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Abstract 

The common hamiltonian matrix for the whole class of alkanes (H> has been considered as a generalization of the 
definite two-dimensional matrix (/I), where the usual Coulomb and resonance parameters are replaced by the N x N- 
dimensional matrices (N stands for the number of chemical bonds in an alkane). A similar relation between the two 
analytical expressions for the one-electron density matrices of alkanes and of the relevant two-level two-electron system 
described by the hamiltonian matrix /I has been established. The block-diagonalization procedure for the matrix H 
following from the Brillouin theorem and resulting in the localized MOs (LMOs) of alkanes has been shown to be an 
analogous matrix generalization of the usual eigenvalue problem for the two-dimensional matrix L. These results imply a 
kind of similarity between the class of alkanes and the unique two-level system and form the basis for describing the 
former as a single quantum-mechanical object. The relation between the actual occupation numbers of the bond orbitals 
and the extent of delocalization of the respective LMOs and the proportionality of the stabilization energy to the total 
delocalization of the occupied LMOs have been shown to result from the established similarity between alkanes and the 
two-level system. 

1. Introduction 

Revealing certain classes of closely related objects 
characterized by common features and studying such 

a class as a single object may be regarded as one of 
the basic approaches used in natural sciences. In 

cases when the number of possible representatives 
of the class under study is infinite, their common 
properties become of great importance. 

The same situation arises when dealing with 

chemical compounds. Indeed, classes of related 
molecules, e.g. alkanes, alkenes, etc. [l], are usually 
distinguished on the basis of similar structures, and 
properties. Moreover, along with the unique 

properties of the individual molecules and the rules 

inherent in their series, common properties of the 
classes of related chemical compounds make up the 
subject of chemistry. 

In this context, a single quantum-chemical 
approach orientated towards revealing the com- 
mon peculiarities of the electronic structure of the 
large sets of related molecules is also advisable. It 
should be mentioned here that both the exact 
Schroedinger’s equation and the relevant approxi- 
mations [2], e.g. the Hartree-Fock-Rothaan 
method, are formulated for a single molecule. 
Nevertheless, certain achievements in stating and 
solving the generalized problems for chemical 
classes and other large sets of molecules may also 
be mentioned, and it is the simplest version of 
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the Htickel-type hamiltonian that proves to be the 
basis for these approaches. Thus, common peculiari- 

ties of the one-electron spectra and of the one-electron 

density matrices (bond-order matrices) for the alter- 
nant conjugated hydrocarbons [3] resulting from the 

common form of the relevant hamiltonian matrices 
may be considered as the most well-known achieve- 
ment of the above-discussed type, although these 
hydrocarbons are not regarded as a chemical class 

of molecules. Furthermore, the stating and solving 
of the single problem for the one-electron density 
matrix (DM) [4-71 and for the localized MOs 

(LMOs) [7] of alkanes also ranks among the 
generalized quantum-chemical approaches. 

The two examples given here are promising with 
respect to the feasibility of similar results for other 
large sets of related molecules. Therefore, it is 
essential to determine the place the generalized 

quantum-mechanical problems take in molecular 
electronic structure theory, i.e. their relation to 

the usual problems for individual molecules. 
The above-mentioned common problems for 

alkanes stated and solved in Refs. [4-71 were 
based both on the common form of the relevant 
hamiltonian matrix containing four peculiar 
N x N-dimensional blocks (N stands for the num- 

ber of bonds in an alkane) and on the possibility of 
expressing the relevant DM and the LMO repre- 
sentation matrix in terms of these blocks in the 
general case without regard for their specific struc- 
ture and dimension (N). This result resembles the 
algebraic solution of the two-level problem described 
by the Coulomb and resonance parameters, which 

may be obtained in a wide range of numerical values 
of the latter. This analogy promotes an assumption 
that the above common problem for alkanes is a 
matrix generalization of the two-level problem, 
where the usual parameters (matrix elements) are 
replaced by the N x N-dimensional matrices. 

