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Abstract

We investigate the influence of slow light with an orbital angular momentum on the mechanical motion of ultra-cold

atomic gases including both the atomic Bose–Einstein condensates and degenerate Fermi gases. We present a

microscopic analysis of the interplay between light and matter and show how slow light can provide an effective

magnetic field acting on the electrically neutral atoms.
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Bose–Einstein condensates (BECs) in atomic
gases [1] have turned out to be a remarkable
medium for studying a broad field of physics,
ranging from fundamental atomic physics to
cosmological aspects [2]. Recently, several experi-
mental groups have succeeded in trapping and
cooling fermions [3,4] well below the Fermi
temperature. Fermi systems are well known from
the study of electron properties in materials. On
the other hand, BEC often acts like the real-life
toy-model concept encountered in standard text
books. A good example is the properties of BEC in
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optical lattices where atomic physics meets solid
state physics.

Trapped atoms are electrically neutral, so a
direct analogy between the magnetic properties of
these systems and solid state phenomena is not
necessarily straightforward. We suggest this pro-
blem can be circumvented if slow light is used, i.e.,
light with a group velocity as low as meters per
second [5–7]. The coupling between the slow light
and the atoms can give rise to some remarkable
effects such as dragging of the light [8–10] and
complete coherent freezing of the pulse [11–13]. In
a similar manner, slow light should affect the
atomic motion.

In this paper, we consider the influence of slow
light on the mechanical properties of atomic BECs
d.
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Fig. 1. (a) The level scheme for the electromagnetically induced

transparency involving the probe beam Op and control beam

Oc: (b) Schematic representation of the experimental setup with

the two light beams incident on the cloud of atoms. The probe

beam propagates in the z-direction. The control beam can

propagate parallel [12,13], perpendicular [5] or antiparallel to

the probe beam.
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or degenerate Fermi gases of atoms. The theory is
fully microscopic and based on the explicit analysis
of the quantum dynamics of ultra-cold atoms
coupled to the electromagnetic field. In particular,
we use slow light with an orbital angular
momentum [14,15]. This allows us to introduce
an effective magnetic field which acts on the
electrically neutral atoms. In the case of fermions
we can have the typical, often regarded as an
academic, textbook scenario with free electrons
moving in a constant magnetic field. This opens up
a possibility to study phenomena well known from
solid state and condensed matter physics, with all
the benefits given by the trapped atoms where a
range of experimental parameters such as atom–a-
tom interactions, particle numbers, the shape of
the trapping potential, etc. can easily be manipu-
lated.

Consider a system of atoms characterized by
two hyper-fine ground levels 1 and 2, as well as an
electronic excited level 3 (see Fig. 1). Initially the
atoms occupy the lowest level 1. We shall describe
the atoms in terms of the field operators Cjðr; tÞ
representing the second-quantized wave function
for the translational motion of atoms in the jth
electronic state, with j ¼ 1; 2; 3: The operator
Cjðr; tÞ annihilates an atom positioned at r and
characterized by the internal state j. The operators
Cjðr; tÞ can obey either Bose–Einstein or the
Fermi–Dirac commutation relationships depend-
ing on the type of atoms involved. The atoms
interact with two laser beams: A strong control
laser drives the transition j2i�!j3i; whereas a
weaker probe field is coupled with the transition
j1i�!j3i (see Fig. 1). In such an atomic medium,
propagation of the probe field can be slowed down
[5–7] by means of the electromagnetically induced
transparency (EIT) [16–19], a phenomenon based
on the quantum interference between the control
and probe fields.

The control laser has a frequency oc; a wave
vector kc; and a Rabi frequency Oc ¼ Oð0Þ

c expðikc �

rÞ; where Oð0Þ
c is a slowly varying amplitude. The

probe field, on the other hand, is characterized by
a central frequency op ¼ ckp; a wave vector kp ¼

kpẑ; and a Rabi frequency Op ¼ Oð0Þ
p eið‘fþkpzÞ;

where Oð0Þ
p is a slowly varying amplitude. Here,

we have allowed the probe photons to have an
orbital angular momentum _‘ along the z-axis
[14,15].

