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Using the hard-core boson approach, we study the pump-probe spectrum of molecular assemblies
carrying Frenkel excitons of arbitrary structure and dimension. We present a rigorous justification
of the hard-core boson approach by using the Agranovich—Toshich transformation from paulions to
bosons. The resulting two-exciton Green function is used to derive a general expression of the
assembly’s pump—probe spectrum. We show that this expression considerably simplifies for ordered
systems occupying a lattice, where we allow for the occurrence of more than one equivalent
molecule in the unit celiDavydov componenjs Explicit semianalytical expressions are given for

the pump—probe spectrum of linear chains with alternating dipoles, ring aggregates, chains with a
herringbone structure, and monolayers. In the analysis of these expressions, we focus on the overall
shape of the spectrum and on the effects of probe polarization. It is shown that relaxation during the
pump—probe delay time may drastically affect the pump—probe spectrun200® American
Institute of Physicq.S0021-960600)70804-X]

I. INTRODUCTION dimensional, whereas on larger length scales, probed by dif-

h llecti ical d ) ¢ molecdl bi fusion, they reveal a more complicated structure. Such a hi-
e collective optical dynamics of molecular assem Ieserarchy of length scales, involving domains and meso-

supporting Frenkel excitohs’ is a field that continues to aggregates has been suggested by several agff9RL-3

atfract attention. Among the systems arousing most mtere% addition, techniques exist which produce well-defined as-

areJ aggregates of cyanine dyes, Langmuir—Blodgett MONOS e mblies with a structure that is not linear. As examples, we

Iayer_s, _and biomolecular systems such as antenna complexrensention Langmuir—Blodgett film¥ which obviously call
consisting of chlorophyll molecules. Recently, many

theoretical™° and experiment&i~2* studies have been de- for a two-dimensional description, and the helical aggregates
Igmg on a cylindrical surface reported in Refs. 35 and 36.

voted to the pump—probe spectrum of these systems. In th . . .
weak-pump limit, this is a third-order nonlinear optical tech- . In this paper, motivated by the above observatllons, we
will study the pump—probe spectrum for Frenkel exciton sys-

nigue, which allows one to probe transitions between one ¢ arbi di ) q Alth h
exciton states and two-exciton states. Baggregates, this tems ot arbitrary dimension and structure. Although our gen-

transition is blueshifted compared to the ground state absorga! formulation also applies in the presence of disorder, we
tion band(the J band, which is a consequence of the fact Will Pay special attention, to the case of ordered aggregates,
that excitons are paulions, i.e., two excitations cannot residnére we derive explicitsemijanalytical expressions for
on the same molecule. For one-dimensiodaaggregates, e Pump—probe spectrum of various types of assembly
this blueshift allows one to estimate the extent of the excitorbtructures. We believe that their simplicity renders these ex-
wave function imposed by the size of the aggregate or bypressions useful tools in the analysis of experiments on more
static disorder, provided that dynanfltomogeneoysoroad- ~ complicated molecular structures.
ening does not dominate the spectrfitd142? Our method is based on the hard-core boson approach, in
Most of the work on molecular aggregates has been petwhich the paulions are treated as bosons, with an infinite
formed in the context of one-dimensional Frenkel excitonon-Site repulsion taking care of the kinematic interactite
models, which has often led to a good comparison betwee@xclusion principl¢ felt by the paulions. This method was
theory and experiment. Still, the dimensionality biggre- ~ first proposed by Van Kranend_cﬁ?then dealing with spin
gates is not a settled issue. Although absorption experimenwaves, but was criticized as naive by DysBisubsequently,
in streaming solutiofS and on mixed PIC-aza-PIC working in the context of Frenkel excitons, Agranovich and
aggregaté€ support a one-dimensional structure, experi-Toshict?3?suggested an exagtet complicategitransforma-
ments involving relaxation, such as exciton—excitontion converting paulions to bosons, which lended further sup-
annihilatiorf’~2° and temperature dependent fluorescefice, port to the hard-core boson approach. The method has also
question this picture. It is conceivable that on the lengthbeen advocated by Mukamel and co-workers. Leegwater and
scale of exciton coherence, which is relevant to coherenviukamel introduced the hard-core potential to calculate the
optical experiments, J aggregates behave as one-general four-wave mixing optical susceptibility of molecular
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assemblie8? while more recently the pump—probe spectrumL,, ,,PIP!, andL, , PP, .1~>*'The effect of such terms is
was also studied using this approdgh. small in exciton systems, owing to the fact that the molecular
In spite of the amount of earlier work, in our opinion a transition frequencies are typically much largey one to
rigorous justification of the hard-core boson approach is stilkwo orders of magnitudethan the transfer interactions.
lacking. In this paper, we fill this void by using the Wwithin this approximation, the eigenstates of the Hamil-
Agranovich—Toshich transformation and by showing that theonian can be classified according to the number of excita-
many-boson interactions which result from this transformations shared by the molecules. In particular, the ground state
tion may, up to the two-particle level, indeed be replaced bylg) is the state with all molecules in their ground state. The
a hard-core interaction. Crucial ingredients in this derivationjowest excitations occur in a band of one-exciton states, in
are the Heitler—London approximation and the fact thatwhich the molecules share one excitation. The next higher
third-order optical response only is sensitive to one- and twoband is the two-exciton band, etc. This classification will be
exciton states. a crucial element in the justification of the hard-core boson
The second goal of this paper is to use the hard-corgpproach.
boson method to derive explicit semianalytical expressions  As is well-known, the Pauli operatoi®’ and P, obey
for the pump—probe spectrum of various examples of ormixed Fermi and Bose commutation relatidndin particu-
dered aggregate structures. In this analysis we account fgar, they behave as bosons if they belong to different sites,
structures with more than one molecule in a unit cell. Thiswhereas for operators belonging to the same site, Fermi com-
situation often occurs in organic molecular systems and leadgutation relations apply. The latter describes the exclusion
to the well-known formation of Davydov components in the of doubly excited moleculePauli exclusioin By using the
one-exciton subspaceThe effect on two-exciton states and Agranovich—Toshich transformation, however, it is possible

the pump-—probe spectrum has thus far not been considere@ represent the Pauli operators in terms of Bose operafors
The outline of this paper is as follows. In Sec. I, we anda,,:%3%4243

present the Hamiltonian, justify the hard-core boson ap- . 2
proach, and calculate the two-exciton Green function using  _+_ _: D (—=2)” (ah"(a,)” @

this method. This Green function is used in Sec. Il to derive noTN A (L) A '

the formal expression for the differential absorption spec- » ] )

trum. In Sec. IV, we restrict ourselves to ordered aggregate@nd the hermitian conjugate fét,. Although this transfor-

and derive an expression for the pump—probe spectruffition is exact, the expansion contains many-boson opera-
which only involves the manipulatiofdiagonalization and tors (quartic and higher ordgrwhich complicates its practi-
inversion of Sx S matrices, wher& s the number of mol- cal use. As we will restrict ourselves to nonlinear optical
ecules per unit cell. Sections V—VII are devoted to the exSPectroscopies of order three or lower, however, it suffices to
plicit expressions and their analysis for the pump—probdVe an exact description of states that are one- and two-
spectra of specific examples. We consider linear chains witRoton allowed from the ground state. These are the one- and
alternating dipolesSec. VA, ring aggregate$Sec. VB two-exciton states. Thus, it is sufficient to retain the 0
linear aggregates with a herringbone struct(go mol- andv=1 terms in Eq(2), leading to the Holstein—Primakov
ecules per unit cell, Sec. ¥land molecular monolayers transformation:

