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A theory of time-resolved fluorescence depolarization due to singlet-singlet exciton annihilation is presented for the 
ensemble of randomly oriented molecular domains formed of chromophores (or their associates) with parallel transition 
moments. For large t < T, the fluorescence anisotropy induced by the delta pulse excitation is shown to decrease as t-1/2, 
while the anisotropy after the long-pulse excitation decreases as t-‘(const+ln t), 7 being the excited-state lifetime. The 
residual fluorescence anisotropy at long times is estimated. The results obtained are applied to J-aggregated pseudoisocyanine 
dye (PIC) solutions to account for the intensity-dependent depolarization recently observed. From the comparison of the 
theory with the experiment, the number of PIC molecules forming a domain was evaluated to be more than 104. 

1. Introduction 

The transfer of electronic excitations in con- 
densed molecular systems [l-3] together with the 
related high-density effect of exciton-exciton an- 
nihilation [4-111 has provided an interesting field 
of research for many years. Experimentally, sing- 
let-singlet exciton annihilation manifests itself by 
a decrease in the fluorescence lifetime and also by 
a decrease in the integrated quantum yield of 
fluorescence, as the intensity of the excitation 
pulses is increased. In this paper we consider 
another possible experimental manifestation of ex- 
citon annihilation, viz., intensity-dependent fluo- 
rescence depolarization. To our knowledge, all 
theoretical studies so far have been limited to the 
intensity-independent fluorescence depolarization, 
such as the depolarization due to the excitation 
transfer [2,12-151. 

The time-resolved fluorescence depolarization 
technique has proved to be extremely useful for 
obtaining information both on the transfer of elec- 
tronic excitation between identical molecules and 
on their mutual orientations [16-191. Here we 
show that from the intensity dependence of time- 
resolved fluorescence depolarization one can also 

get information on the number of chromophores 
forming a domain. The results obtained can be 
applied to systems in which excitation transfer 
within the domain occurs between highly oriented 
chromophores (or their associates), an example of 
such a system being the J-aggregated pseudoiso- 
cyanine dye (PIC) solution [lo]. 

The paper is organized as follows. In section 2 
the problem is formulated. In section 3 the con- 
tinuous model of exciton annihilation is used to 
derive the fluorescence anisotropy considered both 
as a function of time and intensity. In section 4 
the influence of the fluctuations of the initial 
exciton number in domains on the residual ani- 
sotropy at long times is investigated by using the 
discrete model of exciton annihilation. In section 
5 some final remarks are given, as well as the 
application to highly concentrated PIC solutions 
is considered. 

2. Fomudation 

The system under investigation consists of a 
large number of molecular domains embedded in 
a three-dimensional medium. The excitation en- 
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Fig. 1. Schematic representation of the system of molecular 
domains. Arrows indicate the transition moments of chromo- 

phores (or their associates) forming domains. 

ergy transfer within an individual domain is as- 
sumed to occur among chromophores (or their 
strongly coupled associates) with parallel transi- 
tion moments, and the unit vector p parallel to 
them indicates the orientation of the domain (fig. 
1). An isotropic probability density for the orien- 
tations of domains is assumed. Both the interdo- 
main excitation transfer and the changes in orien- 
tation of domains due to rotational motion are 
considered to be negligible. The quantity of inter- 
est is the time-dependent fluorescence anisotropy 
given by 

r = (I,, - L)/(Z,, + 2LL (I) 

with 

4 - (PP#,, ’ > I* - (P3J-,,,). 

Here I,, and I, are the intensities of the emitted 
light polarized parallel and perpendicular to the 
polarization of the excitation pulse, p,, and pl 

are components of the unit vector p. NP,, is the 
exciton-number density in domains depending on 
the domain orientation. For example, for strictly 
perpendicular orientation (p,, = 0) it equals zero, 
while for the parallel one (p,, = 1) N,,, reaches its 
maximum value. The brackets ( ) denote an aver- 

age over all possible orientations of the domains. 
The density NP,, is supposed to be independent of 
space variables. Equations (1) and (2) can be 
easily rewritten as follows: 

r = (3L,/L, - 1)/2, (3) 

where 

L = ( p;;NP,, = ) J ,lP;NP,, dpll. (4) 

Equations (2)-(4) implicitly assume that the ab- 
sorption and fluorescence transition dipole mo- 
ments are polarized along the same axis. If a 
different electronic level than that from which 
emission occurs is excited and its transition mo- 
ment is at some angle (Y to that of the latter, the 
anisotropy (3) should be reduced by the factor 

(3 cos*oL - 1)/2. 

