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Abstract 

The overlap matrices of saturated (tetrahedral) systems in the basis of sp3 hybrid AOs have been presented as a single 
matrix (S) consisting of zero-order and first-order terms. The common expression for the respective Liiwdin’s ortho- 
gonalization matrix (S -I/* ) has been obtained in the form of a power series and the structure of the orthogonalized basis 
orbitals has been analyzed. The relevant common hamiltonian matrix (H) has been transformed into the basis of the 
orthogonalized orbitals and the resulting matrix fi has been compared with the initial one. The similarity between the _ 
most essential qualitative peculiarities of the matrices Hand H has been established: the presence of the zero-order terms 
of similar structure and first-order terms, the local nature of the relation between the hamiltonian matrix elements and 
the structure of the system, and the transferability of the elements associated with the similar atoms and bonds, are 
inherent to both H and fi. These results follow from the common topological structure of saturated molecules and 
crystals and serve to support the basis set orthogonality assumption extensively used in qualitative quantum chemistry. 
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1. Introduction 

Two current trends may be distinguished in 
quantum chemistry. The quantitative one is orien- 

tated mainly toward calculating the electronic 
structure of a molecule as accurately as possible, 
and the relevant results contribute to the develop- 
ment of quantum chemistry’s predicting ability. 

Alternatively, the qualitative quantum chemistry 
is principally intended to account for the actual 

electronic structure regularities inherent in the 
whole series or a class of molecules. Simple models 
are being developed in this case, and the obtained 

conclusions serve the classification and interpreta- 
tion of the entire information on the molecular 
structure and reactivity. 

The Hiickel-type hamiltonian matrix [ 1,2] may 
be considered as one of the most popular qualita- 
tive models. It is this approach that resulted in the 

well-known qualitative theory of the electronic 
structure of the conjugated hydrocarbons, includ- 
ing the alternant ones [2]. It is noteworthy that 
the basis set orthogonality assumption usually 
accepted in this method essentially contributes to 
the simplicity of the results obtained. 

A similar Hiickel-type hamiltonian in common 
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with the basis set orthogonality requirement has 
also been applied to the investigation of saturated 
hydrocarbons (alkanes) and their derivatives [3-61 
and of the related tetrahedral crystals [7]. It has 
been shown that the relevant hamiltonian matrices 
may be presented in the form of the single matrix 
(ZZ) both in the sp3 hybrid A0 (HAO) basis [3-5,7] 
and in the basis of their simple linear combinations 
described as bond orbitals (BOs) [6]. Such a 
common form of the matrix H has allowed the 
single quantum-mechanical problem to be formu- 
lated and solved algebraically for any saturated 
system. As a result, the common expression for 
the relevant one-electron density matrix (DM) [3- 
7] and the similar expression for the localized MOs 
(LMOs) [6] have been obtained. Moreover, the 
common peculiarities of the resulting matrices, 
i.e. of the DM and the LMO representation matrix, 
have been established. The local nature of the 
relation between the elements of these matrices 
and the structure of the system and the trans- 
ferability of these elements pertaining to the 
identical atoms and bonds rank among these 
common peculiarities. 

Furthermore, the well-known more involved 
semiempirical methods, e.g. CNDO, MIND0 [8], 
taking an intermediate place between the quali- 
tative and quantitative trends of quantum chem- 
istry, are based on the so-called zero differential 
overlap (ZDO) approximation closely related to 
the basis set orthogonality requirement. These 
methods have been extensively applied to the 
investigation of both conjugated and saturated 
molecules [8]. 

Therefore the basis set orthogonality is one 
of the basic assumptions in qualitative quan- 
tum chemistry, and justifying this assumption 
serves to support the above-discussed results and 
conclusions. 

Many attempts to achieve this end have been 
undertaken, especially in the context of the analysis 
of the assumptions underlying the semiempirical 
ZDO methods. The relevant contributions dealing 
with conjugated molecules [9-l l] and organic com- 
pounds in general [lo-121 may be mentioned. 
These are based on transforming the initial hamil- 
tonian matrix represented in the non-orthogonal 
basis to the symmetrically orthogonalized (SO) 

basis using the Lowdin’s transformation matrix 
S-“2 [13,14] (S is the overlap matrix of the initial 
AOs), and on relating the semi-empirical param- 
eters to the elements of the transformed matrix 
Z?. Then the results obtained under the basis set 
orthogonality assumption are looked upon as 
corresponding to the SO basis [9-121. 