(Sec. VI). One of the aspects receiving p_articu_lar attention is pi—al(1-ala,)?=al(1-a'a,), 3

the dependence on the probe polarization. Finally, we con-

clude in Sec. VIII. Appendixes A, B, and C contain technicalWhere the last equality holds because we limit ourselves to
details that are of importance but which would break the lineone- and two-particle states, so tiRf operates at most on a

of the main text too much if included there. one-particle state.
The Hamiltonian Eq(1) may now be rewritten in terms

of Bose operators as

Hexe=Ho™* Viin (4)

Il. GENERAL FORMULATION
A. Hamiltonian and bosonification

We consider an aggregate dftwo-level molecules with with
electronic excitations described by the Frenkel exciton

Hamiltonian—3 Ho=2 enalant X Lonatan (5)
n n#n’
Hexe= > €nPiPat > Loy PIPL . (1) and
n n#n’
Here, P! (P,) is the Pauli operator for creatiof@nnihila- Viin=—>, enatalasan— > Lo (alalanan:
tion) of an electronic excitation, with energy,, at the mol- n n#n’
eculen, while L, ,/ is the excitation transfer interaction be- +a;a;,an,an,). ©6)

tween the molecules and n’. At this stage, we do not
impose any restriction on the system’s dimension and strud-l, describes a system of noninteracting Bose excitons,
ture; in addition, no translational symmetry is assumed.  whereas the operatdf,;, introduces the kinematic interac-
In the above Hamiltonian, we have invoked the Heitler—tion between these bosons. The role of the latter interaction
London approximation, which neglects terms of the formis to cancel exactly any contributions of states of the form
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alallg), in which two bosons occur at one molecule. Suchspace of unphysical states, i.eQG,Q)(QG,Q) =0Q.
states are unphysical in the sense that they do not have &e action of the operatorQG,Q) ! on the subspace of
equivalent in the originalphysica) paulion system; they physical states is understood to yield zero. Combining Egs.
rather arise as auxiliary states after the transformation t¢10) and (11), we now have obtained the Green operator
bosons. Due to the kinematic interaction, unphysical statewithin the one- and two-exciton subspace.

are not coupled to the physical oné$;alal|g)=0.

B. Green operator and the hard-core boson method lIl. GENERAL EXPRESSION EOR THE PUMP—PROBE
In order to calculate the pump—probe spectrum, we willSPECTRUM
need the Green operator in the one- and two-exciton sub-

S In this section, we will derive a general expression for
space. The general Green operator is given by

the weak-pulse pump-—probe spectrum, which is valid for
Gexd X)=(X—Hgyetin) 1 (7) arbitrary dimension and structure of the aggregate as well as
for arbitrary realization of static disorder. The pump—probe

with »— +0. In the two-exciton subspace, the kinematic . d . : :
or differential absorption spectrum is defined as

interactionV,;, renders the calculation db.,. hontrivial.

This problem may be solved in two steps. First, we replace  AI'™(E)=1"(E)—19(E). (13

the quematlc interaction in Eq4) fpr Hexe by a hard-co“re Here, I""(E) denotes the linear probe absorption at photon

potential between the bosons. This leads to the new “hard- . .

core boson” Hamiltonian e_nergyE of the system Wh|(_:h has _been brought into the state

lin) by the pump pulse, whil?(E) is the ground state linear

Hueo=HotAQ, (8) absorption spectrunti.e., the probe absorption spectrum

taken in the absence of a punn the weak-pulse casgn)

is a one-exciton state. The above approach treats the third-

order nonlinear spectrum as a sequence of two linear absorp-

tion processes, which implies the neglect of coherent

o , artifacts**
the operator for projection onto the unphysical states. It ap- ¢ the spectra are taken by resolving the absorption of a

pears to be. intuitive that the hard-core potential added to thgpectrally broadwhite) probe pulse, they take the form
noninteracting boson terid, takes care of the Pauli exclu-

sion principle for two excitons residing at the same site. In
Appendix A, we prove rigorously that this is indeed the case.
In particular, we show that the Green operafy, for the
original Hamiltonianwithin the subspace of one and two
excitonsequals the Green operator for the hard-core boso
model:

Gexd X) = Ghet X)=(X—Hpept+in) 1. (10) M=E ,U,n(P;H- Pn), (15
It should be realized that this identification of the origi- "
nal paulion system with the hard-core boson system dependith w, the (rea) transition dipole matrix element, along the
crucially on the fact that we could classify the eigenstates oflirection of the polarization of the light, of molecute Fur-
the original Hamiltonian according to the number of particlesthermore, the sum in Eq14) extends over all final states,
(paulions shared by the molecules and that we only need théfin), which are dipole allowed from the initial stafen).
one- and two-particle states to calculate the pump—probBoth [in) and|fin) are eigenstates of the Hamiltoniéh,,,
spectrum at relatively weak pump pulses. For spin systemdVith energiest;, andEg,, respectively. IfE;,<Eg,, the +
the Heitler—London approximation is not valithe site en-  sign is selected in thé function in Eq.(14) and, correspond-
ergy vanishes in zero magnetic figland the steps between ingly, the upper(+) sign is selected for the prefactor occur-
Egs.(2) and(6) are meaningless. ring under the summation over final states: the process then
The second step in solving the two-exciton Green funccorresponds to realpositive absorption. In the opposite
tion lies in expressing;, in terms of the Green operat@x, case, we are dealing with stimulated emission, giving a nega-
for the free Bose excitons by using the Dyson equation. Irfive contribution to the absorption spectrutf(E) is simply
Appendix B, we show how this can be done quite generallyd special case of E¢14) with [in) replaced byg). Then, of
and in a somewhat more formal way than was used in Refcourse, stimulated emission cannot occur. Thus, the weak-

with A— =0 and

1
Q=3 2 ajaanay, ©)

I‘”(E)=f2 *[(fin|M[in)|28(Eyy— Efin = E). (14)

Here, M denotes the total dipole operator of the aggregate
thich, for aggregates small compared to an optical wave-
length, is given by

40. The result reads pulse pump—probe spectrum shows positive resonances at
_ 1 energies of allowed transitions between the one-exditon
Ghen=Go~Go(QGoQ) “Go, (1D and the two-exciton ban@nduced absorptionand negative
with resonances at all one-exciton energi®teaching of the
. imul is9l
Go=(x—Hgtin L (12) ground state and stimulated emisgion

Using the delta function representation:5(x)
In Eq. (11), the operator QG,Q) ! is to be understood as =— =" 1Im(x+i»n)~! with —+0, we may rewrite Eq.
the inverse of the Green operat@y projected on the sub- (14) as
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It should now be noted thag‘(E) represents the absorp-

|i”(E)=7T_1|m% +(in|Mfin) tion spectrum of a noninteracting boson system, starting
from state|in); the effect of the kinematic exciton—exciton
X (Ein= E—Egn+in) " Yfin|M|in) interaction is fully contained in the second term of E2p).