At low pumping intensity only one exciton can 
be created per domain, so the exciton-number 
density of all domains decreases with the same 
exponential decay rate. Under this condition no 
depolarization is possible. When several excitons 
are created simultaneously in a given domain, 
bimolecular singlet-singlet annihilation can take 
place. The rate of exciton annihilation is known to 
increase with the increase of the density of exci- 
tons, i.e., more excited domains decay faster than 
less excited ones. Thus, the annihilation tends to 
reduce the initial anisotropy induced in the sample 
by the polarized excitation pulse. In the next two 
sections concrete annihilation models will be con- 
sidered to investigate the pecularities of the de- 
polarization due to singlet-singlet exciton annihi- 
lation. 

3. Continuous model 

In this section the mean number of excitons per 
domain is considered to be sufficiently large, so 
that the fluctuations of the exciton number would 
be of no importance. The exciton-number density 
NP,, is supposed to satisfy the standard bimolecu- 
lar annihilation equation [4-6,201 

dN,,,/dt = -CINP,, - yN,t, (5) 
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where 7-l is the tmirnolecular decay rate and y is 
the exciton annihilation coefficient. The solution 
of eq. (5) is given by 

N,,,(t) =N,,,(O)[I +Np,(0)~T]-l exp(-f/r), 

with 

T= [l-exp(-t/r)]r, (7) 
T= t, if ter. (8) 
Here the annihilation coefficient y is taken to be a 
constant. The time dependence of y can be easily 
taken into account in eq. (6) and the subsequent 
equations simply by replacing yT by /Jy(t’> 
exp( - t’/~) dt’. It is necessary to do this at short 
times when the annihilation radius exceeds the 
diffusion length [4,20] and y(t) does not reach its 
limiting value. 

The initial condition N,,,(O) depends on the 
temporal profile of the excitation pulse. Two limit- 
ing cases will be discussed below. 

3. I. Delta pulse excitation 

The pulse duration rrTpulS is assumed to be suffi- 
ciently short so that both exciton annihilation and 
unimolecular decay can be neglected during the 
excitation, i.e., 

3YNo7p”ls -=K 19 7puls/~ < 1, (9) 

where N, is the average density of excitons created 
by the pulse. Under these conditions the initial 
exciton concentration is 

Np,, (0) = 3&P;, (N,,,(O)) = N,. (IO) 

Using eqs. (3), (4), (6) and (10) we obtain 

r= 1-~;“*arctg~~/*)-1-3Cll-1]/2, [( 
(II) 

with 

$I, = 3yN,T. (12) 

For R& =K 1 the anisotropy is close to its theoreti- 
cal maximum of 0.4: 

r = 0.4 - (35/360)+,. 03) 
In the opposite case, when C& =*- 1, we have 

r = ( T/4) +; l’*, (14) 
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Fig. 2. The anisotropy as a function of reduced time T. (a) 
Delta pulse excitation. Curves 1-3 are calculated from qs. 
(ll), (13) and (14) respectively. (b) Long pulse excitation. 
Curves 1-3 are calculated from eqs. (18), (20) and (21) respec- 

tively. 

r - t-l’*, if t < 7. Thus, the fluorescence ani- 
sotropy decreases more slowly than the average 
exciton-number density ((N,,,) - t-‘, as $I* B 1 
and t a T). Equations (ll), (13) and (14) are 
plotted in fig. 2(a). 

It should be noticed that for exp( - t/7) -K 1 
the annihilation rate becomes negligible compared 
to the monomolecular decay rate and the reduced 
time T approaches T. Therefore, a finite residual 
anisotropy rm exists at long times. It is obtained 
from eqs. (ll)-(14) [or eqs. (18)-(21), see below], 
substituting T for T. For example, using eqs. (14) 
and (12) we find 

r,“““’ = (n/4)(3N,y~)-‘~, 3Noyr B 1. (15) 
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Here the superscript “cant” refers to the continu- Fig. 2(b) shows curves obtained from eqs. (18), 
ous model. (20) and (21). 

3.2. Long pulse excitation 

The pulse is supposed to be sufficiently long 
and intense, so that during the excitation a 
steady-state exciton concentration would be 
formed in the domains due to annihilation, i.e., 

3YN&“,, B- 19 Tpuls < 79 (16) 

where N, corresponds to the density of excitons 
created per pulse in the absence of annihilation. 
N, is considerably higher than the average exciton 
concentration just after the pulse since most of the 
excitons annihilate during the excitation. For sim- 
plicity, the pulse is supposed to have a constant 
intensity for the duration rpuls (a square pulse). 
With these assumptions the initial concentration 
just after the excitation is given by 

Np,, (0) = Nrnax I PII I? 

