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Abstract

We analyse the scaling properties of the signals generated by a nonlin-
ear stochastic differential equation. The signals demonstrate the power-
law statistics, including 1/f# noise and ¢g-Gaussian distribution. Numeri-
cal analysis is extended to a negative nonlinearity parameter and reveals
that the generated process exhibits peaks, bursts or extreme events, char-
acterized by power-law distributions of the burst statistics, as in a case of
the positive parameter of the nonlinearity. Therefore, the model may sim-
ulate self-organized criticality (SOC) and other systems where the process
consists of avalanches, bursts or clustering of the extreme events.

1 Introduction

In many systems one can often observe signals exhibiting long-term correlations
characterized by a power-law decay of the autocorrelation function and with 1/ f
power spectra (see references in [1, 2, 3]). 1/f? noise is observable in various
systems with bursty or avalanche dynamics, as well. Despite the numerous mod-
els and theories, the intrinsic origin of 1/f noise and other scaled distributions
still remain open questions. Most of the models and theories have restricted
validity because of assumptions specific to the problem under consideration. A
short categorization of the theories and models of 1/ f noise is presented in the
introduction of paper [3].

Recently, starting from the multiplicative point process [4] we obtained the
stochastic nonlinear differential equations, which generated signals with the
power-law statistics, including 1/f? fluctuations [3, 5, 6]. The numerical anal-
ysis of the equations reveals the secondary structure of the signal composed of
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peaks, bursts, clusters of the events, corresponding to the large deviations of
the variable x from the proper average fluctuations and with the power-law dis-
tributed burst sizes S, burst durations T', and the inter-burst time 6. Therefore,
the proposed nonlinear stochastic model may simulate self-organized criticality
(SOC) and other similar systems where the processes consist of avalanches,
bursts or clustering of the extreme events [7, 8, 9, 10, 11, 12].

Here the another nonlinear stochastic differential equation generating g-
Gaussian distribution of the bursting signal and 1/f# noise is presented and
analyzed.

2 The theory

Here we will consider a nonlinear stochastic differential equation
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with ¢ = 142/)\. Here W is a standard Wiener process and x,, is the parameter
of the ¢-Gaussian distribution. Eq. (1) for small < x,, represents the linear
additive stochastic process generating the Brownian motion with the linear re-
laxation, whereas for x > x,, Eq. (1) reduces to the nonlinear multiplicative
equation. In Ref. [13, 14] such equation has been analysed for the parameter
1 > 1. Recent theoretical analysis [15] revealed, however, that Eq. (1) exhibits
1/f8 noise for n < 1, as well. Here we analyse statistical properties of signals,
generated by Eq. (1) with n =0 and n = —1/2.

In accordance with Refs. [3, 4] the power spectrum of the process generated
by Eq. (2) may be approximated as
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with A characterizing the intensity of 1/ noise, fo ~ fmn being the frequency
for transition at low frequencies to the flat spectrum, and
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The autocorrelation function of the process is
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with Kp(z) being the modified Bessel function and h = (8 — 1)/2. The second
order structural function F5(s) and height-height correlation function F'(s) are
expressed as

F(s) = F3(s) = <|9c(t + ) — ﬂc(t)|2> =2[C(0)-C(s)] = 4/000 S(f)sin?(wsf)df.
(6)

Particular cases of Eqgs. (5) and (6) are presented in Ref. [3].

3 Numerical analysis

We present the results of the numerical investigation of the dependence of char-
acteristics of Eq. (1) solutions on the nonlinearity parameter n < 1 for the fixed
parameter \ = 3, i.e., for the pure 1/f noise. Thus for n =0 and n = —1/2 Eq.
(1) takes the form

da = St +dW, =0 (7)
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respectively.
Egs. (7) and (8) can be solved using the method of discretization with the
constant step of integration, At < 1,
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or using the variable step of integration,
Aty = 1% (22, +22)' 7", (11)

which results in the universal difference equation

1
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Here ¢; is a set of uncorrelated normally distributed random variables with zero
expectation and unit variance and « is a small parameter. Eq. (12) corresponds
the case when the change of the variable x in one step is proportional to the
value of the variable at time of the step.