UM MG Mli As the noninteracting boson system is in fact a collection of
=—m " Im(in| exdy+IM[in) harmonic oscillators, its absorption spectrum should not de-
+41 Im(in|M Gexd YPM lin), (16) pend on the initial statéa harmonic oscillator only has linear

responsg To show this explicitly, it is useful to note that Eq.

with (23) can be rewritten as
y-=E*E. 17) .
Equation(16) defines the absorption spectrum from an arbi-  II(E)=7"1 Rej gl (EFint
trary initial state in terms the Green operator Ef).and the 0
dipole operator Eq(15) formulated for the paulions. The X (in|[M_ ,(efiHotM+eiHot)]_|in>dt' (24)

next step is to rewrite Eq16) in terms of operators appro-

priate to the hard-core boson system. To this end, we takBecause the operatold . are linear in Bose creation and
advantage of Eq(10) demonstrating the equivalence of the annihilation operators anH, is a quadratic form in these
original and the hard-core Green operatoBs,(=Gye) i operators, the commutatdiM _, (e~ "o'tM ,eMoh)]_ is a
the subspace of one- and two-particle stdtelich are the c-number. Thus, the right-hand side of E@4) does not
only relevant states in the weak-pulse experimertrther-  depend on the specific initial state, giving

more, within this subspace, E() may be used to write the i
dipole operator as I9(E)=13(E)=1%(E). (25)

(18) Here, the last equality holds because the specttlfk)
only involves transitions between the ground state and the
one-exciton states, for which the kinematic exciton—exciton
interaction is “switched off.”
If we now combine Eqs(13), (22), and(25), we finally
find for the differential absorption spectrum:

M =; polat(1-ala,) +(1—ala,)a,].

Finally, introducingR=1-Q, the operator for projec-
tion on the space of physical states, and

M+=MT,EE ,una;ﬂ, (19
- " N AIN(E) =7~ Im(in|M _ Go(QGoQ) ~1GoM , |in) (26)
it is easily shown that for the relevant transitions between the
ground state and the one-exciton states and between the onehere the argumeny,. =E;,+E has been omitted in the
exciton states and the two-exciton states, @®) is equiva- above Green operatds,. Clearly, the entire pump—probe
lent to spectrum results from the scattering of the bosons on the
M=RM,+M_R. (20) hard-core potential. More generally, this scattering is respon-

sible for all nonlinear optical response in the Frenkel exciton
Combining the above, one arrives at the absorption spectrugystent'

from statelin) in terms of operators appropriate to the hard- ~ | the general case of a system that lacks translational
core boson system: symmetry, for instance due to energy disorder, the actual
IM(E)=— 71 Im(in|M_RGhe(y~ )RM.|in) evaluation of Eq(26) involves manipulating matrices of di-

mension\ (A the number of molecules in the systerm
+ar 1 Im(in|RM, Gy )M _RJin). (2D particular, anA’x A" diagonalization is needed to find the
Here, we used the fact th&,.{y.) can contribute to the ©ne-boson energies occurring@ and the matrix elements
spectrum only if the dipole operator increasfes the upper  Of M. andM _ . Furthermore, the evaluation 0QGoQ) ~*
sign) or decrease&or the lower sigi by one the number of requires the inversion of anoth&fx A" matrix (for each en-
excitons relative to the initial state. ergy E), as the space of doubly occupied statagaf|g))
Realizing thatR G, R= G, and R|in)=|in), the pro-  has dimensionV. As was also pointed out by Mukamel and
jection operators may be dropped in Bg1), so that, after Leegwatef) this is an appreciable gain over a brute force
substituting Eq(11), we obtain calculation of the two-exciton states through diagonalization
: - _ ) of Hee, Which involves matrices of dimensiooV(A\
I"(B)=1g(E)+m HIm(in|M _Go(y ) —1)/2. For systems with translational symmetry, thé

X(QGo(Y+)Q) 1Go(y )M, |in), (22) X N matrices involved in Eq(26) can, too a Iarg.e extent,
ith even be handled analytically, as we will show in the next
wit . section.
I(E)=—a"1Im(in|]M _Gy(y, )M ,|in) As noted below Eq.(15), the differential absorption

I . spectrumA|™™(E) by construction has positive resonances if
+aIm(in|M . Go(y )M _[in). (23 E equals the transition energy between the one-exditon

In deriving Eq.(22), we have used the fact that _|in) and one of the states of the two-exciton band, while it has

~|g), which is a physical state, so that negative resonances at one-exciton energies. In our final re-

(QGuQ) 'GyM _Jin)=0. sult Eqg.(26) the one-exciton resonances are contained in the
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free-exciton Green operatdB,, while the middle factor On the new basis, the matrix elements of the Green op-
(QG,Q) 1 (involving inversion of the projected Green op- erator G, (=Gy(Ej,+E)) in the subspace of two-exciton
erato) yields new resonances at the energies of one- to twostates are easily calculated to be

exciton transitions. We finally note that the above derivation

of the differential absorption spectrum equally well holds if (g|b
we keepv finite, which is a simple way of including a line-

GobJr b lg)

ql"lbqZUZ 03037049

width for all optical transitions. 04,0, 0305005050404 T Oay0, 0404 Op0y Gz -
E+Ein—Eqo,~Equo, T17 ’ (3

IV. ORDERED SYSTEMS WITH SEVERAL DAVYDOV Furthermore, the dipole raising and lowering operators de-

COMPONENTS fined in Eq.(19) take the form

In this section, we consider aggregates which occupy a

d-dimensional Bravais lattice consisting ldfunit cells. Each M,=MT=> ngbaw (32

unit cell containsS molecules, a situation which leads to the qo

occurrence of S separate one-exciton band®avydov with

components!=3 The total number of molecules is thug

=NS. It is now most convenient to replace the lahalf the T . )

molecules byns, wheren denotes the position vector of the Pao=N % Kns®os(Q)EXP(—1G-N). (33

unit cell to which the molecule belongs, whige=1,... S

specifies the molecules within each cell. We shall assumé&lere, w,s denotes the dipole matrix element of molecote

translational symmetnyi.e., absence of disorderso that Finally, to evaluate the spectrum E@6), we need the

ens=&s andL s ver =Ls s (N—=N"). Finally, we impose peri- Operator QGo_Q)_l- To this end, we first note that E¢P)
odic boundary conditions on the Bravais lattice in the usuafor the projection operatd® (which also represents the hard-

way?® core interactiopy may be written
Under these conditions, the free-boson Hamiltortgn 1
of Eq. (5) can be diagonalized via the transformatfon: Q=5 nzs alsals|g><g|ansans:|<zs Bl.Jg)(g|Bxe,
- : 4
bl,=N"Y23, ¢,q(q)expig-nal, (27) 39
ns where
(and the hermitian conjugate fd,,), the inverse transfor-
mation being given by B
Bie=(2N) "2 X ¢} (K/2+k)
k,o,0'
T _N—1/2 * i T
als=N"Y2> gl (aexp—ig-n)bf,. (28)
ns < Pos a X @, (KI2=K)DK o4 e Ok ip i o (35

