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Abstract 

The common one-electron density matrix (DM) for saturated organic molecules in the basis of bond orbitals (BOs) 
and the relevant representation matrix of the localized MOs (LMOs) are expected to be interrelated analogously to those 
of alkanes (V. Gineityte, J. Mol. Struct. (Theochem), 288 (1993) 111). Accordingly, a single procedure yielding both 
matrices and implying the feasibility of a unified localized description of saturated molecules is being sought. To this end 
two relevant non-canonical problems, i.e. the commutation relation for the DM and the respective hamiltonian matrix 
and the Brillouin theorem for LMOs, are analyzed and compared. The 2n-dimensional space of BOs for a saturated 
system containing 2n electrons is divided into two n-dimensional subspaces of bonding and antibonding BOs, respec- 
tively. The off-diagonal intersubspace blocks of both the LMO representation matrix and the DM are shown to be 
determined by common equations, whereas the relevant diagonal blocks are expressed algebraically in terms of the off- 
diagonal ones. Solving the above common equations is concluded to be sufficient to obtain the LMOs and DM of 
saturated organic molecules on a unified basis. 

1. Introduction 

The principal features of the electronic structure 
of molecules are commonly expected to resemble 
those of atoms. Accordingly, similar approxi- 
mations are used when solving the relevant 
Schrodinger equations, and it is the canonical 
Hartree-Fock method [ 1,2] that will be mentioned 
here in the first place. The resulting one-electron 
orbitals, i.e. AOs and canonical MOs for atoms 
and molecules, respectively, prove to be delocalized 
over the whole system. The reliability of such a 
common approach to atoms and molecules has 
been verified many times by comparing the results 
obtained with the numerous spectroscopical data. 
Hence, there can be no doubt that the canonical 

MO method allows the electronic structure of a 
molecule as a whole to be described adequately. 

Nevertheless, additional aspects of the electronic 
structure of molecules against that of atoms reveal 
themselves as well, and these are associated mainly 
with local regions in molecules. Thus, numerous 
local characteristics, e.g. chemical shifts in the 
NMR and ESCA spectra [3], are studied experi- 
mentally. Furthermore, certain total characteristics 
of molecules, e.g. dipole moments, polarizabilities, 
energies of formation, etc., are successfully estimated 
as sums of local increments associated with similar 
bonds or functional groups [4-61. 

So far as classical chemistry is concerned, the 
local point of view with regard to molecular 
structure is prevailing here [7]. Thus, the concept 
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of local chemical reactivity forms the basis of the characteristics of molecules related to numerous 
theory of chemical reactions [8]. Moreover, the most observed properties [1,2]. Moreover, in contrast 
fundamental chemical concepts, such as atoms in to LMOs, the DM is a unique characteristic of 
molecules, localized interatomic bonds, etc., originate the given molecule. This, in turn, implies an 
only from the above local point of view. Accord- increased significance both of the LMOs related 
ingly, the concept of electron pairs pertinent to to the DM as close as possible and of the localized 
chemical bonds and lone electron pairs has been approach to the electronic structure of molecules in 
accepted in chemistry for a long time [9]. general. 

It is no surprise in this context that localized 
approaches are also being continuously developed 
in quantum chemistry [4], and these are intended 
mostly for describing the local peculiarities of the 
electronic structure of molecules. 

In the framework of the most popular one- 
electron model, the localized approach consists of 
the employment of the non-canonical MOs under 
certain localization requirements, which are com- 
monly referred to as localized MOs (LMOs) [1,2,4]. 
These orbitals may be obtained as a result of both 
the transformation of the occupied canonical MOs 
into a set of LMOs using various localization 
criteria [4] and direct calculation by means of the 
Brillouin theorem [4, lo- 131. The optimum LMOs 
for saturated systems prove to be composed of the 
main contribution pertaining to a chemical bond or 
lone electron pair and tails extending over the 
neighbouring bonds [ 14,151. 

An especially close relation between the LMOs 
and DM has been established for alkanes [12]. 
Thus, both the DM and the LMO representation 
matrix in the basis of bond orbitals (BOs) proved to 
contain the same combinations of the hamiltonian 
matrix blocks with different coefficients. Otherwise, 
both the LMOs and DM of alkanes consist of the 
same system-structure-dependent matrices as build- 
ing blocks. This result promotes an assumption 
that a single problem for the above common build- 
ing blocks may be formulated and solved instead of 
two separate problems for the LMOs and DM. 