It is to be noted that the initial condition (17) 
holds as long as 

I PIi I TPlim, 

Plim= 

For d~~~~~~“~ r ,1< p 

(22) 

11 - hm the annihilation 
rate is not sufficiently high to form a steady-state 
exciton concentration during the excitation, and in 
the case that 1 ps ( *pIi,,, the initial condition 
(10) of the delta pulse excitation should be used. 
Since at long times the main contribution to the 
anisotropy is due to domains with small ) p,, ( , the 
asymptotic behaviour (21) holds only for inter- 
mediate times, i.e., as long as T112 e $$ In e2. 
For extremely long times, T112 B- riiz In &, the 
anisotropy obeys the asymptotic decay law (14) 
corresponding to the delta pulse excitation. 

N max = (3No/~r,,s)~‘~. (17) 

Using eqs. (3) (4), (6) and (17) we obtain 

r=0.5((1- 1.5+;‘)[1 -&l ln(1 +&)I-’ 

4. Discrete model 

with 

+3$+-l ) 
> (18) 

e2 = Y%,J. (19) 

In the limit of short times, +2 +Z 1, we can write 

r = 0.25 - O.l+,, (20) 

i.e., the maximum anisotropy after long pulse exci- 
tation is 0.25. It is lower than the theoretical 
maximum of 0.4 after delta pulse excitation, since 
a certain depolarization due to annihilation occurs 
at the beginning of the excitation before the 
steady-state concentration distribution (N,,, - 
1 p,, I) is formed in most of the domains. 

In this section we investigate the residual ani- 
sotropy at long times, rmfluct, due to the fluctua- 
tions of the initial number of excitons in domains. 
The unimolecular decay time is supposed to be 
much greater than the decay time due to the 
annihilation (7 >> tanni), i.e., only the last remain- 
ing exciton in a domain may decay via fluores- 
cence. The pulse duration is taken to be suffi- 
ciently short compared to the unimolecular decay 
time. With these assumptions the exciton con- 
centration at sufficiently long times is propor- 
tional to the probability for at least one photon to 
be absorbed per domain (this situation corre- 
sponds to that treated by Mauzerall [21]): 

N,,,(t) - [l - ew(-dl exd-t/d, 

Y = 3nOPi, t B tanni9 
(23) 

For long times, (pz B 1, eq. (18) simplifies to 

r = (2&)-‘(ln c$~ - 1.5), (21) 

r - t-‘(const + In t), if t -ZK 7. That is, after the 
long pulse excitation the fluorescence anisotropy 
decreases faster than that after the delta pulse 
excitation. 

where y is the mean number of excitons created in 
a domain, and n, is its average over all possible 
orientations of domains. Here the Poisson distri- 
bution of photon hits per domain is utilized. After 
making use of eqs. (3), (4) and (23), we find 

r, ‘“‘* = 0.25[2A -A/n, + no’ exp( -3n,)] 

x l/(1 -A), (24) 
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Fig. 3. The residual anisotropy rfd”’ as a function of the initial 
exciton number in domains nO. Curves l-3 are calculated from 

eqs. (24), (26) and (27) respectively. 

where 

A = 0.5n’/2(3n,)-1’2 erf(3n,)1’2, 

with erf being the error function [22]. 

(25) 

For low intensities of the excitation pulse (when 
the probability of creating more than one exciton 
per domain is small) the residual anisotropy is 
close to the theoretical maximum of 0.4: 

rfluct = 0.4 - (54/350)n,, 00 no=l. (26) 

For relatively high intensities rp goes as ni1j2: 

r? = 0.25~“~(3n,,) 
-l/2 

, PI,% 1. (27) 

In fig. 3 we have plotted r? against no. 
The discrete model considered above yields the 

lower limit to the residual anisotropy, since in this 
model there is a complete annihilation of excitons 
as long as there is more than one exciton in a 
domain. For the continuous model discussed in 
section 3, the anisotropy reaches its limiting value 
r?’ before the mean number of excitons per 
domain decreases to unity. So, the following in- 
equality must hold: r,’ > r_. To compare both 
cases quantitatively, we will rewrite eq. (15). Ex- 
pressing the exciton-number density as excitons 
per domain (N, + no) and using eq. (27), for 
no > (I%)-l we find 

r,““’ = (n/4)(3n,-Jr/2) -1’2 

= (2+‘2(r7) -i’2rp, (28) 

where r is the bimolecular decay rate of a pair of 
excitons in a domain (r = 2yN,, N. being the 
exciton-number density corresponding to one ex- 
citon per domain). The anisotropy rz’ is seen to 
increase with the inarease of the ratio of the 
monomolecular and bimolecular decay rate con- 
stants r-‘/r. The application of the continuous 
model is justified as long as 7-i X- r [7]. There- 
fore, it follows from eq. (28) that r,““’ X= r,““. 