Hereby, (by,) are the Bose operators for creati@mnihi-  and the hermitian conjugate fd@y.. The insertion of the
lation) of an exciton in theoth Davydov band &  projection operatofg)(g| is legitimate in Eq(34), since we
=1,....9), andq denotes one of thdl allowed wave vec-  are dealing with states containing up to two excitons. Thus,
tors in the first Brillouin zone. Furthermoré,(q) isthesth  the hard-core boson interaction has been expressed using
component of thesth eigenvectorinormalized to unity of auxiliary operatorsBLs andBys. These new operators de-

the SX'S matrix scribe, respectively, creation and annihilation of spatially ex-
tended unphysical boson pairs located at the same molecules
Hes(qQ)=g50s o+ 2 " Les(N)exp—ig-n). (29)  of the types and characterized by the center of mass momen-

tumK. TheN allowed values foK are identical to those for
The corresponding set of eigenenergies will be dengtgd g (the one-boson momentavhile theN allowed values for
The prime on the summation in ER9) excludes the term k are the same as those fogr K/2.

with n=0 and simultaneouslg=s’. After the above trans- Using Eqgs(34), (35), and(31), one now easily arrives at
formation, the Hamiltonian of Eq(5) takes the diagonal
form:
QG,Q= 2 Ds,s’(K)B&s|g><g|BKs’ ) (36)
K,s,s’
Ho=2 Eq,bd,bao- (30 . -
Qo where theSX S matrix Dg ¢/ (K) is defined by

* (K124 K) ¢ s (KI2+K) 7, (KI2—K) i (KI2—K)

1 ¢
Dss(K)= 2 . (37)

Koo' E+Ekyo, ™ Exizrk,o™ Ekiz—kor 17
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Here, we have assumed that when the probe pulse arrivesjth
the system resides in the one-exciton state with momentum
Kg in bandoy,

. + . Iu‘q0'¢0'oS(K0) ¢as(Q)
[in) = by 0,/ 0)=[Ko00), (38) @=2 —g g, (41)
characterized by the ener@y,= Ex yop- This “initial state”
may result either directly from excitation by the pump pulse
or from relaxation after this excitation. We note that the final
result Eq.(40) is modified in a straightforward way if the
initial state is an incoherent superposition of one-exciton #;a¢3os(Ko)¢3s(Q)
states. fs(q)= - (42
As the operator8/ . produce an orthonormal set of two- 7 E-Bqotin
boson states{,g|BKsBL,s,|g>= Sksk's » the operatoQGyQ
can be inverted to yielfisee remark below Eq12)]: Here the E-dependence is implicit in the quantities
. . : Ds« (Ko+0), f.(q), andf.(q). As pointed out below Eq.
(QGQ) = E, D (K)Bksl9)(9[Bks' (39  (26), the original pump—probe spectrum involves the diago-
K,s,s nalization of an\X N matrix and the inversion of another
whereDgsl,(K) denotes theg,s’) component of the inverse NX A matrix. By taking advantage of the translational sym-
of the matrixDg ¢/ (K). metry, the problem has been reduced to the diagonalization

We now have all ingredients to evaluate the differentialof the SX S matrix Hs (), which determines the eigenvec-
absorption spectrum | (E) given by Eq.(26). With the ini-  tors ¢,4(q) and eigenenergids,, . In addition, inversion of
tial state Eq.(38) and using Eqs(39), (35), (32), and(31), anotherSX S matrix D¢ ¢ is needed to determine the pump-—
we arrive at(from now on we will drop the superscript re- probe spectrum given by E¢0).
ferring to the initial statp We conclude this section by presenting the results for

the simple case of one molecule per unit c&H1). Then

2 ~ o
AIE)=Im— >, T(q)D, L (Kot q)fs(q), (40  the indicess and o become redundant and,s(q)=1, so
N s ' that Eq.(40) reduces to

-1

: (43

2 | gl? 1
Al(E)=Im—= >, d .
7T°q (E-Eq+in)?| ® E+Ex, =Btk B rar-kt17

with pump—probe spectrum is descibed by E¢3)—(45) in
which the wave vectork, q, andK, reduce to scalark, q,
Eq=e+ E L(n)exp(—ig-n) (44) andK,. If we use the lattice constant as unit of length, the
n#0 wave numbergy and K, can take the values7,/N and
and 2mly/N, respectively, wheré, andl, both take the values
0,1,... N—1. The allowed values fdt also can be written
_ N2 i, ask=2mxl, /N, but nowl,=0,1,... N=1if I, +I, is even,
ua=N"1"2 pnexp(—ian). (49 heread, =13 . N—if o1 is odd.

The values over whicly andk run in the summations in Eq. For simplicity, we adopt the nearest-neighbor approxi-

(43) have been specified below Eq28) and(35). We note mation,L(n) ==L (1% n,-1), giving

that if all molecular transition dipoles are taken_ equal, ( Eq,=&— 2L cosq. (46)
=pu), we haveu = uNY25, o, so that the summation over _ o _ _

collapses to a single term. It is useful, however, to keep th&Jsing this dispersion relation, E¢43) reduces to

more general form Eq43), in order to describe circular and

2 -1
cylindrical aggregates, in which the molecular dipoles rotate | (E)= — ——Im, |4 “IN [Sx(p)] ,
along with the position of the molecule on the curved struc- 2mL g codK/2) [p—cogKo/2—q/2)]?
ture. (47)
with K=K,+q,
V. ONE-DIMENSIONAL AGGREGATE WITH ONE .
MOLECULE PER UNIT CELL o— e+2l cosKo—E—iy 49)
4L cogK/2) '

In this section, we consider ordered one-dimensional ag-
gregates with one molecule per unit cell. In this situation, theand the functiorS¢(z) defined through
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FIG. 1. Linear aggregate with alternating dipoles. 5 -0
-100 L,
-2.1
1 1 0-
Sk(z2)=— .
x(2=J Ek z—cosk (49 = ®)
£
Here, the dependence df derives from the fact that the ‘:31 05
values taken b in the right-hand-side summation depend ]
on K=K;,+(q (see above This summation can be evaluated <
analytically to yield*® -1k

19 2.0 211

— i E-
2 1+g-N(z)ekN2 (E-e)L
Sk(2)= (2)— _1(2) 1— _N(Z)eiKN/Z FIG. 2. (a) Differential absorption spectrum according to E§1) for a
g g g linear chain of alternating dipoles probed with light polarized parallel to the
N IKN/2 chain direction and starting from an initial condition with wave number
_ 1 [g9(2)—1\(1+9g “(2)e (50) Ko=0. The three different spectra correspond to chain sikes15
] g(Z) +1 1— ng(Z) eiKN/z ! (dashed—dotted 20 (dashed, and 30(solid), respectively. In all cases the

linewidth was set top=0.01L. (b) As in (a) but now for a probe pulse
with g(z) -7+ \/22__1 andgfl(z) =7— \/22__1 polarized perpendicular to.the chain dirgct[(n‘rq. (52)]. The spectrum then
The specific form of the transition dipolgs, entering does not depend on the size of the chain.

the line shape Eq47), depends on the geometry of the ag-

gregate. Below we will consider two special examples for

this geometry. Let us now suppose that in the pump—probe experiment
the aggregate resides in tH€,=0) one-exciton state when
the probe arrivegfor instance due to using a pump pulse