The overlap integrals between the neighboring 
2p, AOs of the conjugated molecules do not exceed 
0.25 [lO,l l] and a converging power series with 
respect to the difference S-Z (I stands for the unit 
matrix) may be constructed for the relevant matrix 
S-“2 [9-l 11. In turn, the general expressions for 
the elements of the transformed hamiltonian Z? 
follow from these series. Analysis of such expres- 
sions has shown that the differences in the values of 
the respective hamiltonian matrix elements in the 
initial and in the SO basis are sufficiently small for 
the conjugated systems [9- 111. For that reason the 
basis set orthogonality assumption is usually 
considered as justified in this case. 

Alternatively, the whole set of valent AOs for 
each atom is to be included in the initial basis 
when studying the saturated systems, and relatively 
large elements emerge in the relevant overlap 
matrices. As a result, the power series of the 
above type does not converge [ 10-121. Moreover, 
a non-local relation between the respective ele- 
ments of H and Z? has been predicted in this case 
[15]. All this gave rise to some doubts as to the 
validity of the basis set orthogonality assumption 
for saturated molecules [lo- 121. 

This paper is aimed at justifying the above- 
discussed assumption for saturated molecules and 
crystals. Using this example, we are about to 
demonstrate that the validity of the basis set ortho- 
gonality assumption for a certain type of molecule 
or crystal is related to the definite peculiarities of 
their structure rather than to the smallness of the 
overlap integrals. Moreover, we intend to show in 
this paper that no small value requirement for the 
matrix 91 is imperative for expanding the matrix 
S-1/2 in the form of a converging power series. The 
peculiarities of the relevant orthogonalized orbitals 
are also studied and the analysis of the transformed 
hamiltonian matrix intended for comparing its 
structure with that accepted in our previous papers 
[3-71 is carried out. 
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2. Expansion in the form of power series for 
Liiwdin’s orthogonalization matrix S -‘I2 of a 
saturated system 

Let us consider a saturated system of tetrahedral 
structure, e.g. alkane, substituted alkane, or a finite 
diamond crystal. No lone electron pairs are 
assumed to be inherent to our system. This require- 
ment, however, is not imperative, and the results 
obtained below may be easily generalized to a 
system containing such pairs. 

Let us compile the initial basis set {x} including 
four sp3 HAOs of each internal (most commonly 
carbon) atom and the 1s AOs of the hydrogen 
atoms (if any). Let us term the set {x} the HA0 
basis. The use of the HAOs instead of the ordinary 
AOs leads to a correspondence between the spatial 
arrangement of the basis functions and that of the 
chemical bonds. As a result, the tetrahedral struc- 
ture of our system manifests itself in the consider- 
able differences [3-7,16,17] in the relative values of 
the neighboring and non-neighboring overlap 
integrals (the pairs of the mutually directed 
HAOs are described as neighboring). Hence, the 
non-neighboring integrals may be regarded as the 
first-order terms with respect to the neighboring 
ones [3-71. Moreover, the neighbouring overlap 
integrals prove to be of nearly identical value for 
different types of bonds in saturated systems. This 
last conclusion follows from the calculations of the 
overlap integrals using the formulae derived by 
Roothaan [ 181 and from other estimations 
[ 16,17,19]. For example, the neighboring overlap 
integrals pertinent to the C-C and C-H bonds in 
alkanes equal 0.647 and 0.686 [19] respectively, 
whereas the non-neighboring ones do not exceed 
0.2 [16]. Therefore the differences between the 
actual values of the neighboring overlap integrals 
and their mean value c may also be considered as 
first-order terms. Then the initial overlap matrix S 
may be presented as a sum of zero-order (S~,$ and 
first-order (SC,)) terms 

s = S(O) + S(I) 

where So, contains the diagonal elements of the 
matrix S equal to unity and the averaged neighbor- 
ing overlap integrals equal to 0, and S(t) involves 
the non-neighboring overlaps and the differences 

between c and the actual values of the neighboring 
ones. 