It should be noted here that the greater popu- 
larity of the “a posteriori” ways of obtaining 
LMOs from the canonical MOs gave rise to an 
opinion [4] of LMOs being of a subsidiary nature. 
However, the possibility of obtaining LMOs directly 
on the basis of the Brillouin theorem [4,10-131 
speaks in favour of equivalence between both sets 
of MOs. Moreover, additional advantages prove to 
be inherent to LMOs against the canonical one- 
electron orbitals. Thus, apart from the above- 
mentioned relation of LMOs to the chemical 
concepts (chemical bonds and lone electron pairs) 
[2,4,6], the possibility of deriving the common 
expressions for LMOs of definite large sets of 
molecules, e.g. alkanes [12,13], and the relation 
of the LMO representation matrix to the relevant 
one-electron density matrix (DM) [ 12,13,16] rank 
among these advantages. The latter peculiarity of 
LMOs deserves special attention here. 

Such a common way of obtaining both matrices 
(if feasible) implies a unified localized description 
of the systems under study, wherein LMOs and 
DM play the role of two alternative representations 
of the electronic structure. To discover the above- 
expected common way, the non-canonical problems 
for the LMOs and DM are to be analyzed and 
compared. 

The Brillouin theorem for the orthogonal LMOs 
[4,12,13] serves as the first of these problems. As 
to the DM, this matrix may be obtained either by 
the indirect way of summing coefficients within the 
occupied MOs or by the direct way. The latter con- 
sists of the solution of the commutation equation 
for the DM and the respective hamiltonian matrix 
[ 171, and this equation may be regarded as the non- 
canonical problem for the DM. Therefore, reveal- 
ing the relation between the commutation equation 
for the DM and the Brillouin theorem for LMOs 
becomes important. 

The one-electron DM may be regarded as one 
of the most fundamental quantum-mechanical 

This paper is aimed at accomplishing this scheme 
for saturated organic molecules with alkanes as a 
particular case. To this end the non-canonical 
problems for the relevant DM and LMOs are 
analyzed separately in sections 2 and 3. Common 
equations determining the building blocks of both 
the LMO representation matrix and the DM follow 
from this comparative analysis. The main features 
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of these equations and of their solutions are any saturated organic molecule of tetrahedral local 
discussed in section 4. structure. 

2. The non-canonical problem for the one-electron 
density matrix of saturated organic molecules 

The common form of the Htickel-type model 
hamiltonian matrices for alkanes required when 
stating and solving the non-canonical problem for 
the DM has been constructed in Refs. [12,13,18,19] 
on the basis of taking into account the most 
essential properties of the respective self-consistent 
Fockians. Similar considerations are employed 
here when discussing saturated organic molecules. 

As in Refs. [12,13], the basis of BOs is used. The 
bonding BOs (BBOs) c,++J and the antibonding 
BOs (ABOs) C#+J are defined as eigenfunctions of 
the respective two-dimensional hamiltonian matrix 
blocks in the basis of two sp3-hybrid AOs or one 
sp3-hybrid A0 and one lsu A0 belonging to the 
same chemical bond. The orbitals associated with 
the lone electron pairs of the system under study 
(if any) may also be included in the initial basis 
set. In order to retain the even total number of 
orbitals (2n), being convenient for further deriv- 
ing the expressions for the DM and LMOs, the 
respective number of faked antibonding orbitals 
attributed to the lone electron pairs are also 
assumed to be included in the initial basis set. 
These orbitals are presumed to be situated at 
sufficiently high positive energies so as to exert no 
influence upon the final results. For simplicity let us 
term the whole set of orbitals the BO basis. Let 
us assume also that the 2n-dimensional set of BOs 
is orthogonal. 

Let the first n BOs coincide with BBOs and the 
remaining n BOs correspond to ABOs. Then the 
hamiltonian matrix H is conveniently represented 
in terms of four n x n-dimensional blocks. Diago- 
nal and off-diagonal blocks of this matrix contain 
resonance integrals inside subspaces of BBOs and 
ABOs and those between BOs of different types, 
respectively. In accordance with the above- 
discussed relative values of the hamiltonian matrix 
elements, let the off-diagonal blocks of the matrix 
H be of first-order magnitude compared with the 
diagonal ones. Such a requirement allows zero- 
order resonance integrals inside subspaces of 
BBOs and ABOs and includes the assumptions of 
Refs. [ 12,131 as a particular case. Moreover, zero- 
order intrasubspace blocks are in line with the 
expectations [18,20] about the largest values of 
the resonance integrals between pairs of nearest 
(geminal) BBOs compared to other types of 
non-diagonal elements in the BO basis. 