A. Chain with alternating dipoles with parallel polarization Then Eq.(47) yields the follow-

We first consider a linear molecular aggregate with al_?ng differential absorption spectra for the probe pulse polar-

ternating dipoles, as depicted in Fig. 1. Specifically, the mo2€d Parallel and perpendicular to the aggregate axis, respec-

lecular transition dipoles contain a constant component tively,

along the aggregate axis and an alternating component 2 N
w, (—1)" perpendicular to it. The resulting transition dipoles All(E)=— |’MH| Im 1 (g(p)+ ti1-9 (p)) ,
of the aggregate are},= 8, ou|VN and us = 8q -, VN for 2aL - p=119(P) =1/  1+g N(p)

the electric field polarized parallel and perpendicular to the (51)
aggregate axis, respectively. Thus, for 0, the ground-state ; ; K —
absorption takes place to the bottgrap) of the one-exciton [pas in Eq.(48) with K=K,=0] and
band for light that is polarized parallgyerpendicularto the 2|, |? 1
aggregate axis, and with corresponding strength AIT(E)= - E—e—2l+iyg
Nuf(Nu?). This situation is believed to be realized dn
aggregates of pseudo-isocyanfié® for which the q=0 Equation(52) may be derived by taking the limg— a in
transition(polarized along the aggregate agxjselds the nar-  Eq. (47) or, alternatively, directly from Eq(43) by noting
row (zero-phonohJ band in the long-wavelength area of the that for q=7 the summation ovek is trivial, as then the
spectrum, while theg= 7 transition is responsible for the summand does not depend kn
short-wavelength absorption of the aggregate in the perpen- The above result foAll(E) agrees with the line shape
dicular polarization. obtained if one uses the Jordan—Wigner transformation to
Before proceeding with the pump—probe spectrum, weransform the original paulions to fermiofsf. Eq. (4.3) of
note that the structure depicted in Fig. 1 may equally well beRef. 11.° As is seen in Fig. @), this line shape exhibits, in
considered an example of a system with two molecules perddition to the one-exciton bleaching peak, the well-known
unit cell, with theg=0 and theq= = transitions correspond- blueshifted induced-absorption peak characteristic of khe
ing to the allowed transitions in the two different Davydov band (Sec. ). For » small enough, the intensities of the
bands. From the point of view of the Hamiltonié@ihe ener-  bleaching and induced-absorption peaks scale proportional to
gies and interactionshowever, this separation into Davydov N, due to the superradiant nature of the corresponding tran-
bands is not necessary, which is why we prefer to regard thisitions. Figure 2a) also clearly displays the sensitivity of the
as a system with one molecule per unit cell. Of course, thélueshift of the induced absorption to the size of the aggre-
results do not depend on what point of view one takes, agate. On the other hand, in the limit of large aggregateés (
long as the dipole orientations are properly taken into>+372L/7), the differential absorption spectrum becomes
account. size independerit® This is clear from the fact that for large

(52
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FIG. 3. Ring aggregate with the molecular dipoles indicated by the thick

G. Juzeliunas and J. Knoester

pole component belonging to molecule= 0 and they direc-
tion perpendicular to it, we have, ,=u, cos@en) and
Mn,y= M SiN@oN), with go=27/N.

For electric fields polarized parallel to the aggregate
axis, the transition dipoles of the total aggregate are now
given by,uﬂ]= 5q,oMH\/N- For electric fields polarized perpen-
dicular to the aggregate axis, we have

arrows. The projection of the dipoles along the direction perpendicular to

the plane of the ring has magnitugie, while the projection on the plane of
the ring has magnitudg, .

N the last factor in Eq(51) approaches 1if g(p)>1] or
—1 [if g(p)<1]. We finally note that the spectrum obeys
the sum-rulét

| arEaE=-2lu2 (53

which is independent of the strendthof the transfer inter-

lal
2

VN,

Mq,x:(5q,qo+5q,—qo)

My
r“q,y:(‘sq,qo_ 5q,—qo)ﬁ

WN.

(54)

Consequently, the optically allowed transitions from the
ground state take place to the one-exciton states gyitld
(parallel polarization or g= *=q, (perpendicular polariza-
tion). The latter two states are degenerate.

If the aggregate resides in the one-exciton state with

action and would also hold in the presence of disorder andto=0 when the probe pulse arrives, the differential spec-

(or) exciton-phonon coupling.

In contrast to the “parallel” spectrum, its perpendicular
counterpart AI*-(E) only displays a single Lorenztian
bleaching peak, which is centered at the top of the one
exciton bandFig. 2(b)]. The intensity of the bleaching peak
does not depend oN. This agrees with the sum-rule Eq.
(53), which is obeyed by I+ (E) as well, except thaty is
replaced byu, . The explanation whyl+(E) only has a

trum in parallel polarization is once again given by Esfl).
This is not surprising, as light of this polarization only
“sees” the molecular dipole components perpendicular to
the plane of the ring, which are all identical. Thus, the ring
becomes equivalent to a linear chain with periodic boundary
conditions and with all molecular dipoles parallel to each
other. This indeed is exactly the situation in the previous
subsection, provided we probe the chain with parallel polar-

single bleaching peak and does not exhibit the common digzation. In view of this equivalence, we will not analyze this

persive shape characteristichfggregates, lies in the strong

degeneracy of the two-exciton states of interest. This is best

understood using the fermion picture resulting from the
Jordan—Wigner transformatiafthis method can be applied

spectrum in more detail.

On the other hand, if we use a probe pulse with perpen-
dicular polarization, the situation is drastically different from
the linear chain with alternating dipoles. This is due to the

in the present special case of one dimension and neared@ct that in the ring light of this polarization probes the com-

neighbor interaction In the fermion picture, the induced-
absorption resonances occur Bt= Ex, T Er—k,~ Ek -0
where we used the selection rifg=k;+k,— 7, which is
appropriate for excitation with light of perpendicular polar-
ization (k; andk, are fermion wave numbersUsing Eq.
(46), one finds that the quantify, +E,_y =2e is indepen-
dent of k;. Consequently, all induced-absorption contribu-
tions with perpendicular polarization take place Bt e
+2L, which is in exact resonance with the only one-exciton
bleaching peak that is visible in perpendicular polarization.

This explains why only a single net bleaching feature is ob-

served. We note that in our hard-core boson approach th

degeneracy of many bleaching and induced-absorption peaks

can be seen by comparing the varidusontributions in Eq.
(43) with q=m andKy=0.