Further, let us divide the initial 2N-dimensional 
basis set {x} (N stands for the total number of 
bonds in the system under study) into two N- 
dimensional subsets {x’} and {X”} so that the 
strongly overlapping pairs of the neighboring orbi- 
tals find themselves in the different subsets. Let the 
pairs of the neighboring orbitals require the 
coupled numbers i and N + i, where i = 1,2. . . N. 
Then both So, and Scli may be presented in the 
form of four (N x N)-dimensional blocks corre- 
sponding to the subsets {x’} and {x”} and to the 
inter-subset overlaps 

Z (TZ 
%I = cz z I 1 x z 

%, = c7 z’ I I y (2) 

where Z is the N-dimensional unit matrix and the 
superscript + designates the transposed matrix. 
The averaged neighboring overlap integrals make 
up the off-diagonal blocks alin the zero-order term 
So,, whereas the constant (T in front of the second 
matrix of Eq. (2) is introduced for convenience. It is 
seen from Eq. (2) that the two subspaces {x’} and 
{X”} are strongly non-orthogonal. 

Therefore, the zero-order term SC,, of simple and 
common structure shown in Eq. (2) may be 
revealed in the overlap matrices of saturated sys- 
tems. As with the zero-order hamiltonian HtoJ [6], 
the matrix So, represents the common topological 
structure of our systems, consisting of both tetra- 
hedral symmetry of the nearest environment of the 
internal atoms and the rough topological equiva- 
lence of all bonds (which is associated with the 
nearly identical values of the neighboring overlap 
integrals). It is noteworthy that these two aspects of 
the structure are closely interrelated. Indeed, it is 
the topological equivalence of the four bonds at the 
given internal atom that largely contributes to the 
tetrahedral symmetry of its nearest environment, 
provided that this symmetry is understood in 
terms of the overlap integrals and not in terms of 
the internuclear distances. 

Again, the dimension N and the structure of the 
blocks X, Y and Z contain information on the spe- 
cific constitution of the system under study. As 
with the LMOs [6] and DM [3-71, the expression 
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for the matrix S -li2 being sought may be con- 
structed without regard to these specific peculiari- 
ties of the matrices X, Y and 2, and no necessity for 
specifying them arises. Let us note only that the 
non-diagonal elements of the matrices X, Y, Z 
and Z+ situated in the identical positions, e.g. 
Xii, Yij, Zij and Zij’, represent the four different 
non-neighboring overlaps associated with a defi- 
nite pair of bonds. Indeed, let Xii be the overlap 
integral between the orbitals xi and XJ localized on 
the rth and pth bond, respectively (note that both 
xi and xj belong to the first subset {x’} and thus 
r # p). Then the element Yij represents the overlap 
integral between the orbitals x$+i and &+j being 
the neighbors of the orbitals xi and xj localized on 
the same pair of bonds. Accordingly, Zij and ZG 
are associated with the remaining two combina- 
tions of the above-defined four orbitals. 

Let us turn now to the construction of the com- 
mon expression for the matrix S -1’2. Since S(s) # Z 
in Eq. (2), the power of the sum ScO, + S(t) cannot 
be expanded in series directly, and a more involved 
procedure is necessary. 

Let D and wi stand for the unitary matrix of the 
eigenvectors and the eigenvalues of the matrix S, 
respectively. Then, according to the definition of a 
power function of a matrix [20] 

S = D]lW]lDf S~‘i2 = DI]w-‘/2]1D+ (3) 

where the notation (1 . . . II indicates a diagonal 
matrix. Let the matrix D be represented in the 
form of the product of two matrices D1 and D2 
(D = DID,) and substitute this form into Eq. (3). 
After multiplying the two relations of Eq. (3) by 07 
and D, from the left and right side, respectively, 
and denoting 

D$D,=A (4) 

a modified expression for the matrix S -‘I2 

S-II2 = D,A-‘/2D; (5) 

results. Hence, if we find a common unitary matrix 
D1 such that a converging power series for the (-l/ 
2)-th power of the transformed overlap matrix A 
resulting from Eq. (4) may be constructed, i.e. if a 
convergent expansion 

A-l/2 _ A-Ii2 + A-112 + A-112 + 
- (0) (1) (2) . . . (6) 

exists, then the matrix S -‘j2 being sought follows 
from Eq. (5). 