The paper is aimed at demonstrating the above- 
assumed relation between the two-level problem 
and the common problem for alkanes, and discuss- 
ing the consequences of this relation. 

hamiltonian matrices of alkanes of a regular and 

coordinate-system-independent structure are used 
here. The first one {x} contains the sp3 hybrid AOs 

(HAOs) of the carbon atoms and the 1 s AOs of the 
hydrogen atoms (for simplicity let us call them both 

the HA0 basis). The second one (4) involves the 
bonding { $J(+,} and antibonding { $(_J} bond orbi- 
tals (BOs) defined as normalized sums and differ- 
ences of the mutually directed (neighboring) pairs 
of HAOs. Both the HAOs and BOs are assumed to 
be orthogonal. The concrete relation between the 

orbitals {x} and {4}, i.e. the respective transfor- 
mation matrix, is not essential here. 

Let us start with the HA0 basis. The non- 
neighboring resonance integrals and the differences 
both between various neighboring resonance inte- 
grals and between diagonal elements may be con- 
sidered [4-61 as the first-order terms with respect to 
the mean value (,&,) of the neighboring resonance 
integrals. The averaged diagonal element (os) and 
the above-defined parameter ,& have been used as 
the reference point and the energy unit, respect- 
ively; the equalities a0 = 0 and PO = 1 have been 
accepted. 

Let us divide the initial 2N-dimensional basis set 
of HAOs {x} into two N-dimensional subsets {x’} 
and {x”} so that the strongly overlapping pairs of 
the neighboring orbitals find themselves in different 
subsets. Furthermore, let us enumerate the basis 
functions in such a way that the neighboring 
pairs of orbitals acquire the coupled numbers i 

and N + i. Then the initial Htickel-type hamil- 
tonian matrix (H) for any alkane in the basis of 
HAOs may be presented as a sum of zero-order 
(II(,)) and first-order (H(t)) terms, the former con- 
taining the average neighboring resonance inte- 
grals equal to 1 in the positions (i, N + i), and the 
latter involving the remaining terms 

2. Comparison of the relevant hamiltonian matrices 

where ZcN) is the N-dimensional unit matrix and 
A, C and B are the N x N-dimensional matrices 
corresponding to the subsets {x’} and {x”} and 
to their interactions, respectively; the superscript 
(+) designates the transposed matrix. 

The two most popular basis sets giving rise to the Alternatively, the bonding BOs (BBOs) {$I(+,} 
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and the antibonding BOs (ABOs) {+,} make up 
the two N-dimensional subsets in the BO basis. As 
in Ref. [7], let us consider the resonance integrals 
between BOs as the first-order terms with respect to 
the differences between the BBO and ABO ener- 
gies. Moreover, nearly identical values of all BBO 
energies and of all ABO energies may be assumed 
[7]. Finally, the BO energy mean value (o$) and the 
difference (,&) between the latter and the averaged 
BBO energy served as the reference point and the 
energy unit, respectively; the equalities ob = 0 
and & = 1 have been accepted in the BO basis. 
Then the relevant common hamiltonian matrix of 
alkanes takes the form 

(2) 

where the diagonal zero-order term ZZ[s, contains 
the BO energies and the first-order term H[,) 
consists of four N x N-dimensional blocks, S, Q 
and R, representing the intra- and intersubset 
resonance integrals, respectively. 

It should be noted here that no need arises for 
specifying either the structure of the blocks 
A, B, C, S, R and Q or their dimension (N) when 
seeking the common results for the whole class of 
alkanes, e.g. the expressions for the DM [4] and the 
LMOs [7]. 

As is seen from Eqs. (1) and (2), the matrices H 

and H’ may be considered as the matrix general- 
izations of the two-dimensional matrices 

respectively, where (Y, /3,r, u, p and K are small 
parameters compared to 1. The generalization 
under discussion involves substitution of the 
N x N-dimensional matrices ZcN), A, B . . . for the 
usual parameters 1, a,P.. . . However, it is the 
emergence of the N-dimensional unit matrices 
(I& instead of the one-dimensional units (1) 

when passing from h and h’ to H and H’, respect- 
ively, that makes the essence of this generalization. 
Indeed, the similarity between the matrices H and 
h, as well as between H’ and h’, lies not in the 
possibility of presenting the 2N x 2N-dimensional 
matrices H and H’ in terms of four N x N blocks 
(such a form is possible for any even-dimensional 
matrix), but only in the similarity of the relevant 
zero-order terms of the related matrices. 