B. Ring aggregate

ponent of the molecular dipole that rotates around the ring
axis (wave numberstqg), while in the linear chain of the
previous subsection, it probes the alternating component of
the dipole(wave vectors). Using Eqgs.(47) and (54), we

find

AIX(E)=AIY(E)

1 p—1
~ 4aL " cod@IN) [p—cog wIN)]2
1+g9 Mp)

J |
1-g~Mp)

wherep is taken from Eq.(48) with K;=0 andK= *qq.
Without showing figures, we note that these perpendicular
spectra are again of the familiar dispersive shpge Fig.
2(a)], except that(for L>0) the entire spectrum is blue-
shifted compared to the spectrum H§1), while also the

__|:U«L|2

g(p)+1
g(p)—1

e

(59

Next we consider aggregates with a circular geometryspectral separation between the bleaching and the induced

(Fig. 3), as is realized in bacterial antenna compleXebhe
molecular transition dipoles have a constant componpgnt
= u parallel to the aggregate axis and a componenty-

absorption is increased. This is due to the change in selection
rules. However, one easily checks that in the limit of lakge
the spectrum Eq55) becomes identical to EG51) (with w

ing in the plane of the ring and rotating perpendicular to thereplaced byu, ). This is understood from the fact that in this

axis. Arbitrarily assigning the direction to the in-plane di-

limit the curvature of the ring is not important anymore on
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n=1 2 3 wheree is the molecular transition energy, which is equal for
both molecules. The one-exciton wave numbetakes the
s=1 same values as in Sec. V. For eagiH s (q) represents a
2X 2 matrix, which is easily diagonalized to yield
s=2 Eqo=&—2L cosq+o(L,—2L;, cosq) (57
and
FIG. 4. One-dimensional aggregate with a herringbone structure. The ar-
rows indicate the molecular transition dipoles. Also indicated are the three ¢ ,=(0)5" 12, (58

different types of transfer interactions that are taken into account. . . . . .
with o= =1 labeling the two dispersion branches. It is note-

worthy that the eigenvectors E(58) are independent dj.
the scale of the coherence Iengﬁm. We finally note This considerably simplifies the following analysis.

that the spectra Eq(55) obey the sumrulef[AI(E) We now tyrn_ to the trgnsition dipoles of_the aggregate.

+AIY(E)dE=—2|u, |2 For the electric field polarized along the chain, one has
Hagr= V2N Bq 08,1, (59)

VI. LINEAR AGGREGATE WITH HERRINGBONE so that the ground-state absorption exhibits a peakjat;

STRUCTURE =&—2L+L,— 2L, with strength Nuf . On the other hand,

or the electric field polarized perpendicular to the chain the

We next consider linear aggregates with two molecule% . .
ransition dipoles read:

per unit cell. The studied structure is of the herringbone type,
depicted in Fig. 4, in which the unit cell contains two iden- Még:lﬂ V2N 684085, -1, (60

tical mqlecuI?sHﬁfl and_s_=2)d_wr|1ich EI)_?]IV ldiffer in”trr]]e giving a ground-state absorption of strength2° and po-
orientation of their transition dipoles. The latter all have Gionod atE, ,—s-2L—L,+2L,. Thus, provided that

identical coin{)osrl?ntﬂu alor(;g trlle agg_re?/slte axis andsc?T'La—ZLba&O, a Davydov splitting is observed between the
ponenty, (—1) perpendicular to it. We assume the fol- absorption lines with different polarizations.

:_owing_ Lnor|1_zero tra_nifer ime_raCtli_onSL”S’(“ﬁl)SE.ELr’] The technical steps needed to derive from Ef) the
nin2=Las bnin+1)2=L(ni1)1n2=~Lo, together with the i raiial absorption spectra for parallel and perpendicular
hermitian conjugated contrllb.utlons. Here the signs have bee&obe polarization are outlined in Appendix C. Here, we only
ghosien (;9 n|1ake th?. qu%ntltlgs La, angLF] p%gltl\/le if the _quote the results obtained if one assumes that at the moment
Ipole—dipole coupling ominates an t. € JIpoies are Ofyyat the probe pulse arrives, the aggregate resides in the one-
ented relatively close to the aggregate axis. If the interactiong, it state with wave numbé,=0 and branch labek,
are assumed real, the matrix E§9) takes the form: = +1. This state may be created by using a pump that is
Hso(q)=(e—2L cosq)ds e+ (La— 2Ly cosq)(1— s, polarized parallel to the chain. Following the steps in Appen-
(56) dix C, one arrives at

2 — -1
N M 1 1 1-g(p,) 1+g "(p,) 61)
T (E—Eg 1+in)?|e=x18(Ltoly) (Po—1) 1+9(P,) 1—g~N(p,)
|

and the parallel(perpendicularcomponents of the molecular di-

) N poles only>? A second limiting case of interest is=L,

Ali(E):lm& #i(Po—1)  149(Po) 1—9g (pO)_ =0, where the aggregate reduces to a collection of non-

T (E-Eq_1+i 7)%2 1=9(Po) 1+g~N(py) interacting dimers. It is easily verified that in this limit the

(62 above general spectra indeed yield the dimer spectra, which
Here the functiorg has been defined below E(O0), while ~ can be calculated in a straightforward way due to the small
) number of one-exciton staté8) and two-exciton state€l)
b= e+2L-La(1-2a)+2L,—E-iy (63  thatoccurin a dimer.

“ 4(L+alp) ' Away from these limiting cases, the spectra show a
with a=0,+1. richer variety of structures, depending on the relative posi-
One easily checks that far,=L,=0, Eq.(61) reduces tion of the two Davydov bands. From E(7) one finds that

to Eq. (51), while Eq. (62) reduces to Eq(51) with g re-  for La=2Lp<<0 (La—2L,>0) the bottom of thes=+1
placed byu, . This should be expected, as in this limit the band lies lowerhighen than the bottom of the= — 1 band
herringbone structure falls apart into two noninteracting lin-(we assume.>|L,|). Since in bleaching one observes only
ear aggregates with all dipoles oriented in the same directiothe o=+1 band in parallel polarization and the=—1
Light of parallel(perpendiculgrpolarization will then probe band in perpendicular polarization, one thus expects that the
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i i AL

CE-e)L
) ) ) ) o _ FIG. 7. Two-dimensional aggregate with one molecule per unit cell. The
FIG. 5. Differential absorption spectrum for a linear chain with a herring- arrows indicate the molecular transition dipoles. Also indicated are the two

bone structurg(Fig. 4), taking as initial condition when the probe pulse nearest-neighbor transfer interactions that are taken into account in our ex-
arrives the one-exciton state with wave numkigr=0 residing in the Davy-  piicit calculations.

dov branchoy=+1. The solid line reflects the spectrum for a probe pulse
polarized parallel to the chain direction, while the dashed line corresponds
to a probe with perpendicular polarization. The spectra have have been

calculated from Eqs(61) and (62), usingL,=0.5L andL,=0.3L for the VIl. MONOLAYER WITH ONE MOLECULE PER UNIT
interactions,»=0.09_ for the line width, and\N=1000 for the chain size. CELL

The units of absorption used along the vertical axis pjﬁéan and

2 I L : . . . .
pif2mz for AlT andAl-, respectively. As final example, we consider a two-dimensional square

lattice of sizeN; X N, with one molecule per unit celFig.
bleaching in paralll polarizaton occurs at lowdrghen (10, ¥ T TR B PRE T R B eractions
frequency than the one in perpendicular polarizatioh jf " . o .