To find an appropriate matrix D1, the largest 
non-diagonal elements ~7 of the zero-order matrix 
ScO, given in Eq. (1) are to be eliminated in the first 
place. The unitary matrix 

serves as transformation matrix and represents the 
passing into the new basis {cp} the functions of 
which are defined as sums {‘p(+)} and differences 
{cpC_,} of the neighboring pairs of the initial orbi- 
tals {x}. In common with Ref. [6], let us describe 
the bonding and antibonding BOs (BBOs and 
ABOs) respectively. The transformed overlap 
matrix is 

s’ = u+su= s;,) + s;,) = 
(1 +a)Z 0 

o 
(1 - a)Z 

VR 
+a 1 I R+ Q 

(8) 

where 

V=i(X+ Y+z+z+) 

R=;(X-Y+Z+-Z) 

Q=;(X+Y-Z-Z') (9) 

As seen from Eq. (8), it is the non-zero inter- 
subspace blocks R and Ri within the first-order 
term St,) that makes the expanding of the matrix 
(S’)-1/2 in the power series somewhat difficult. 
Hence, let us eliminate these blocks using the uni- 
tary transformation like that suggested in Ref. [6] 
for block-diagonalizing the relevant hamiltonian 
matrix containing the non-diagonal blocks of the 
first order vs. the diagonal ones. This transform- 
ation matrix has the form of a power series 

z 0 
T = T(o) + T(I) + T(2, + . . . = o z 

-;RR+ 

,w+ 

-W 

$R+R 
+... 

(10) 
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where W = RQ - VR. The resulting transformed is the respective orthogonalization matrix in the 
overlap matrix is BO basis. It is seen from Eq. (15) that three 

T+S’T = 
(l+a)l+aV++RR++... 0 

0 (1 -a)l+aQ-;aR+R+... 
(=!p J=A (11) 

and contains the intra-subspace overlap matrices 
A(+) and A,_, only. Therefore the matrix T may 
be considered as the inter-subspace orthogonaliza- 
tion matrix. The notation A coinciding with that 
used in Eqs. (4)-(6) is introduced into Eq. (11) 
purposely, because both A(,) and A(_) may be 
easily expanded in a power series. After collecting 
the terms of the same order we obtain the series of 
Eq. (6) the first three members of which are 

u )- 112 b = (1 - u)-‘/~ 

F 0 

0 c 
(12) 

c = (1 + a)-3’2 d = (1 - o)-~/~ 

F = 3;( 1 + c)-~‘~ V2 - (1 + u)-~‘~RR+ 

G=3;(1-~)-“2Q+(l-a)-3’2R+R (13) 

Note that the matrix A- Ii2 shown in Eqs. (6) and 
(12) may be regarded as the intra-subspace ortho- 
gonalization matrix. The matrix D, is 

D, = UT (14) 

The common expression for D,, i.e. the expression 
independent of the particular structure of the 
blocks R, V and Q, follows from Eq. (14) after 
substituting Eqs. (7) and (lo), and the matrix 
Sii2 results from Eq. (5) 

S-‘t2 = uTA-‘/2T’u+ = u(S’)-‘/2u’ 

where 

(S’)-‘/2 = TA-‘/2Tf 

(15) 

(16) 

power series are multiplied when obtaining the 
matrices .!~‘I2 and (S’)-li2. The terms of these 
series do not commute in the general case, and 
the relevant commutators designated by the nota- 
tion [.,.I_ appear in the final expression for the 
series of Eq. (6). In the BO basis this series is of 
the simplest form 

(S’)ij” = A(ojJ2 

(S’);;‘2 = “;;I2 + [T,,,, A,;“] 

(S’)U/” = A;;‘? + [T,,,, A;;‘2]_ + [Tc2), A$_ 

+ [A,j”T(,)> T(I,I- (17) 

The relevant terms in the HA0 basis follow from 
Eqs. (15) and (17). Note that the relations 

T(:, + T(I) = 0 T& + T,z, + T,$‘(,, = 0 

(18) 

resulting from the unitarity of the matrix T [6] have 
been used when obtaining Eq. (17). 

It is seen from Eq. (12) that A,,, PI’2 is virtually the 
renormalization matrix of BOs. Note that it is the 
renormalization of BOs that is mainly responsible 
for the non-unitarity of the matrices A-‘j2 and 
S’j2. Accordingly, the renormalization factors 
appear in front of the next terms of the series of 
Eq. (17 Thus because of the block-diagonal form 
ofA-i,l’and h)-1/2 cIj following from Eq. (12) and the 
anti- lock-diagonal form of T(,) seen from Eq. 

. {I 

(lo), the structure of the commutators 
[T,,,, A(o;“]_ and [Tcl), A,;“]_ resembles that of 
the matrix T(,,, e.g. 