The hamiltonian matrix of Eq. (3) describes a 
two-level system characterized by the large reson- 
ance integral (1 + ,0) vs. the difference in the 
Coulomb integrals (o - y), whereas the matrix of 
Eq. (4) corresponds to the opposite case. Accord- 
ingly, the matrices H and H’ shown in Eqs. (1) and 
(2) represent the respective generalized systems 
involving two N dimensional subsets of orbitals 
described by large intersubset interactions vs. the 
difference in the intrasubset ones and vice versa. 

Therefore, it is not an arbitrary two-dimensional 
matrix that is related to the common hamiltonian 
matrix of alkanes. Indeed the ratio between the 
parameters of the former is determined by the 
nature of the interactions between the two orbitals 
of alkanes belonging to the same chemical bond in 
the basis under consideration. A reason for that is 
the first-order magnitude of the interbond inter- 
actions vs. the intrabond ones in the model 
employed here. Thus, a pair of HAOs pertinent 
to a chemical bond is characterized by a large 
resonance integral and two similar Coulomb inte- 
grals, and the relation between the matrices Hand 
A shown in Eqs. (1) and (3) respectively, results. 
Alternatively, the relevant BOs (a BBO and the 
coupled ABO) are separated by a large energy 
gap and this gives rise to the relation between the 
matrices H’ and h’ of Eqs. (2) and (4). 

3. The analogy between the DMs of alkanes and of 
the appropriate two-level system 

The above-discussed similarity between the 
hamiltonian matrices of alkanes and of the deti- 
nite two-level systems does not necessarily imply 
the resemblance between the solutions of the 
relevant quantum-mechanical problems. This is 
evident when dealing with the respective secular 
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polynomials (SPs). Thus, the SP of the matrix ZI 
shown in Eq. (3) is 

Detlh - XZCzj 1 = Det 
Ip;: ;::I 

= (a - X)(y - X) - (1 + p)2 (5) 

Again, the SP of the matrix H shown in Eq. (1) 

Det JH - XZC2Nj ( = Det 
A - AZ(,) Z(N) + B 

Z(N) + B+ c - AZ(N) 

may not be written in the form shown in the last 
relation of Eq. (5) as the N x N-dimensional 
blocks A - XZCNJ, CNj Z + B, etc. do not commute 
with each other [8]. Therefore, passing from the 
two-level system to the class of alkanes is by no 
means a trivial generalization, 

Nevertheless, the solutions of the non-canonical 
problems for the DM and the LMOs of alkanes 
may be shown to be analogous to the relevant 
solutions for the two-electron two-level system. It 
is noteworthy that no need for diagonalizing 
the hamiltonian matrices or obtaining their SPs 
arises when solving these problems, only the per- 
turbation theory (PT) in the matrix representation 
is applied. 

To demonstrate the above analogy, let us discuss 
the non-canonical problem for the DM in this 
section. To establish not only the very fact of the 
similarity between the DMs of alkanes and of the 
respective two-level system, but also the origins of 
this similarity, let us recall the way the DMs of 
alkanes were obtained in Refs. [4-71. The residual 
charge matrices (Y) proportional to the relevant 
DMs (P) (these matrices are connected by the 
relation Y = P - Z) resulted from the system of 
equations [9] 

[H, Y]_ = 0 Y2 = I Spur Y = 0 (6) 

where the notation [..,..I_ indicates a commutator 
of matrices. Similar systems of equations may also 
be written for the hamiltonian matrices H’, h and 
L’. The PT for the DM [9] has been used to solve 
Eq. (6), and a power series with respect to param- 
eters included in the first-order hamiltonian has 

been obtained: 

P = Z + Y(0) + Y(i) + Y(2) + . . . (7) 

The zero-order matrices Y(,) [4-61, YioJ [7], yco) 
and yioj result from the equations like that shown 
in Eq. (6) only the zero-order terms HCoJ, H\,), hco) 
and h;,), respectively, stand for the initial hamil- 
tonians. These matrices are 

The structures of the zero-order DMs shown in 
Eq. (8) coincide with those of the respective zero- 
order hamiltonian matrices Hcol, Hioj, AcO) and Irio), 
respectively. Again, the matrices YCo, and y(O), as 
well as Y;,) and yioj, are of similar structure, only 
the dimensions of the unit matrices are increased 
from 1 to N when passing from the two-level 
system to the class of alkanes. 