5. Concluding remarks 

In this paper we have presented a theoretical 
analysis of time-resolved fluorescence depolariza- 
tion due to singlet-singlet exciton annihilation in 
molecular domains of highly oriented chromo- 
phores. By using both continuous and discrete 
descriptions of exciton annihilation, we have in- 
vestigated the time and intensity dependence of 
fluorescence anisotropy. For the continuous model, 
the fluorescence anisotropy after the delta pulse 
excitation was shown to be a universal function of 
y&T, where y is the annihilation constant, T is 
the reduced time [defined in eq. (7)], and N, is the 
average density of excitons created by the pulse. 
For large t < r, the fluorescence anisotropy after 
the delta pulse excitation goes as t-“2 and that 
after the long pulse excitation goes as t-’ (const 
+ In t), 7 being the excited-state lifetime. Both 
continuous and discrete, models give a finite value 
of the residual anisotropy at long times (r, # 0). 
The discrete model discussed in section 4, yields 
the lower limit to the residual anisotropy. Thus, 
using eq. (24) or eqs. (26) and (27), the lower limit 
to the domain size may be obtained from the 
intensity dependence of the residual anisotropy. 

The results of the paper can be applied not 
only to the fluorescence depolarization, but to the 
decay of the induced absorption anisotropy in 
polarized pump-probe experiments as well, pro- 
vided the changes of the absorption spectrum, 
AA, are a linear function of the exciton density. 
That is, the intensity of the excitation pulse should 
be sufficiently low to avoid nonlinear spectral 
changes. Moreover, both the stationary absorption 
band A and the spectrum of its changes AA 
should be polarized along the same direction. In 
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case A and AA are polarized at some angle (Y to 
each other, the anisotropy must be reduced by the 
factor (3 cos2a - 1)/2. For thread-like J-aggre- 
gates discussed below, the single-photon excitation 
of the aggregate induces a blue shift of the ex- 
citonic J-band without any changes of its polariza- 
tion [23], so both the J-band and the spectrum of 
its changes are polarized along this the same axis * . 

During the last decade the J-aggregated PIC 
solution has been intensively studied using time- 
resolved spectroscopy [10,26-311. In ref. [lo] the 
excited-state dynamics of PIC J-aggregates in 
aqueous solution was investigated by means of 
picosecond and subpicosecond absorption spec- 
troscopy. At very low excitation intensity, where 
there was almost no annihilation, a high value of 
the induced absorption anisotropy was obtained 
at long times. It suggests a high order of J-aggre 
gates forming a domain. Moreover, the residual 
anisotropy at long times, r,, was shown to de- 
crease with the increase of the excitation intensity. 
The theory developed here accounts for such in- 
tensity-dependent depolarization. To estimate the 
domain size, we will make use of eq. (24). At 
ZeX = 1.4 x 1012 ph cme2 pulse-’ and A,, = 569 
nm (under these conditions the fraction of initially 
excited PIC molecules is about 1: 3000) the resid- 
ual anisotropy rW is 2.5 times lower than that for 
almost annihilation-free conditions [lo]. Thus, a 
domain should contain more than - lo4 PIC 
molecules. This is in agreement with the earlier 
evaluations obtained from both the kinetic data 
and the fluorescence quantum yield curves [lo]. 

It is our hope that the theoretical results pre- 
sented here can be applied to other systems, such 
as photosynthetic antennae. The domain size of 
photosynthetic systems is usually estimated by 
comparing theoretical calculated and experimen- 
tally obtained fluorescence quantum yield versus 
intensity curves [7,32,33]. Here we have shown 
that the domain size can be also evaluated from 
the intensity dependence of the residual ani- 
sotropy. In other words, the present technique 
could be used as an alternative way for estimating 

* The J-band is known to be polarized parallel to the aggre- 
Pate axis 124,251. 

the domain size in photosynthetic antennae. It 
should be pointed out, that the method presented 
can be applied only to systems in which excitation 
transfer within the domain occurs between highly 
oriented chromophores. For example, it seems to 
be not applicapable to photosynthetic antenna 
systems of purple bacteria, since the depolariza- 
tion measurements suggest the absence of the 
long-range orientational order of chromophores 
forming a domain [34]. On the other hand, in 
living cells of green bacteria the excitation energy 
transfer within the bacteriochlorophyll c antenna 
occurs between chromophores (or their aggre- 
gates) with parallel transition moments [19]. 

Our theoretical investigation can be extended 
taking into account the orientational distribution 
of chromophores forming a domain [35]. For ex- 
ample, in case the transition moments of the mole- 
cules forming a domain are distributed within a 
cone of small half-angle p, the residual anisotropy, 
rfluct, goes as n;1/2 exp( - 0.75 P’n,), n, B 1 
[yompare to eq. (27)]. That is, whereas for rela- 
tively low intensities (1 < no < jIe2) the no 1/2 
dependence is preserved, for no > /Sv2 an ex- 
ponential decrease takes place. Thus from the 
intensity dependence of the residual anisotropy 
one can get information not only on a domain 
size, but on the orientational distribution of chro- 
mophores forming the domain as well [35]. 
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