton states. Although the effect of such interactions
the pump–probe spectrum has been conside
theoretically,8,11,54 to date no experimental signature
bound states in molecular assemblies has been reported

We finally note that in a forthcoming paper we will an
lyze the differential absorption spectrum of cylindrical m
lecular structures, which have been observed for a clas
substituted cyanine dyes.35,36

ACKNOWLEDGMENTS

We thank Professor P. Reineker and L. D. Bakalis
helpful discussions. One of us~G.J.! wishes to thank the
Alexander von Humboldt Foundation for support. Also su
port from the Material Science Center of the University
Groningen is acknowledged.
r
in

the
s,
n
a

-

ll
nd

v
n
be
he

-
n
l-

e-

-

-

h
n
e

ic

n
d

of

r

-
f

APPENDIX A: JUSTIFICATION OF THE HARD-CORE
BOSON APPROACH

In this appendix, we give a rigorous justification of th
hard-core boson approach. Using Eqs.~4!, ~8!, and ~9! one
finds

Hhcb5Hexc2Vkin1
A

2 (
n

an
†an

†anan . ~A1!

Upon substitution of Eq.~6! for Vkin , this yields

Hhcb5H081V, ~A2!

with

H085Hexc1(
n

S A

2
1«nDan

†an
†anan , ~A3!

and

V5 (
nÞn8

Ln,n8~an
†an

†anan81an
†an8

† an8an8!. ~A4!

Thus, the zero-order HamiltonianH08 has been chosen t
contain the full original HamiltonianHexc plus the unphysi-
cal part(n(A/21«n)an

†an
†anan .

If we now define the Green operators corresponding
Hhcb andH08 , respectively, as

Ghcb[~x2Hhcb1 ih!21 and G08[~x2H081 ih!21,
~A5!

iteration of the Dyson equation forG yields

Ghcb5G081G08VG081G08VG08VG081••• . ~A6!

SinceHexcan
†an

†ug&[0, the HamiltonianH08 contains no
interaction between the physical and unphysical states. C
sequently, the zero-order Green operatorG08 can be separated
into physical and unphysical parts as

G08[RG08R1QG08Q5~xR2Hexc!
21

1FxQ2(
n

S A

2
1«nDan

†an
†ananG21

, ~A7!

whereR denotes the operator for projection on the subsp
of physical states@R5I 2Q, I the unit operator andQ as
defined in Eq.~9!#. SinceA→6`, the unphysical part in the
above expression tends to zero for finite values ofx, giving

G085~xR2Hexc1 ih!215Gexc, ~A8!

with Gexc the Green operator Eq.~7! of the original paulion
Hamiltonian.

We next note that the interaction operatorV has matrix
elements only between physical and unphysical states
that

G08VG0850. ~A9!

Combining Eqs.~A6!, ~A8!, and ~A9!, one arrives at Eq.
~10!, i.e., the exact equivalence of the Green operatorsGexc

andGhcb corresponding to the original HamiltonianHexc and
the hard-core HamiltonianHhcb, respectively, within the
subspace of one- and two-exciton states.
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APPENDIX B: GREEN OPERATOR FOR THE HARD-
CORE HAMILTONIAN

In this appendix, we solve the two-particle Green fun
tion for the hard-core boson model. Using Eq.~8!, the Dyson
equation forG reads

Ghcb5G01AG0QGhcb with A→6` ~B1!

or

QGhcb5QG01AQG0QGhcb. ~B2!

This yields

~Q2AQG0Q!QGhcb5QG0 ~B3!

or, equivalently,

QGhcb5~Q2AQG0Q!21QG0 . ~B4!

Substituting Eq.~B4! into Eq. ~B1!, one has

Ghcb5G01AG0Q~Q2AQG0Q!21QG0 , ~B5!

which for A→6` reduces to Eq.~11! of the main text.

APPENDIX C: DERIVATION OF EQS. „61… AND „62…

The quantities f s(q)5 f̃ s(q) entering the differential
spectrum Eq.~40!, depend on the polarization of the prob
pulse. Substituting Eqs.~58!–~60! into Eq. ~41!, one finds

f s
i~q!5AN

2

m i~s0!s11

E2Eq,111 ih
dq,0 ~C1!

and

f s
'~q!5AN

2

m'~s0!s11~21!s11

E2Eq,211 ih
dq,0 ~C2!

for the parallel and perpendicular polarizations, respectiv
To determine the pump–probe spectrum, the ma
Ds,s8(K01q) is now to be inverted. Substituting Eq.~58! into
Eq. ~37!, one finds forq50:

Ds,s8[Ds,s8~K0!

5
1

4N (
k,s,s8

~s!s1s8~s8!s1s8

E1EK0s0
2EK0/21k,s2EK0/22k,s81 ih

,

~C3!

with the allowedk values determined byK0 as explained in
Sec. V. From Eq.~37! it is clear thatD1,15D2,2 and D1,2

5D2,1, so that

Ds,s8
21

5~D1,1
2 2D1,2

2 !21Ds,s8~21!s1s8. ~C4!

Substituting Eqs.~C1!, ~C2!, and~C4! into Eq.~40!, one
arrives after straightforward algebra at the differential sp
tra for both probe polarizations:

DI i~E!5Im
2

p

m i
2

~E2E0,111 ih!2

1

D1,11s0D1,2
~C5!

and
-

y.
x

-

DI'~E!5Im
2

p

m'
2

~E2E0,211 ih!2

1

D1,12s0D1,2
, ~C6!

with E0,615«22L6(La22Lb).
We now assume that when the probe pulse arrives,

aggregate is in the one-exciton stateuK050,s0511&, which
may be created by pumping with parallel polarization. T
denominators occurring in Eqs.~C5! and ~C6! can then be
written

D1,11D1,252 (
s561

1

8~L1sLb!
S0~ps! ~C7!

and

D1,12D1,252
1

4L
S0~p0!. ~C8!

Here the functionS is given by Eq.~49! and thepa (a50,
61) are defined in Eq.~63!. Using Eqs.~50! and~C5!–~C8!,
we arrive at the final form of the spectra given by Eqs.~61!
and ~62! in the main text.
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