The simple structure of the zero-order DMs 
shown in Eq. (8) provides for the equalities 

H(o) Y(o) = H;o) Y;,) = 42~) 

h(O)Y(O) = qo) Y{O) = 42) (9) 

which allow the original expressions for the next 
corrections Yckj k = 1,2 [9] to be simplified con- 
siderably. These are finally determined by the 
relations 

Y(l) = 1(H(i) - Y(O,ff(l) Y(O)) (10) 

Y(2) = -; Y(o) Y(l) Y(I) + + W(l), Y(1)1-> Y(o)]- 
(11) 

Similar expressions may also be written for 

Y{i), Y{~),Y(I), etc. 

The origin of the subsequent similarity between 
Y(k) and y(k), as well as between Y ikj and yikj, 
follows from the structure of the relations shown 
in Eqs. (10) and (11). Thus, the corrections Y(i) and 
Yc2, involve the matrices Hcl,, Hc,, x Ycl,, Yc,)x 

Hcl) and Y(i) x Y(i) multiplied by Yco,. Multiply- 
ing any matrix, e.g. Hc,,, by Yco, shown in Eq. (8) 
does not destroy the internal structure of the 
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N x N blocks of the former, only the positions of 
these blocks change. Accordingly, only the signs of 
the N x N blocks may change as a consequence 
of multiplying the respective matrices H[,), 
H;,) x Y[i, etc. by Y[s). As a result, entire N x N 
blocks A, B and C and S, Q and R appear in the 
final expressions for YckJ and YikJ whatever the 
dimension of these blocks N. Thus, in the HA0 
basis the first-order corrections Y(t) [4-61 and ycl) 
are 

1 A-C B-B+ 

y(1)=j B+_B C-A 

1 o-y 0 
J9) = 2 () (12) 

7-o 

whereas the second-order corrections Yc2, [4-61 
and y(z) are 

where 

L=$(CB+B+C-AB+-BA) 

-$[(A-C),(B-B+)]_ 

K=-$(CB+B+C-AB+-BA) 

- t [(A - C), (B - B+)]_ (14) 

M = $([A, (A - C)]p + B+B+ - BB) 

- + {(A - C)2 - (B - B+)2} 

and 

Z=&(y-(Y)P k=i(o-~)/3 m=-+(a-y)2 

(15) 

Comparing Eqs. (12)-(15) shows that the correc- 
tions y(k) for the two-level system follow from 
the respective general expression for YckJ, if the 
one-dimensionality of the matrices I, A, B and C 
is assumed. The latter, in turn, implies the commu- 
tation of the blocks A, B and C, and the equality 
B = B+. Therefore, the case of the two-level system 
is noted only for the natural consequences of the 
one-dimensionality of the blocks I, A, B and C. 

It is noteworthy that in common with the correc- 
tions yck) valid for any numerical values of 
the parameters (Y, p and y (provided that these are 
small compared to l), the corrections Y(k) 
described any alkane. Accordingly, Eqs. (8), (12) 
and (13) have been regarded in Refs. [4-61 as the 
common expressions for the DMs of alkanes. 

Similar conclusions follow from the comparison 
of the residual charge matrices y’ and Y’ in the BO 
basis. The relevant expressions for the corrections 
Y& and yikJ are of much simpler structure as com- 
pared with Eqs. (12) and (13) and take the form 

1 -p2 (K - U)P 
Yi2) = 5 (K - a)p $ 

(16) 

(17) 

where W = RQ - SR. As is seen from Eqs. (16) 

and (17) Y;,) and yi2) result from Y[,, and Yi2,, if 
the matrices Q, S and R are replaced by the respect- 
ive one-dimensional parameters K, r~ and p. 

Therefore, the expressions for the DMs of 
alkanes and of the appropriate two-level system 
may be concluded to be similar. The origin of this 
similarity lies in the peculiar structure of the zero- 
order terms of both the hamiltonian matrix and the 
DMs of alkanes involving the N-dimensional unit 
matrices ZcN). 