Let the two diagonal blocks of the matrix H be 
represented as sums of respective zero-order terms 
EC,, and EC_), and of the respective first-order 
terms S and Q, the subscripts “+” and “-” here 
and further referring to BBOs $(+J and ABOs $(_, 
Then the total hamiltonian matrix H for any 
saturated organic molecule takes the form 

H= H(o) + H(1) (1) 

where 

H(o) = 
EC+) O 

0 -E(-) 
(2) 

The first-order magnitude of the interactions 
(resonance integrals) between BOs compared with 
the differences in the BBO and ABO energies was 
the main assumption when constructing the com- 
mon hamiltonian matrix for alkanes [ 12,131. These 
ratios between the matrix elements in the basis of 
BOs originated from the large values of the neigh- 
bouring resonance integrals against the remaining 
non-diagonal elements in the basis of sp3-hybrid 
AOs and 1s” AOs [18-221 and were related to the 
tetrahedral local structure of alkanes. Hence, similar 
assumptions may be accepted also in the case of 

and 

H(l) = 

and the zero- and first-order hamiltonian matrices, 
respectively. Accordingly, the first-order intersub- 
space resonance integrals are contained within the 
matrix R of Eq. (3). The superscript “+” of Eq. (3) 
designates the transposed matrix, while the nega- 
tive sign in front of EC_, of Eq. (2) is introduced for 
convenience. In the case of blocks EC+) and EC_) 

being proportional to the n-dimensional unit matrix 
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ZC~J, the hamiltonian matrix of alkanes suggested in 
Refs. [l&13] follows from Eqs. (l)-(3). 

As with the case of alkanes, no necessity for 
specifying either the structure of blocks within 
Eqs. (2) and (3) or their dimension (n) arises when 
formulating and solving the problems for both the 
DM and LMOs of saturated organic molecules. Let 
us assume only that the energy reference point is 
chosen so that both EC+) and EC_) are negative 
definite matrices [23]. In the case of EC+) and EC_, 
being diagonal matrices, such an assumption 
resolves itself into negative values of the BBO 
energies and positive values for the ABO energies. 

The common expression for the one-electron 
DM (bond-order matrix) P of alkanes and their 
derivatives has been constructed in Refs. [12,13, 
18,191 by means of the so-called density matrix 
formalism. The essence of this method consists of 
solving the following system of equations [17] 

[H,Y]_=O (4) 

Y2 = z (5) 

Spur Y=O 16) 

formulated in terms of the residual charge matrix Y 
connected with P by the relation Y = P - I. The 
notation [. . . , . . .]_ indicates a commutator of 
matrices. 

The different nature of Eqs. (4), (5) and (6) 
should be noted in the first place. Thus, the com- 
mutation condition of Eq. (4) may be considered as 
the main physical requirement determining the 
matrix Y and thereby the DM P. The relation of 
Eq. (4) results from Dirac’s equation in the case 
of the time-independent hamiltonian [ 171. Alter- 
natively, Eqs. (5) and (6) are additional system- 
structure-independent restrictions following from 
the idempotence requirement II2 = II for the pro- 
jector II = ( 1/2)P and from the charge conservation 
condition, respectively. 

The matrix P has been sought in Refs. [12,13, 
18,191 in the form of power series 

P=zfY=z+Y(q+Y(q+Y(q+~~~ (7) 

and general expressions for the corrections Y(k) 
have been obtained using the perturbation theory 
(PT) for the DM [ 171. However, this way of solving 
Eqs. (4)-(6) allows no comparison of the problems 

for the DM and LMOs. That is why a direct way of 
solving Eqs. (4)-(6) for the hamiltonian matrix H 
defined by Eqs. (l)-(3) is proposed here. 