(19) 

where f = 4 (a - 6); a and b are shown in Eq. (13). 
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As a result, the first-order term (S’)-‘j2 of Eq. (17) 
takes the form of a sum of the intra-subspace 
orthogonalization matrix A,,, -“’ and the renormal- 
ized inter-subspace orthogonalization matrix shown 
in Eq. (19). However, no such additivity is inherent 
to the next terms of the series for (S’)-li2. 

On the whole, the common form of the power 
series for Lowdin’s orthogonalization matrix S-“2 
obtained above and valid whatever the structure of 
the blocks X, Y and 2, is a direct consequence of 
the common form of the zero-order overlap matrix 
SCO) shown in Eq. (2) and therefore of the common 
topological structure of saturated systems. As with 
the matrix SCO,, the zero-order term Sii:‘2 of this 
series is related to the topological structure. More- 
over, the common expression for the matrix S-Ii2 
allows the common peculiarities of the orthogonal- 
ized orbitals to be expected for all saturated sys- 
tems. These are analyzed in the next section. 

3. The structure of the orthogonalized orhitals 

The row-matrix of the orthogonalized BOs 
(OBOs) and the respective matrix of the ortho- 
gonalized HAOs (OHAOs) are [9- 141 

(cpl = (cp(+)>O(-,I = (‘p(+),‘p[-)IW-“2 (20) 

(21 = (X’, *“I = (x’, X”]S_‘/2 (21) 

After substituting the series for (S’)-li2 and 
S-li2 obtained above the zero-order orthogonal- 
ized orbitals follow: 

(-$I ZT (p,pI = (q’ +fx”& + &‘I 

(23) 

where e = 1 (a + b); a and b are shown in Eq. (13) 
and f has been defined in Eq. (19). The OBOs 
shown in Eq. (22) are virtually the renormalized 
BOs in accordance with the interpretation of the 
term A-“2 

F? 
given in the previous section. 

The HAOs shown in Eq. (23) completely coin- 
cide with the orthogonalized orbitals in the case of 
two orbitals only [21,22]. Since le] > IfI, each 
OHAO $’ in Eq. (23) has the largest coefficient 

at the respective HA0 x(O) i e a one-to-one . . 
coupling between HAOs and 6HAOs takes place. 

The first-order correction (piyli to an ortho- 
gonalized BBO @I$ is 

(24) 

and contains contributions of both BBOs ‘p(+)j and 
ABOs ~+)k. The expressions for c, V and R are 
given in Eqs. (13) and (9). Sincef < 0 (the relevant 
definition is shown just after Eq. (19), c > 0 and 
(T > 0, both terms of Eq. (24) are negative. Hence, 
the total correction +(‘) is also negative. it follows 
from Eq. (8) that 6;: (v(+)j]p(+)i) and RL = 

(‘P(-)/clP(+)i). Hence, the contributions of the 
BBOs and ABOs proportional to their direct over- 
laps with the BBO under consideration (cp~+)i) 
appear within the first order. As in the case of the 
relevant hamiltonian matrix elements [23], such a 
direct overlap may be described as through-space. 
The magnitude of this overlap evidently decreases 
when the relevant inter-bond distance increases. 
Hence, in common with the LMOs [6!,(ynsider- 
able contributions to the correction ‘p 
be expected only for BBOs q(+)j and A i%S;~: 

pertinent to the nearest environment of the bond 
possessing the BBO under consideration, i.e. ‘p(+);. 
The number of neighboring (germinal) bonds are 
usually constant for all internal and for all external 
bonds in saturated systems and equal to six and 
three respectively. Therefore the transferability of 
the corrections +t:),i should be expected, provided 
that the overlap integrals between the BBO under 
study and the neighboring BOs are transferable. In 
the case of alkanes such an assumption is 
supported by numerous estimations [ 16,17,19]. 
Note that the main difference in the structures of 
the LMOs [6] and OBOs to within the first order 
consists of the non-zero contributions of the neigh- 
boring BBOs to the latter as shown in Eq. (24), 
whereas the relevant LMOs contain the nearest 
ABOs only. This is because the only anti-block- 
diagonal transformation Tct, has been used when 
passing from BOs to LMOs to within the first order 
[6], whereas the transformation (S’)-1’2 leading to 
the respective OBOs contains also the term A,i’2 
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with the non-zero diagonal blocks as shown in 
Eqs. (17) and (12). Thus, the intra-subspace ortho- 
gonalization matrix A(i) -1’2 may be concluded to be 
responsible for the mam differences in the struc- 
tures of LMOs and OBOs. 