4. The Brillouin theorem for alkanes as a generalized 
eigenvalue problem for the two-dimensional matrix 

Let us consider in this section the non-canonical 
problem for the LMOs of alkanes based on the 
Brillouin theorem [7,10,1 I]. The essence of this 
theorem lies in the zero-value requirement for 
the hamiltonian matrix elements associated with 
the interactions between the occupied and vacant 
LMOs [12]. 

Let the BOs be the initial basis set. Since the total 
number of electrons (2N) coincides with the num- 
ber of basis functions in any alkane, the matrix 
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form of the Brillouin theorem resolves itself 
into the zero-matrix requirement for the N x N- 

dimensional off-diagonal blocks of the hamil- 
tonian matrix transformed into the LMO basis 

[7], i.e. 

fi’--T-‘H’T= (18) 

where T is the transformation matrix containing 

the LMOs represented in the basis of BOs, H’ is 

to be taken from Eq. (2) and Ai and A2 are the 
N x N-dimensional diagonal blocks specified 
below. Hence, the non-canonical problem for the 
LMOs of alkanes consists of obtaining the matrix 

T fulfilling the condition of Eq. (18). 
A unitary matrix T complying with both Eq. (18) 

and the appropriate requirement 

T+T = Zc2,vj (19) 

has been obtained in Ref. [7] in the form of a power 

series, i.e. 

T = T(,,) + T(,, + Tc2, + . . 

The terms of Eq. (20) are 

(20) 

T(o) = 42~) 

1 
T(2) = z 

-;RR- -W 

-~R’R 
(21) 

Wt 

The matrix W of Eq. (21) is determined in Eq. (17). 

The relevant transformed diagonal blocks At 

and A2 of Eq. (18) are 

A, =I+Sf;RR++- 

1 2 

+$ 
2p (0 - K)P 

+ 

(K-a)p -$? 

(23) 

leads to the eigenvalues of the matrix h’ 

A2 = -I+Q-iR+R+... (22) 

The reason why the members of the series for the 

x, = 1+a+;p2+..., X2=-l+“-;p2+... 

(24) 

matrix T shown in Eq. (21) are expressed in terms Comparing Eqs. (22) and (24) shows that the 
of entire blocks S, Q, and R lies in the nature of the relation between the eigenvalues Xi and A2 of the 
requirement shown in Eq. (18). Indeed, zero-matrix matrix h’ and the diagonal blocks A, and A2 of 
condition is imposed here on the entire off-diagonal the matrix 2 is also of the above-discussed nature: 
blocks of the transformed hamiltonian H’ what- the matrices Z(N), S, Q and R are replaced by the 
ever the dimension of these blocks (N). Such a parameters 1, u, 6 and p, respectively, when pas- 
condition implies certain requirements (equations) sing from alkanes to the two-level system. There- 
for the entire blocks of the matrix T being sought fore, the transformation shown in Eqs. (18), (20) 

[7], which served to obtain the expressions for the 
blocks of the corrections TckJ, k = 0, 1,2 in terms of 

the matrices S, Q and R as shown in Eq. (21). In 
addition, the presence of the unit matrix IcN) in the 
initial hamiltonian H’ of Eq. (2) played an essential 
role in simplifying the above-mentioned equations. 
The similar series for the diagonal blocks At and A2 

shown in Eq. (22) is a direct consequence of the 

above-discussed structure of the matrix T. There- 
fore, as with the case of the DM, the dimension 
of the blocks S, Q and R plays no part in the 

formation of the expressions for the LMO repre- 
sentation matrix T. 

The block-diagonal form of a 2N-dimensional 

matrix as shown in Eq. (18) is evidently a general- 
ization of the diagonal form of a two-dimensional 
matrix. Accordingly, transformation T shown 
in Eqs. (20) and (21) describes passing into a 
new basis consisting of two N-dimensional 
non-interacting subspaces, whereas the usual 

diagonalization of a two-dimensional matrix repre- 
sents passing into the basis of two non-interacting 
one-dimensional vectors. 