q y Perp P d —L4 in one of the lattice directions ané L, in the other

—2L,<0 (La—2Lp>0). This is indeed reflected in the "1 : .
spectra displayed in Figs. 5 and 6. These figures also cIea[?/reCt'on' Then the one-exciton energies B4y take the

show that, again, the induced-absorption contributions occ prm
mainly on the high-energy side of the bleaching peaks. Eq=e—2L;cosq,— 2L, cosqy, (64)
Interestlngly, however, we observe some mduced ab\'/vhereq1=277I1/Nl andq,=27l,/N, are the two compo-
sorption to the low-energy side of the bleaching peak in the . . . :
. S nents of the wavevector in units of the inverse lattice con-
parallel spectrum of Fig. 6. This is related to the fact that theStant (,=0,1 N,—1: 1,01 N,—1). Moreover
initial state (Ko=0,00=+1)) is not the lowest one-exciton tl ke all mol ! | ,t2 on di |2 (mAanitude
state, as the bottom of the=—1 band lies lower for the as _Weha g_a mo ecfu ir ranil on Ilp_o es eq(lahgnl uae
parameter values considered ,(-2L,>0). As a conse- ’f n E/Ze Irection O_t © Probe po a_rlzatmrwe aveitg
quence, if the probe excites an additional exciton indhe = /N %0, With N=N;N,. Substituting these results into
' . - : Eqg. (43) and denoting the wave vector of the initial state as
=—1 band, this may result in induced-absorption feature = (Ky.K,), one finds
below the initial state. Since in the case of the parallel spec- % 12"
trum the bleaching occurs at the energy of the initial state,Al(E) 2| 2
this immediately explains why induced-absorption contribu- =—Im .
tions occur to tr31/e re% of the bﬁeaching peak. '?hese contribu- T (E-et2lit2l,tin?
tions are weaklas observex] because they depend on the 1 1 -1
mixing of the two Davydov bands due to the kinematic in- X N kEk E—e—L,h(Ky,ky)— Loh(Ky,ky) +1i ,
teraction between excitons. If it were not for this interaction, . PR T R R R
the lower one- to two-exciton transition originating from the (65
o=—1 band would not be observable in parallel polariza-yth
tion. Therefore, the dominant induced-absorption features
still occur blueshifted compared to the bleaching, as is com-  N(Ki ki)=2 cosK;—4 cogK;/2)cosk; . (66)
monly the case for exciton bands which have their bottom afhe allowed values for the wave vector componéqtsind
q=0. We finally note that in perpendicular polarization nok, depend ork; andK,, respectively, similar as discussed
redshifted induced absorption features occur, as in this pdn Sec. V for the wave numbers in the one-dimensional case.
larization the bleaching really occurs at the lowest possible  The nature of the monolayer depends on the sigris,of
one-exciton state. andL,. If both are positive, the optically allowed stdg
=0) is the lowest one-exciton and the monolayer then be-
haves as d aggregate. It is more common, however, that one

5 S N of the interactions i_s p(_)sitiv_e, Whi_le th_e other is nega_L(Nma
.0 = J—H aggregatg This situtation arises if the transfer interac-
< -25 ‘\,' tion is of dipolar nature and the molecular dipoles lie in the
=2" ~50 ’ plane of the monolayer. For explicitness we will from now

s on assume thdt;>0, while L,<0. In that case, the lowest
, , , , one-exciton state is optically forbidden and has wave vector
-3 =25 (E_—;/L -5 -l (0,7), while the optically allowed state with wave vector

FIG. 6. As Fig. 5, but now with.,=L, all other parameters unchanged.

(0,0) lies in a saddlepoint of the two-dimensional exciton
dispersion manifold.
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. . ) . . FIG. 9. As Fig. 8, but now assuming that by the time the probe pulse
FIG 8. lefgrentlal absorption spectrum fo't a monola&ﬁg. 7), taking as arrives, the sygtem has relaxed to the?owest o)r,1e—exciton statep,)i.e., tr?e state
|n|@al condmon_when the probe pulse arrives the optically allowed ONe- it wave vectorK o= (0,m). All other parameters as in Fig. 8.
exciton state with wave vectdt,=(0,0), created by the pump pulse. The
spectrum has been calculated using &®). The solid line corresponds to
the casd.,= —0.5_,, while the dashed line represents the case —L;.
In both cases the line width was set#e=0.1L ,;, while the system size was independent ok,. This immediately reduces the summation

takenN; X N,=100x 100 molecules. to a single ondoverky, taking the same values gs above,
which may be carried out in analogy to Sec. V. The final
result is identical to the spectrum E(h1), except that we
We will first consider the differential absorption spec- Should replacei—u, L—Ly, N—N;, andE—E+2L,.
trum assuming that when the probe pulse arrives the mongtnus, the spectrum for the monolayer under these conditions
layer is in the staté(K,,K,))=[(0,0)). This represents the IS given by a shifted version of the parallel spectrum for the
situation where the delay time between pump and probe i§hain with alternating dipoles. In particular, this implies that
short enough to neglect relaxation of the optically allowed?fter relaxation to the lowest one-exciton state the spectrum,
one-exciton state created by the pump—pulse to lower ondlOt surprisingly, only exhibits induced-absorption contribu-
exciton states. With this initial conditiork; andk, in Eq. ~ tions on the blue side of the bleaching peak. Figure 9 dis-
(65) take the same values gs and s, respectively, speci- Plays the resulting spectrum for the same parameter values as

fied below Eq.(64). After introducing used in Fig. 8. . _
) Comparing Figs. 8 and 9, it is clear that relaxation
o = e+2L1+2L,—4L,cosk,—E—in 67) through the one-exciton band has a strong influence on the
k2 4L, ' shape of the pump—probe spectrum. Unravelling the result-

ing (ultrafas} time dependence of this spectrum in more de-
tail involves a microscopic exciton—phonon coupling
model®® Such a study, interesting as it may be, lies outside

2 8L the scope of the current paper.
AI(E)= %Im L P pap

the summation ovek; may be performed by using an analog
of Eq. (50), leading to

(E—e+2L,+2L,+i7)?
VIIl. CONCLUDING REMARKS

1- 1+g M -
% Ni E 1 g(pkz) g (pk2) In this paper, we have studied the pump—probe spectrum
2

o (P,=1) 1+9(pk) 1-g™M(p)| = of Frenkel excitons in molecular assemblies with arbitrary
structure and dimension. Our method is based on the hard-
(68) core boson approach, in which the paulidescitong are
with the functiong as defined below Ed50). replaced by bosons with an infinite on-site repulsion. We

Figure 8 displays the resulting spectrum for two differenthave justified this method rigorously by using the
values of|L,/L4| in the limit of a large monolayer, where Agranovich—Toshich transformation from paulions to
the spectrum has become size-independent. The most intdsesons. Using the thus obtained two-exciton Green function,
esting feature in these spectra is that the induced absorptiame have derived a general expression for the differential
occurs both on the high- and the low-energy side of thegpump—probe spectrufiEq. (26)]. Although this general re-
bleaching peak. As in Sec. \(Fig. 6) this is a consequence sult does not assume translational invariatemed thus also
of the fact that the initial state is not the lowest one-excitonholds in the case of disorderin our detailed analysis we
state. As the ratigL,/L 4| determines how much the lowest have focused on ordered systems occupying a lattice. In par-
one-exciton state lies below the initial state, one expects thdicular, we have allowed for lattices containing more than
the amount of redshifted induced absorption grows at th@ne molecule per unit cell, thus giving rise to different Davy-
expense of blueshifted induced absorption with growingdov components. The resulting spectrum E)) only in-
|[L,/L,|. This is indeed observed in Fig. 8. volves the diagonalization and inversion 8K S matrices,