The second-order correction to the same OBO is 

ABO 

+ C’P~-)~{(-~‘T)(~R+Y-~QR+) 

+ ifw’}ki (25) 

where the matrices F and W and the functions c 
and d are defined in Eqs. (10) and (13). It follows 
from Eq. (25) and the definition of the matrix F, 
that the contribution of the BBO p(+)j consists of 
the sum of two terms proportional to the elements 
( V2)ji and (RR’)ji~ respectively. The element 

BBO 

Cv2)ji = C(‘P~+)il~(+),)(Lp~+),1~(+II) (26) 
1 

represents the indirect overlap of the BBOs p(+)j 
and ‘p(+)i by means of the BBO io(+ Such an over- 
lap may be described as through-bond [6,23] 
because a definite bond always corresponds to a 
BBO. Accordingly, the element (RR+)ji represents 
the overlap of the BBOs v(+)i and p(+)j by means of 
the ABO v(_)~. Hence, the total gntribution of the 
BBO ‘p~+)j to the correction P~+)~ consists of the 
sum of the separate terms representing the indirect 
overlaps of cp(+)j and p(+)i by means of all possible 
mediators, i.e. the BBOs p(+)[ and the ABOs p(_)k. 
Such a structure of the OBO closely resembles that 
of the LMO of a saturated system to within the 
second order. In common with the LMOs [6], the 
corrections Cp[$ may be expected to decrease when 
the relevant inter-bond distance increases. This is 
because only the common neighbors of the two 
BBOs q(+)j and ‘p(+)I appear to be effective media- 
tors, and the number of such neighbors decreases 
with increasing inter-bond distance. Moreover, the 
constant numbers of the common geminal neigh- 
bors for various pairs of bonds in saturated systems 
[6] lead to the transferability of the corrections 

under discussion. As a result, the OBOs are local- 
ized on the nearest environment of the relevant 
bond and depend on the structure of this part of 
the system only. 

When passing to the basis of HAOs, the linear 
functions of the four elements Xi,. Yi,, Zij and Z: 
appear instead of each element Vii and Ri, as seen 
from Eq. (9) and the relevant expressions for {X} 
become somewhat more involved. Nevertheless, 
because of the above-discussed relation between 
the four elements Xii, Yij,Z;i and ZG and the 
chemical bonds, localized and transferable nature 
is inherent to OHAOs {X}, too. 

4. Analysis of the relevant transformed hamiltonian 

From the known proportionality between the 
overlap and resonance integrals [S] it follows that 
the non-neighboring resonance integrals of satu- 
rated systems may be regarded as first-order 
terms with respect to the neighboring ones [3-71. 
The same is true for the differences between the 
actual values of the neighboring integrals and 
their mean value p [3-71. Let us confine ourselves 
to the case of small (i.e. first-order) differences in 
the values of the Coulomb integrals and introduce 
the respective mean value 0. Such an approxi- 
mation is completely justified for alkanes because 
of the small difference in the electronegativities of 
the C and H atoms [24]. Let us use the parameters cy 
and ,0 as the reference point and the energy unit, 
respectively, and accept the equalities N = 0 and 
,D = 1. Then using the same numbering of HAOs 
as in Eqs. (1) and (2) the initial common hamii- 
tonian matrix Hmay be presented as a sum of zero- 
order (H(a)) and first-order (H(i)) terms, each of 
them containing the (N x N)-dimensional blocks 

where H(a) involves the averaged neighboring 
resonance integrals in the positions (i, N + i) and 
H(i) includes the remaining hamiltonian matrix ele- 
ments. Thus, as with the zero-order overlap matrix 
ScO, shown in Eq. (2) the zero-order hamiltonian 
HcO, represents the common topological structure 



226 V. GineitytelJournal of Molecular Structure (Theochem) 342 (1995) 219-229 

of saturated systems [6]. 
The transformed hamiltonian matrix, i.e. that 

represented in the basis of OHAOs, is defined as 
follows [9- 141: 

fi = S-i/2HS-i12 (28) 

Since the three matrices of the right-hand side of 
Eq. (28) are expressed in power series, the new 
matrix fi may also be presented in the form of a 
series 
_ _ 

H = H(o) + &, + 42, + . . . (29) 

Because of the confinement to the first-order 
terms in the initial matrix H as shown in Eq. (27) 
[3-71, only the first two terms of Eq. (29) 

(30) 

(31) 

i$; = Sc;;‘2Hc,jSc;;‘2 + Sc;;‘2Hc,,S(o;‘2 (32) 

are worth considering. The terms relating to the 
first-order hamiltonian Hcl, and to the first-order- 
overlap matrix S(i, are designated in Eqs. (31) and 
(32) by the superscripts (h) and (s). 