It is no surprise in this context that a similar 
two-dimensional matrix (t) containing the usual 
parameters p, K and 0 instead of the N x N blc 
R> Q and S,. respectively. 

cks 
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and (21) proves to be the matrix generalization of 
the usual diagonalization procedure for the two- 
dimensional matrix h’. 

Accordingly, the structure of the LMOs of 
alkanes may be shown to resemble that of the 
MOs of the two-electron two-level system de- 
scribed by the hamiltonian matrix h’. Thus, the 
row-matrix of the occupied LMOs of alkanes 
(9~+)) and the only occupied MO of the two level 
system follow from Eqs. (21) and (23). These are 

(@(+)I = ++$+)l(I(&RR+t) +;@~,I(R+++‘+) 

(25) 

?q+) = rl(+)U -$P’, +~rl(-){P+&-M 
(26) 

where (4(+)l and (#(-)I are the row-matrices of the 
BBOs and ABOs, respectively, whereas n(+) and 
n(_) stand for the relevant basis orbitals of the 
two-level system. It is seen from Eq. (25) that the 
entire row-matrices (4(+,] and ($(_,I play the role 
of the generalized basis functions when expressing 
the LMOs of alkanes. 

The diagonalization procedure for any matrix in 
the orthogonal basis is known to be equivalent to 
the relevant eigenvalue equation [8]. Accordingly, 
Eq. (18) may be rewritten in the form 

H’T = TA (18a) 

which may be described as the N x N eigenblock 
equation for the 2N x 2N-dimensional matrix H’. 
Hence, LMOs of alkanes may be considered as 
generalized eigenvectors of the relevant common 
hamiltonian matrix H’. 

It should be noted at the end of this section that 
the hamiltonian matrix H of Eq. (1) may also be 
transformed into a block-diagonal form like that 
shown in Eq. (18). The first step towards this form 
lies in applying the simple transformation matrix 

I 
(27) 

The resulting transformed hamiltonian U&H Uco) 
becomes similar to H’ of Eq. (2) and the next steps 
towards the form complying with the Brillouin 
theorem are similar to those developed in Ref. [7]. 

Accordingly, the expressions for the complete 
transformation matrix U in terms of the entire 
blocks A, B and C of the first hamiltonian H(,) of 
Eq. (1) may be obtained whatever the dimension 
(N) of these blocks. As a result, the analogy 
between the matrix U and the diagonalization 
matrix u for the two-dimensional hamiltonian h 
of Eq. (3) may be easily established. 

Therefore, the Brillouin theorem for alkanes 
proves to be the matrix generalization of the 
usual eigenvalue problem for the respective two- 
level system. 

5. Common regularities of the electronic structure of 
alkanes resulting from their relation to the unique 
two-level system 

The established relation between the whole class 
of alkanes and the unique two-level system forms 
the basis for describing the former as a single 
quantum-mechanical object. Such a description 
consists both of the common expressions for the 
LMOs and DM of alkanes shown in Eqs. (8) 
(12) (14), (16), (17) and (21) and of the resulting 
regularities of the electronic structure. 

Let us discuss in this section the most general of 
these regularities, namely those independent of the 
specific structure of the blocks S, Q and R. 

The expressions for the DM of alkanes, shown in 
Eqs. (16) and (17) on the one hand, and that for 
the LMOs of Eq. (21), on the other hand, involve 
similar combinations of the blocks S, Q and R 
with different coefficients. As a result, the LMOs 
and DM rows (columns) of alkanes proved to be 
interrelated and these two matrices have been 
considered as containing the same information on 
the specific structure of the given alkane [7]. 
Furthermore, the bond-orbital-and-tail structure 
of the LMOs follows from both the series for the 
matrix T and the equality Tco, = ZczN) shown in 
Eqs. (20) and (21), respectively. As a result, the 
one-to-one correspondence between the BOs and 
LMOs may be established, i.e. each LMO is 
related to the concrete BO. Since the possibility 
of expressing both T and Y in terms of the same 
matrices arises owing to the relation of alkanes to 
the unique two-level system, the above common 
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peculiarities of the LMOs and DM rows (columns) ABO ~c_J, to the LMO 9~+);. That is why the 
may be considered as a result of this relation. quantity 

Another consequence of the similarity between 
alkanes and the two-level system lies in the relation 
of the actual occupation numbers (populations) of 
BOs of alkanes to the extent of delocalization of the 
respective LMO. Let us consider this relation in 
more detail. 