Introducing the slowly-varying atomic field
operators F1 ¼ C1eio1t; F3 ¼ C3eiðo1þopÞt and
F2 ¼ C2eiðo1þop�ocÞt; and adopting the rotating
wave approximation, one can write the following
equations of motion for the atomic field operators:

i_ _F1 ¼ �
_2

2m
r2F1 þ V 1ðrÞF1 þ _O�

pF3; ð1Þ

i_ _F3 ¼ �31 �
_2

2m
r2

� �
F3 þ V 3ðrÞF3

þ _OcF2 þ _OpF1; ð2Þ

i_ _F2 ¼ �21 �
_2

2m
r2

� �
F2 þ V 2ðrÞF2 þ _On

cF3; ð3Þ

where m is the atomic mass, V jðrÞ is the trapping
potential for an atom in the electronic state j, �21 ¼

_ðo2 � o1 þ oc � opÞ and �31 ¼ _ðo3 � o1 � opÞ

are, respectively, the energies of the detuning from
the two- and single-photon resonances, _oj being
the electronic energy of the atomic level j.

Note that the equations of motion (1)–(3) do not
accommodate collisions between the ground-state
atoms. This is legitimate for the degenerate Fermi
gas in which s-wave scattering is forbidden and
only weak p-wave scattering is present [3,20–22].
In the case of an atomic BEC, the collisions can
be included replacing Eq. (1) by the following
mean-field equation for the condensate wave
function F1:

i_ _F1 ¼ �
_2

2m
r2F1 þ V1ðrÞF1 þ gjF1j

2F1 þ _On

pF3;

(4)
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where g ¼ 4p_2a=m and a is the s-wave scattering
length. The scattering term in Eq. (4) will be
disregarded in the subsequent discussion.

Suppose that the two-photon detuning �21 is
sufficiently small. Neglecting the terms with F3;
r2F3 and _F3 in Eq. (2), one arrives at the
adiabatic condition [16–19] relating F2 to F1 as

F2ðr; tÞ ¼ �zF1ðr; tÞ; (5)

where z � Op=Oc: Condition (5) holds if
i_ð@=@tÞþð_2=2mÞr2��31 � V3ðrÞ
� �

F3

�� ��5_jOpF1j:
This can be achieved if the spatial variation of the
frequencies of two-photon recoil and two-photon
Doppler shift is less than the Rabi frequency jOcj;
as one can see from Eq. (6).

Condition (5) implies that the control and
probe beams have driven the atoms to the
dark state j1i � zj2i representing a special super-
position between the two hyperfine ground
states [16–19]. If the atoms are in the dark state,
the resonant control and probe beams cannot
populate the upper atomic level 3, as the two
beams contribute destructively to the absorp-
tion process. This justifies neglecting the decay
of the upper atomic level 3 in the equation of
motion (2).

Eq. (5) shows that the orbital angular momen-
tum _‘ of the probe field Op 
 ei‘f is transferred
into the orbital angular momentum of the
centre of mass motion for atoms occupying
level 2. This goes along with a general rule saying
that the exchange of the orbital angular momen-
tum in the electric dipole approximation occurs
exclusively between the light and the atomic
centre of mass motion [23]. The rule has been
implicitly assumed in the initial equations of
motion (1)–(3) containing no contributions due
to exchange in the orbital angular momentum
between the internal atomic states and the centre
of mass motion.