In common with the general PT for DM [ 171, let 
us substitute Eqs. (1) and (7) into Eq. (4), collect 
terms of the same order and impose the zero-matrix 
requirement within each order separately. As with 
the case of alkanes [12,13], let us consider terms to 
within the second order, We then obtain the 
relations 

F(O)> Y(O)]- = 0 (8) 

[H(O)> Y(1)]- + IQ, = 0 (9) 

[H(O), Y(2)]- + W(2) = 0 (10) 

where 

W(l) = [H(l)> Y(O,l- W(2) = IH(l,? Y(l)]- (11) 

Similarly, after substituting Eq. (7) into Eq. (5), 
the relations 

YfO) = z (12) 

[Y(O), Y(l)], = 0 (13) 

[Y(O), Y(2,1+ + Y(1) Y(1) = 0 (14) 

follow. The notation [. . . , . . .I+ indicates an anti- 
commutator of matrices. And finally from Eq. (6) 
it follows that 

Spur Y(k) = 0 (15) 

for any k. 

The matrix Yco) complying with the zero-order 
relations shown in Eqs. (8), (12) and (15) for k = 0 
is 

z 0 
Y(O) = I 1 0 -z (16) 

This matrix determines the zero-order DM P(o) 
(P(o) = Z+ Y(o)) representing the initial occupation 
numbers of BOs equal to 2 and 0 for BBOs and 
ABOs, respectively. The intrasubspace interactions 
contained within the zero-order blocks EC+) and 
EC_) of Eq. (2) exert no influence on the initial 
populations of BOs. 

Let us consider the equation 

[H(O)> Y(k)l- + W(k) = 0 (17) 

including both Eq. (9) and Eq. (10). Let the 



V. GineitytelJournal of Molecular Structure (Theochem) 343 (1995) 183-194 187 

Hermitian correction Yck) be represented in the 
form of four n x n blocks, i.e. 

y(k) = (18) 

After substituting Eqs. (2) and (18) into Eq. (17), 
the zero-matrix requirements for the diagonal 
blocks of the left-hand side of Eq. (17) yield the 
relations 

[E(+)>C(k)l- + W(k)11 = 0 (19) 

[D(k), E(-)I- + W(k)22 = 0 (20) 

whereas the relevant requirements for the off- 
diagonal blocks lead to the relation 

E(+)F(k) + F(k)&, + W(k)12 = 0 (21) 

where w@),(i,j = 1,2) are the respective n x 12 
blocks of the matrix w@) defined by Eq. (11). 
From this definition of w@) as a commutator of 
tW0 Hermitian matriCeS, it fOllOWS that W(k)2i = 
-W&n2. Accordingly, the last of four relations 
resulting from Eq. (17) and containing W(k)2i 
proves to be the complex conjugate counterpart 
of Eq. (21) and is not worth considering. 

The relations shown in Eqs. (19)-(21) belong to 
the matrix equations of the form 

AX+XB=aC (22) 

where X is the matrix being sought and “a” is a 
constant. According to the theory of these equa- 
tions [23], a unique solution is peculiar to Eq. (22) 
if the matrices A and -B possess no common eigen- 
values. Given that such a condition is satisfied and 
the matrices A and B are negative definite matrices, 
the unique solution of Eq. (22) may be presented in 
the integral form [23] 

s 

03 
X=-a eAf C eBf dt (23) 

0 

Therefore, the relations shown in Eqs. (19) and 
(20) and corresponding to the case A = -B possess 
no unique solutions, whereas that of Eq. (21) pre- 
sents the opposite case. As a result, only the off- 
diagonal blocks Fck) of the corrections YckJ may be 
expected to be unambiguously determined by the 
commutation relation of Eq. (4). Alternatively, 
unique diagonal blocks C(k) and DckJ may be 

assumed to follow after invoking the additional 
conditions of Eqs. (5) and (6) resolving themselves 
into Eqs. (13)-(15). 

To make sure this is the case, let us consider the 
first- and second-order corrections separately. 

The blocks of the matrix W(i) defined by Eq. (11) 
are 

w(l)12 = -a W(l)11 = W(l)22 = 0 (24) 

(Eqs. (3) and (16) are used here). Substituting 
Eq. (24) into Eq. (21) and making use of Eq. (23) 
we obtain 

F(i) = -2G(1) (25) 

where 

M 

G(i) = J 
eE(+)’ R eE(-Jt dt 

o (26) 

Accordingly, the relation that the matrix G(i) 
complies with takes the form 

E(+)G(l) + G(I)+, + R = 0 (27) 

To find the diagonal blocks C(i) and Dl,) of the 
correction Y(,, let us turn to Eq. (13). Substituting 
Eqs. (16) and (18) for k = 1 into Eq. (13) we obtain 

C(i) = D(i) = 0 (28) 
It should be noted here that no additional 

conditions for Fclj result from Eq. (13). Besides, 
Eq. (15) is also fulfilled after substituting Eq. (28). 
Moreover, the zero diagonal blocks C(i) and Dcl) 
comply with Eqs. (19) and (20) for k = 1, the latter 
resolving themselves into the commutation require- 
ments for the matrices EC+) and Ccl, and EC_, and 
DC 1 ), respectively. 