DC+jil = ($ R;)2 = 4 (R;)’ (33) 

may be considered as the partial delocalization 
coefficient of the LMO qI+); over the ABO $(_)I. 

Let us start with the two-electron two-level sys- 
tem described by the hamiltonian matrix h’ of Eq. 
(4). The only occupied MO of this system shown in 
Eq. (26) contains the term l/2 (pnc_)) as the main 
correction to the orbital n(+). This term describes 
the extent of delocalization of the orbital n(+) when 
making up the respective MO $(+J. Let us define 
the positive delocalization coefficient of this MO 

d(+) = (ip)2 = $2 (28) 

Again, the actual occupation number of the BBO 
4ciJi follows from Eqs. (7) (8) and (17) and equals 

ABOs ABOs 

X(+)i = 2 - i C RilRz = 2 - i C (Ri)2 

=1(1 -&+)i$ ’ (34) 

where the last equality is the result of substitution 
of Eq. (33). Let us introduce the total delocaliza- 
tion coefficient of the LMO 9c+ji over all ABOs 

Then the actual occupation number x(+) of the 
initially doubly-occupied orbital v(+) is 

X(+) = 2 - t p2 = 2( 1 - d(,)) (29) 

It follows from Eq. (29) that the occupation 
number x(+) decreases when the delocalization 
coefficient d(+, increases, i.e. the more delocalized 
the orbital becomes the more charge it loses. 

ABOs 

D(+)i = C D(+)il (35) 
1 

Then the relation 

X(+)i = 2(1 - D(+)i) (36) 

Similarly, the actual occupation number xc-) of 
the initially vacant basis function v(-) is 

X(_) = 2d(_, (30) 

where the respective delocalization coefficient dc_, 
of the MO $J_, coincides with d(+, of Eq. (28). 
Hence, the population xc_) that the orbital n(_) 
acquires is proportional to its delocalization when 
making up the respective MO r,+,. On the whole, 
the populations xc+) and xc_) are interrelated by the 
charge conservation condition 

follows from Eq. (34) and it is true for any pair 
of BBO 4(+)i and the respective LMO Qc+)i. The 
similarity of Eqs. (29) and (36) is obvious. As a 
result, the population of the BBO pi lost when 
making up the LMO Qc+)i is proportional to the 
total delocalization of the latter. 

An analogous relation is valid for an ABO c#J_)~ 
and the respective vacant LMO Q(_),. Thus, the 
occupation number of the former is 

X(-,m = 20(-), (37) 

where 

x(+) + X(_) = 2 (31) 

These rules may be easily generalized to the case 
of the alkanes. To do this, let us rewrite Eq. (25) to 
within the first-order terms using the relevant 
matrix elements 

BBOs 

D(-)m = C D(-)mi (38) 
i 

is the total delocalization coefficient of the vacant 
LMO 9~_),,, over all BBOs, whereas Dc_),i is the 
respective partial delocalization coefficient of the 
same LMO over the particular BBO pi 

D(P),; = (i Rim)2 = a (Rim)2 (39) 

As is seen from Eq. (37), the population XC_,,,, that 
the ABO c$-),,, acquires when making up the LMO 

ABOs 

Q(,)i = 4(+)i + 1 c 4(_& (32) 

The term +Ri represents the contribution of the 
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@C_jm is proportional to the total delocalization of 
this LMO. 

Therefore, despite the fact that LMOs of alkanes 
involve tails extending over the whole molecule, the 
relation between the occupation number of any 
particular BO and the extent of delocalization of 
the respective single LMO is similar to the relevant 
relation for the two-level system. 

It follows from the definition of the partial delo- 
calization coefficients shown in Eqs. (33) and (39) 
and the equality Rii = R, that 

D(-)mi = D(+)im (40) 

This result implies the coincidence between the 
partial delocalization coefficients of the occupied 
LMO 9c+)i over the ABO +)m and that of the 
vacant LMO a~_), over the BBO $(+)j. However, 
the two total delocalization coefficients Dc+Ji and 
DC_), associated with the same chemical bond are 
not interrelated. This result is due to the non- 
Hermitian nature of the matrix R of Eq. (2) and 
implies a possibility of an interbond charge transfer 
in alkanes. 