As examples, in figure 1 we show the illustrations of the signals generated
according to Eqgs. (9) and (10). We see bursting signals, similar to the observed
for the exponent n > 1 [3, 13]. In figures 2 and 3 the numerical calculations
of the distribution density, P(z), power spectral density, S(f), autocorrelation
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Figure 1: Examples of the numerically computed signals according to Eq. (7)
(left figure) and Eq. (8) (right figure) with the parameter x,, = 1072
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Figure 2: Distribution density, P (x), and power spectral density, S (f), for
solutions of Eqs. (11) and (12) with A\ = 3, 2,, = 1072 and different values of
n = 0 (circles), n = —0.5 (squares) in comparison with the analytical results
(solid lines) according to Eqgs. (2) and (3), respectively.

function, C(s), and the second order structural function, Fs(s), for solutions
of Eq. (1) with A = 3, z,, = 0.01 and different values of the parameter 7
are presented. We see agreement between the numerical calculations and the
analytical results [3] for 5 =1,

C(s) = —Aly + In(7 fos)] (13)

FQ(S) = \/QA[ln(ﬂ-fmaxs) - ’7]? (14)

where v = 0.577216 is Euler’s constant and f,,4. is the cutoff of the 1/f spec-
trum at high frequency. Some deviation of the simulated results for the distri-
bution density P(x) in Fig. 2 from the asymptotic of the analytical distribution
is owing to the technical reason, i.e., due to the finite time of calculation it is
difficult to observe the large values of the variable x with very small probability.
This reason, as well as the deviation of the distribution from the power-law 1/z3
for small z, determines the deviation of the power spectral density S(f) in Fig.
2, the autocorrelation function C(s) and the second order structural function
F5(s) in Fig. 3 from the analytical results, estimated for the ideal power-law
distributions.




1 0-5 il il L 1l 1l 1 0-:\ /| Il 1l 1l
L T S 1V T S L T 1 104 10°? 102 107 10° 10

S S

Figure 3: Autocorrelation function, C(s), and the second order structural func-
tion, F5 (s), for solutions of Eq. (1) with the same parameters as in figure 2 in
comparison with the analytical results (solid lines) according to Eqgs. (13) and
(14), respectively.
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Figure 4: Dependence of the burst size S as a function of the burst duration T'
and distributions of the burst size, P(S), for the peaks above the the threshold
value 23, = 0.1. Calculations are with the same parameters as in figures 2 and
3.

Figures 4 and 5 demonstrate that the size of the generated bursts S is ap-
proximately proportional to the squared burst duration T, i.e., S o T2, and
asymptotically power-law distributions of the burst size, P(S) ~ S~ burst
duration, P(T) ~ T~2 and interburst time, P(#) ~ 6=, for the peaks above
the threshold value xy, = 0.1 of the variable x(t). These dependencies slightly
depend on the degree of nonlinearity exponent 7 of the stochastic equation.

4 Conclusion

The nonlinear stochastic differential equations with nonlinearity exponent n < 1
generate ¢-Gaussian distributed signals with 1/f% power spectrum, exhibit-
ing bursts with the power-law statistics, similar to those discovered for the g-
exponential [3] and ¢-Gaussian [13] distributions for the nonlinearity exponent
n > 1. The burst sizes are approximately proportional to the squared dura-
tion of the burst. On the other hand, the analysed model reproduces 1/ f noise
and the processes not only in SOC, crackling systems and observable long-term
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Figure 5: Burst duration, P(T'), and interburst time, P(6), for the peaks above
the the threshold value x4, = 0.1. Calculations are with the same parameters
as in figure 4.

memory time series [7, 8, 9, 10, 11, 12, 16, 17, 18] but it is related with the clus-
tering of events described by the driven Poisson process [14] and superstatistical
approach [19], as well.
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