As a result, the whole first-order correction Y(i, 
becomes 

0 
Y(,, = -2 

G(1) 
G;, 0 

The diagonal and off-diagonal blocks of this 
correction actually follow from different conditions, 
namely from the requirement of Eq. (5) and from 
the commutation relation of Eq. (4), respectively. 

Let us turn now to the second-order correction 
Yc2,. The blocks of the relevant matrix Wc2, defined 
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by Eq. (11) are 

B’(z)JI = 2(G(++ - RG;,) 

w(2)22 = 2(‘+ - 

W(2)12 = -2v 

where 

R+G(q) (30) 

(31) 

v = sG(l) - G(I@ (32) 

Accordingly, the off-diagonal blocks Fc2) of the 
correction Yc2, result from Eq. (21) for k = 2. 
These are 

F(2) = 92) (33) 

where 

s 

00 

G(2) = 
eE(+Jt Y e&1’ dt (34) o 

and the relation that the matrix Cl,, complies with 
is 

E(+)G(2) + G(2)+) + v = 0 (35) 

The diagonal blocks Cc2, and 0~~) of the matrix 
Yc2, follow from Eq. (14) after substituting 
Eqs. (16), (18) and (29). These are 

C(2) = -2G(qGt,) D(2) = qg$) (36) 

As with Eq. (13), no restrictions for F(2) result from 
Eq. (14). Similarly, Eq. (15) is also fulfilled and C2, 
and 0~~) of Eq. (36) comply with the conditions 
resulting from Eqs. (19) and (20) for k = 2 after 
substituting W~2Jll and Wc2j22 shown in Eq. (30). 
To prove the latter statement, the relation of 
Eq. (27) is to be used. As a result, the whole 
correction Y(.,J takes the form 

Yc2, = -2 
G(I)Gtl) GP) 

Gt2, +lJG(l) 
(37) 

Therefore, analysis of the non-canonical prob- 
lem for the one-electron DM shown in Eqs. (4)-(6) 
indicates that only the off-diagonal blocks Fck) of 
the corrections Y(k) are determined by the physical 
condition of Eq. (4), whereas the diagonal blocks 
CckJ and Z+) result from the additional system- 
structure-independent requirement of Eq. (5). 
Furthermore, using the off-diagonal part of the 
commutation relation shown in Eq. (4) suffices to 

obtain the blocks Fckl and the actual equation 
determining these blocks takes the form 

W(O), Y(k,l- + &4h2 

= W(O), qc)l- + fqk))21 = 0 (38) 

where the subscripts 12 and 21 indicate the off- 
diagonal blocks of the total matrix within the 
braces. The relations of Eq. (38), in turn, resolve 
themselves into Eqs. (27) and (35) for the principal 
matrices G(t) and G(2) containing the dependence 
on the structure of the g&en system. Alternatively, 
the diagonal blocks Cck) and Dckj of the correction 
YckJ prove to be merely certain combinations of the 
above principal matrices G(t) and Gc2). Hence, 
the relations of Eqs. (27) and (35) may be con- 
sidered as the main system-structure-dependent 
equations determining the DM. 

It should be noted that the above result about the 
blocks Cck,, Dck) and FckJ following from different 
conditions is in line with the general conclusions 
drawn in Ref. [ 171. These concerned the commuting 
YckJ+ and anticommuting Y+ with the matrix 
Yco, parts of the total corrections Yck)(Yck) = 
YckJ+ + Yckj_): the term Yck)+ has been established 
to result from Eq. (5), whereas Y(,+ followed from 
Eq. (4). Again, it may be easily shown that in the 
particular case of the matrix Ylo, taking the form of 
Eq. (16), the term Yck.+ acquires a block-diagonal 
form, whereas Y(,+ proves to contain non-zero 
off-diagonal blocks only. 