Let us introduce the complete delocalization 
coefficients of all occupied LMOs 

990s 

D(+) = C D(+)i (41) 

and that of all vacant LMOs 

ABOs 

DC-) = c &)m (42) 
m 

Then the equality 

DC+) = 4) (43) 

and the respective charge conservation condition 
for the whole molecule 

BBOs ABOs 

c X(+)i + c +), = ~3’ 
i m 

(44) 

may be easily proved by using Eqs. (35), (38), (40), 
(36) and (37). 

Finally, let us dwell on the total energy of alkanes. 

Two definitions of this quantity are possible 

E = Spur(PH) 

and 

E = 2Spur hi 

(45) 

(46) 

and both result in the same expression of the energy 
as a sum of two members 

E = El + E2 (47) 

The first term of Eq. (47) is 

El = 2Spur(Z + S) (48) 

and contains the sum of the BBO energies, whereas 
the second one 

E2 = Spur (RR’) (4% 

may be interpreted as the total stabilization 
(resonance) energy. Using Eqs. (33), (35), (41) 
and (49) we obtain 

E2 = 4D(+) (50) 

Accordingly, from Eqs. (24) and (28) the respect- 
ive resonance energy for the two-level system 
follows 

E2 = 4d(+) (51) 

Therefore, the stabilization (resonance) energy of 
both alkanes and the respective two-level system is 
proportional to the complete delocalization of the 
occupied LMOs and of the single MO. 

On the whole, the results of this section contri- 
bute to the substantiation of the above conclusion 
that the LMOs and not the canonical MOs of 
alkanes are the direct generalizations of the MOs 
of the respective two-level system. It is noteworthy 
in this context that the two MOs of the latter com- 
ply with the Brillouin theorem shown in Eq. (18) 
and may be regarded as both the canonical MOs 
and the non-canonical ones, i.e. the LMOs of the 
two-level system described by the hamiltonian 
matrix h’ of Eq. (4). 

6. Concluding remarks 

The N-dimensional unit matrices ZcN) contained 
in the hamiltonian matrices of Eqs. (1) and (2) and 
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forming the basis for the established relation 
between alkanes and the respective two-level 

system, represent the set of N chemical bonds of 
alkanes assumed to be equivalent to within the 

zero-order terms in the employed model. Such an 
equivalence of bonds has been described in Ref. [7] 

as topological, and it has been related to the tetra- 
hedral symmetry of the nearest environment of the 
carbon atoms [13]. As a result of the latter relation, 
the above two peculiarities of the structure of 
alkanes acquired the joint denomination of the 
common topological structure of these system. 

Accordingly, the relation between alkanes and the 
definite two-level system may be concluded to 
reveal itself owing to the common topological 
structure of the former. 

Consequently, the presence of approximately 
equivalent bonds may be regarded as the main 
common feature of the structure of alkanes. 
Again, the specific constitution of a particular 
molecule is described by the number of bonds 
and the pattern of their spatial arrangement. 
These peculiarities are represented by the dimen- 
sion N and the specific structure of the N x N 
blocks S, Q and R and/or A, B and C. In this con- 

text, passing to the case of N = 1, i.e. replacing the 
above N x N-dimensional blocks by usual para- 
meters, may be regarded as turning to a single 
effective bond inherent to any alkane. Hence, the 
two-dimensional hamiltonian matrices h and/or h’ 
may be concluded to describe an effective chemical 

bond common to the whole class of alkanes. 
Furthermore, the obtained results show that 

certain common regularities of the electronic struc- 
ture of alkanes may be established without regard 
for the dimension of the system N and these are 
similar to the relevant regularities for the two-level 
system. Therefore, the obtained two-dimensional 
hamiltonian matrices h and/or h’ may be used 

when modeling the main regularities of the electro- 
nic structure of alkanes. Therefore, the effective 

chemical bond may be concluded to be the 
smallest building block of alkanes, which keeps 
the main peculiarities of the electronic structure 

of the whole class. 
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