In the BO basis the initial hamiltonian matrix H’ 
takes the form 

(33) 

K=;(A+B+B++C) L=&4-B-Bt+C) 

&;(A-B+B+-c) (34) 

and the relations similar to that given in Eqs. (28), 
(30), (31) and (32) are valid, provided that primes 
are added to all matrices involved. 

The zero-order transformed hamiltonian 
matrices &,J and a’,,,, in the OHAO and OBO 
basis, respectively, may be obtained using Eqs. 
(27) (30) and (33): 

aio, = 
(l+a)-‘I 0 

0 -(l - a)-‘I 
(36) 

It follows from the comparison of Eqs. (35) and 
(27) that fico, and HcoJ are virtually of similar struc- 
ture. Indeed, the identical neighboring resonance 
integrals l/( 1 - g2) and the identical diagonal ele- 
ments (-u)/( 1 - 2) appear in the transformed 
matrix. If the value 0 = 0.7 [19] is accepted, the 
above elements prove to be equal to 2 and -1.4 
respectively, i.e. the resonance integral is doubled, 
whereas the Coulomb integral is raised by -1.4 
relative to the respective values in the HA0 basis 
shown in Eq. (27). These results indicate that only 
the reference point and the energy unit are being 
changed when passing from Hco, to fico,. Again, 
these changes may be easily accounted for by the 
fact that our system to within the zero order 
coincides with the set of non-interacting two- 
level systems. For such a two-level system the 
orthogonalization-invariant eigenvalues in the 
initial and in the orthogonalized basis are [l] 

(a f P) 
&II2 = (1 &0) El,2 = (G f b, (37) 

It follows from Eq. (37) that in order to retain the 
same &1 and c2, & is to be raised and fi is to be 
increased against the initial values o and ,& 

Similarly, the BBO and ABO energies are raised 
by (1 + 0)-i and -( 1 - 0)-l, respectively, when 
passing from Hi,) to fitoj as shown in Eqs. (33) 
and (36). 

Therefore it may be concluded that the topo- 
logical structure of saturated systems is reflected 
either in the two matrices Hco, and Sco, or in the 
single one ace, depending on the basis used. 

Let us turn now to the first-order matrices a;,, 
and fi(i,. First, let us dwell on the matrix a;,, in 
the OBO basis. The first term of this matrix 
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involving the first-order hamiltonian Hii) is 

fi;;’ = (S’);‘*g;,)(s’)$* 

= (1 +(T)_‘K (1 - a*)-“*J 

(1 - fl*)-%+ (1 - a)-‘L 
(38) 

It is seen from Eqs. (33) and (38) that the inter- 
actions of BOs are being changed by the constant, 
i.e. molecular-structure-independent factors when 
passing from BOs to OBOs. Thus, the interactions 
between the BBOs are reduced by (1 + a)-‘, 
whereas those between ABOs are increased by 
(1 -0)-l. 

The second term of the matrix fit,) containing 
the first-order overlap matrix S;,) is 

C=i{(l -a2)-‘(‘4+c)-(1 -cr2)-“*&4-c) 

- a(1 - f12)_‘(B+Bf)} (41) 

It is seen from Eqs. (40) and (41) that the elements 

of the matrix fi&; are the linear functions 

kA;j + 1Bii + mB$ + nCij (42) 

Similarly, the elements of the second term BiFj) are 

UXij + t Yi/ + OZij + qZL$ (43) 

where k, 1, m, n, u, t, o and q are u-dependent con- 
stants. In the first section the four matrix elements 
involved in Eqs. (42) and (43) were demonstrated 
to be the four different non-neighboring resonance 
and overlap integrals pertinent to a definite pair of 

if;‘;;’ = (S’)(,f’*H;(#‘),;‘* + (S’)(1;‘*H;,)(S’)j0;‘* 

-a(1 +0)-V {(1-02)-l - 
= 

((1 - a*)-’ - (1 - ,*)-l’*}R+ g(l - g)-*Q 

and involves the relevant first-order overlap matrix 
blocks V, Q and R multiplied by the constant 
factors. 