We now turn to the other extreme situation, where thewhereSis the number of molecules per unit cell. While it is
pump—probe delay time is long enough and the temperatureell-known that disorder often plays an important role in
low enough to assume that the optically pumped state hamolecular assemblies, it also is well-appreciated that semi-
relaxed completely to the lowest one-exciton state. Thus, thanalytical spectra derived for ordered aggregates are useful
initial state when the probe pulse arrives [iK1,K,))  to understand the salient spectral features observed in experi-
=|(0,7r)). Then the functiom(K,k,) occurring in Eq.(65) ments. We hope that the explicit expressions presented by us
becomes a constapi(,k,) = — 2], so that the summand is for various types of aggregates will serve this purpose.
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As specific applications, we have considered the lineaAPPENDIX A: JUSTIFICATION OF THE HARD-CORE
chain with alternating dipoles, the ring aggregate, the chaifOSON APPROACH
with herringbone structuréwo molecules per unit celland In this appendix, we give a rigorous justification of the

the monolayer. From these examples we have seen that tlﬂ% :
rd-core boson approach. Using E@®, (8), and(9) one
differential absorption spectrum exhibits a variety of shapesﬁndS PR g ® ©

depending on the structure of the assembly, the interaction
parameters, and the polarization of the probe pulse. For a
chain of alternating dipole&s is believed to be a relevant
model for PICJ aggregates the differential absorption spec-
trum probed with parallel polarization contains a one- to
two-exciton induced absorption peak that is blueshifted com-  H,=H(+V, (A2)
pared to the one-exciton bleaching pdé&lig. 2(a)]. On the .

other hand, perpendicular polarization only exhibits a smali"”th

bleaching feature as a resultant of overlapping bleaching and , A
induced-absorption contributiofisig. 2b)]. A different type Ho=HexcT 2 (E tén
of behavior is observed in systems with several Davydov

branches or with a higher dimensional exciton dispersion'jmd

manifold. In such systems, induced-absorption peaks can be

observed simultaneously on the red and the blue side of the V= E Lon (afalasan +alal,ayan). (A4)
bleaching and stimulated emission pégigs. 6 and 8 This n7n

is analogous to the observation of positive two-photon abThus, the zero-order HamiltoniaH, has been chosen to
sorption contributions on both sides of the one-excitoncontain the full original Hamiltoniar e, plus the unphysi-

) : . . ot
bleaching peak in the cw nonlinear absorption spectrum carcal part=,(A/2+en)aqazanan -

A
Hheb= Hexe™ Vidn T E ; a;a;anan . (A1)

Upon substitution of Eq(6) for V,y,, this yields

ajajanay, (A3)

culated by Leegwater and Mukanf8lin the pump—probe If we now define the Green operators corresponding to
spectrum this phenomenon is dynamic and will, as a consdnes @ndHg, respectively, as

quence of relaxation, evolve to the geneliaggregate dif- Gher=(X—Hpeptin) ™t and Gi=(x—Hj+in) %,
ferential absorption spectrum with growing pump—probe de- (A5)

lay time (Figs. 8 and 9 These changes most likely take
place on an ultrashortfemtosecony time scale and may
yield interesting information on the exciton—phonon cou-  Gy,=G(+GoVGy+GiVGVG)+ - - - . (A6)

pllng . tot _ . . ' .
As discussed in Sec. Il, the pump—probe signal which SinceHe,na,|g)=0, the HamiltoniarH, contains no

we derived originates from the kinematic interaction betwee interaction between the physical and unphysical states. Con-
. gin: . . equently, the zero-order Green oper&grcan be separated
the excitons, which reflects the Pauli exclusion for double

o ) ) ~~into physical and unphysical parts as
excitation of a single two-level molecule. Alternative contri-
butions to the nonlinear response arise from dynamic G(=RGR+QGHQ=(XR—Hex) *
exciton—exciton interactions (quartic terms in the A
xQ—2> 5
n

Hamiltonian,?* which may lead to the formation of bound T

biexciton states. Although the effect of such interactions on

the pump—probe spectrum has been considereghereR denotes the operator for projection on the subspace

theoretically?'*>* to date no experimental signature of of physical state§R=1—Q, | the unit operator an® as

bound states in molecular assemblies has been reported. defined in Eq(9)]. SinceA— ==, the unphysical part in the
We finally note that in a forthcoming paper we will ana- above expression tends to zero for finite values,afiving

lyze the differential absorption spectrum of cylindrical mo-

iteration of the Dyson equation f@s yields

-1

+eplatalana,| (A7)

r_ _ H -1_
lecular structures, which have been observed for a class of Go=(XR=Hexti7) Gexes (A8)
substituted cyanine dyés>® with G, the Green operator E@7) of the original paulion
Hamiltonian.

We next note that the interaction operatbhas matrix
elements only between physical and unphysical states, so
that

GyVG,=0. (A9)

We thank Professor P. Reineker and L. D. Bakalis fOFCombining Eqgs.(A6), (A8), and (A9), one arrives at Eq.
helpful discussions. One of u&s.J) wishes to thank the (10), i.e., the exact equivalence of the Green operaBys
Alexander von Humboldt Foundation for support. Also sup-andG,,., corresponding to the original Hamiltonidit,. and
port from the Material Science Center of the University ofthe hard-core Hamiltoniam,,, respectively, within the
Groningen is acknowledged. subspace of one- and two-exciton states.
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APPENDIX B: GREEN OPERATOR FOR THE HARD-
CORE HAMILTONIAN

Pump-probe spectrum of molecular assemblies 2337

2 2
AIL(E)=Im= sl ,
T (E—Eo_1+i7)? D11 00D1>

(C6)

In this appendix, we solve the two-particle Green func-

tion for the hard-core boson model. Using E8), the Dyson
equation forG reads

Ghev= Go+AGyQGy, With A—* oo (B1)
or

QGhep= QG+ AQGHQ Grep- (B2
This yields

(Q-AQGHQ)QGhet=QGy (B3)
or, equivalently,

QGne=(Q—AQG,Q) QG (B4)
Substituting Eq(B4) into Eq. (B1), one has

Ghev=Go+AGQ(Q—AQG,Q) *QGy, (B5)

which for A— * reduces to Eq(ll) of the main text.

APPENDIX C: DERIVATION OF EQS. (61) AND (62)

The quantitiesfs(q)z?s(q) entering the differential

spectrum Eq(40), depend on the polarization of the probe

pulse. Substituting Eq$58)—(60) into Eq. (41), one finds

N (0_ )S+1
I :\ﬁ“—o
= \ZEg, 77y %0 (&)
and
o _\ﬁm(ao>s+1(—1>s+15 -

with Eg.1=&— 2L+ (L,—2Ly).

We now assume that when the probe pulse arrives, the

aggregate is in the one-exciton stftg=0,0,= + 1), which
may be created by pumping with parallel polarization. The
denominators occurring in Eq$C5) and (C6) can then be
written

DitD1o== X oy DPo) (&)
and
1
D11~ D12= = 77 So(Po)- (CY

Here the functiorSis given by Eq.(49) and thep, (a=0,
+1) are defined in Eq63). Using Eqs(50) and(C5)—(C8),
we arrive at the final form of the spectra given by E(l)
and(62) in the main text.
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