Consider now the influence of the control and
probe beams on the dynamics of the ground state
atoms. Using Eqs. (3) and (5), one has

F3ðr; tÞ ¼ �
1

_On

c

_2

2m
r2 þ i_

@

@t
� �21 � V2ðrÞ

� �

�ðzF1Þ: ð6Þ
Relationships (1) and (6) provide the following
equation for the field operator F1:

i_ _F1 ¼
1

2m
½i_r þ Aeff �

2F1 þ V eff ðrÞF1; (7)

where

Aeff ¼
i_znrz
1 þ jzj2

� �_
jzj2

1 þ jzj2
rS

þ i_r lnð1 þ jzj2Þ1=2
ð8Þ

and

V eff ðrÞ ¼ V1ðrÞ þ
1

2m

jAeff j
2

jzj2
þ _

ðo21jzj2 � izn @
@t
zÞ

1 þ jzj2

(9)

are the effective vector and trapping potentials, and
the dimensionless function z ¼ eiSOð0ÞÞ

p =Oð0Þ
c is

characterized by a phase S ¼ ðkp � kcÞ � rþ ‘f:
Here _o21 ¼ �21 þ V 2ðrÞ � V 1ðrÞ is the modified
energy of the two-photon detuning which includes
the difference in trapping potentials. Note that the
ratio jzj2 � jOp=Ocj

2 can be arbitrarily large in Eqs.
(7)–(9), i.e., the intensity of the probe beam is not
necessarily smaller than that of the control beam.

It is interesting to note that the vector potential Aeff ;
given by Eq. (8), is generally non-Hermitian. This is
because Aeff describes the dynamics of the atoms in
level 1, from which some population is reversivibly
transferred to level 2, as one can see from the
adiabatic condition given by Eq. (5). The Hermitian
contribution to Aeff is due to the changes in the phase
S, the non-Hermitian one being due to the changes in
the amplitude jzj: The non-Hermitian part of Aeff can
be eliminated by a pseudo-gauge transformation

F1 ¼ Fð0Þ
1 exp½� lnð1 þ jzj2Þ1=2

� � Fð0Þ
1 ð1 þ jzj2Þ�1=2:

(10)

In contrast to a previous paper by the authors [24],
the transformation (10) is valid for arbitrary values of
jzj2; i.e., the parameter jzj2 is not necessarily small.
Note also, that both the probe and control fields (Op

and Oc) are considered to be incident quantities not
affected by the induced motion of the ground-state
fermions. If jzj2 � 1; the probe field Op experiences a
slow propagation at a group velocity vg 
 jOcj

2

[16–19] in the z-direction.
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In this way, we can create an effective vector
potential through the phase S of the incoming
probe beam. The experimental situation is sche-
matically described in Fig. 1 where the incoming
probe beam is of the form ei‘f:

With the vector potential we can define an
effective magnetic field strength:

Beff ¼ r� Aeff ¼ _ðrSÞ � r
jzj2

1 þ jzj2
; (11)

which is proportional to the orbital angular
momentum of the probe beam. The presence of
an effective magnetic field will have some im-
portant consequences. We are now in a position to
study phenomena using ultra-cold neutral atomic
gases, which have been previously considered only
for electrons and charged bosons. One example is
the de Haas-van Alphen effect. If we trap atomic
fermions and apply the effective magnetic field the
result will be an oscillation in the thermodynami-
cal potentials as a function of the strength of the
magnetic field [24]. Another example is an optical
analog of the Meissner effect which could come
about in atomic BEC by means of the effective
magnetic field considered here.

In this paper, we have shown how light with an
orbital angular momentum can be used to create
an effective magnetic field in a degenerate gas of
electrically neutral atoms (fermions or bosons). In
particular, we derive the equations of motion for
the case when the ratio between the probe and
control beam is not necessarily small. There are a
range of intriguing phenomena such as the
quantum Hall effect, for instance, which can be
studied using cold fermionic gases and slow light
with an angular momentum. In addition, if the
collisional interaction between the atoms is taken
into account slow light can be used to study the
magnetic properties of a superfluid atomic Fermi
gas [25]. Recent advances in spatial light mod-
ulator technology enables us to consider rather
exotic light beams [26]. This will allow us to study
the effect of different forms of vector potentials in
quantum gases. In particular, the combined
dynamical system of light and matter could give
important insight into gauge theories in general.
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