In the OHAO basis the respective two terms 
of Ho,, namely fi:F’:, and ii,‘:;, contain the 
homogeneous linear functions of the blocks 
A, B, B + and C, and X, Y, Z+ and Z, respectively, 
with the constant coefficients. For example, 

(40) 

where 

2 = ;{(l - n*)-‘(A + C) + (1 - d)-“*(A - C) 

-g(l -c~*)-‘(B+B+)} 

B=;{-a(1 -o*)-‘(A+C’) 

+ (1 - a*)-“*(B - B+) 

+(l - a*)-‘(B+ B+)} 

bonds. Hence, a non-diagonal element fi(i~~, of the 
total first-order matrix a,,, depends only on the 
four non-diagonal elements Aij, Bij, B$ and Cij of 
the initial first-order hamiltonian H(i) associated 
with the pair of bonds possessing the HAOs xi 
and xi and on the similar four elements of the 
overlap matrix Sci)(Xij, Yij,Zii and ZG) and is 
independent of the remaining parts of the matrices 
H(i) and S(i). Given that the above-mentioned 
eight elements are transferable, the element &cijij 
is also transferable. A similar relation to the 
characteristics of a definite bond may be obtained 
for the diagonal element Hci)i,. 

In Refs. [3-71 it has been demonstrated that the 
blocks A, B, B+ and C of Eq. (27) are of similar 
structure in the sense that their non-zero elements 
stand in the same positions. Otherwise, if A, # 0, 

then B, # 0, B$ # 0 and Cij # 0 and vice versa. 
Indeed, A,, Bij, Bt and Cij belong to a definite 
pair of bonds and if this pair is a neighbor- 
ing one, the four elements are of considerable 
value and vice versa. The analysis of the trans- 
formed hamiltonian fi carried out above allows 
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us to conclude that the matrix fi also contains 
four (N x N)-dimensional blocks of similar con- 
stitution. 

Therefore, both H and fi involve zero-order 
terms of similar structure and first-order terms 
consisting of four blocks with the non-zero 
elements situated in the same positions. More- 
over, the local nature of the relation between the 
hamiltonian matrix elements and the structure of 
the system, and the transferability of the hamil- 
tonian elements pertinent to the identical atoms 
and bonds are inherent to both H and I?. The 
model hamiltonian matrices of alkanes used in 
Refs. [3-71 were based on the above assumptions 
only and these matrices may be looked upon either 
as H or as I?. Since the equations solved in Refs. 
[3-71 were formulated in the orthogonal basis, the 
relevant results should also be looked upon as 
corresponding to the orthogonal basis. 

The above-mentioned orthogonalization- 
invariant peculiarities of the hamiltonian matrix 
may be considered as its main qualitative features. 
Again, the numerical values of the respective 
hamiltonian elements in the initial and in the SO 
basis may differ significantly. Hence, the basis set 
orthogonality assumption for saturated systems 
may be regarded as justified in the qualitative 
respect only, and therefore this assumption is 
acceptable when seeking qualitative results. 

5. Conclusions 

The common topological structure of saturated 
systems manifests itself in the simple and common 
form of the relevant zero-order overlap matrix of 
HAOs. This allows the basis set orthogonalization, 
consisting of passing into the basis of two almost 
orthogonal subspaces of BOs followed by the 
successive inter- and intra-subspace orthogonaliza- 
tion, to be carried out in the general case without 
specifying the size and composition of the system. 
Such a procedure leads to the single expression for 
the respective Lowdin’s orthogonalization matrix 
S-‘I* in the form of a power series and to the 
common peculiarities of the orthogonalized basis 
orbitals. The latter prove to be localized mainly on 
the nearest environment of a definite chemical 

bond, dependent on the local structure of this 
part of the system only, and transferable in the 
case of transferability of the above-mentioned 
structure. 

Furthermore, the orthogonalization-invariant 
qualitative peculiarities of the relevant common 
hamiltonian matrix result from the single expres- 
sion obtained for the matrix S-1/2, and these are 
also associated with the common topological struc- 
ture of saturated systems. The invariant peculiari- 
ties of the hamiltonian matrix allow the basis set 
orthogonality assumption to be accepted in the 
qualitative models of the systems under study. 
Therefore the validity of such an assumption for 
saturated molecules and crystals is associated 
with the specific peculiarities of their structure 
and not with the smallness of the overlap integrals 
as in case of the conjugated molecules [9-l 11. 
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