3. The Brillouin theorem for the LMOs of saturated 
organic molecules 

Let us dwell in this section on the non-canonical 
problem for the LMOs based on the perturbation 
theory and the Brillouin theorem [lo- 131. The latter 
consists of the zero-matrix requirement for the off- 
diagonal blocks of the hamiltonian matrix H’ in the 
basis of LMOs. Let T be the transformation matrix 
from the BO into the LMO basis. Then the trans- 
formed hamiltonian matrix is 

H’ = T-‘HT (39) 

and the Brillouin theorem resolves itself into the 
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requirements 

W’]12 = W’)21 = 0 

or 

(40) 

{ T-‘HT},* = { T-W}21 = 0 (4Oa) 

where the meaning of the subscripts 12 and 21 is 
similar to that of Eq. (38). As in Refs. [12,13], let us 
impose on the matrix T the unitarity condition 

TT+=I (41) 

which serves as an additional system-structure- 
independent requirement within the non-canonical 
problem for LMOs. Similarly to the case of alkanes 
[ 12,131, let us look for the matrix Tin the form of a 
power series with respect to parameters contained 
within the term H(1) of Eq. (1). Since the member 
Hc,,, of Eq. (2) complies with the Brillouin theorem 
from the outset, the zero-order term of the series 
for T may be assumed to coincide with the 2n- 
dimensional unit matrix. Then the series being 
sought takes the form 

T = Z+ Tcl, + Tc2, +. . (42) 

The requirement Tco, = Z contained in Eq. (42) is 
evidently not imperative. Indeed, the unit matrix 
may be replaced here by any unitary matrix involv- 
ing zero off-diagonal blocks. However, the above 
choice of T(O) proves to be essential when relating 
the problems for the LMOs and the DM. 

The equality Tco, = Z represents the coincidence 
requirement between BOs and the respective zero- 
order LMOs. Hence, it implies confinement to the 
class of the BO-like LMOs, and the subsequent 
discussion refers to the Brillouin theorem for the 
orthogonal BO-like LMOs. 

Similarity of conditions shown in Eqs. (5) and (41) 
may also be noted. Thus, because of the equality 
Y+ = Y, the requirement of Eq. (5) may be rewrit- 
ten in the form Y+ Y = Z indicating unitarity of the 
matrix Y. However, an implicit difference between 
the requirements of Eqs. (5) and (41) lies in the 
non-Hermitian nature of the matrix T. 

To obtain further terms of the series shown in 
Eq. (42) let us substitute the latter into Eqs. (40a) 
and (41). Collecting terms of the same order in the 

product Tf T of Eq. (41) we obtain 

Tt,) T(o) = 1 (43) 

T;, + T(I) = 0 (44) 

T;, + T(2) + T$‘(1, = 0 (45) 

These relations are somewhat similar to those 
shown in Eqs. (12)-(14). 

An analogous collecting of terms in the product 
TfHT and imposing the conditions of Eq. (40a) 
within each order separately yields the relations 

V;,Hco, + H(o)+) + Hd12 

= {T&H(o) + H(o,T(,) + &)I21 = 0 (46) 

{ T&H(O) + H(O) T(2) 

+ T;,H(,, + H($‘(q + T&H(ojT(1))12 

= {T@(o) + H(o,T(2) + T;,Hc1, 

+ +,T(I, + Tt,)H(o$‘(1))21 = 0 (47) 

After replacing T;, by -Tcl, on the basis of 
Eq. (44), a new version of Eq. (46) results 

W(O), T(l)]- + H(l)]12 

= W(o), T(1)]- + H(l)]21 = 0 (48) 

Similarly, replacing T& of Eq. (47) by 

-T(2) - T&T(1) in accordance with Eq. (45) 
leads to the equation 

W(o)> T(2)]- + u(2)]12 

= {[H(o), T(2)]- + u(2)]21 = 0 

where 

(49 

u(2) = [H(1), T(1)]- + T;,H(o,T,1, - Tt,)T&o) 

(50) 

Therefore, in the case of an unitary matrix T 
expressed in the form of a power series as shown 
in Eq. (42), the Brillouin theorem becomes equiva- 
lent to the relation 

{iH(0), T(k)l- + U(k)h2 

= W(o)> T(k)]- + U(k))21 = 0 (51) 

where U(1) = Hc,, and Uc2, is defined by Eq. (50). 
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Comparison of Eqs. (38) and (51) shows that 
both relations are of similar form. This promotes 
an expectation that the off-diagonal blocks of the 
corrections Tck, are determined by Eq. (5 l), whereas 
the relevant diagonal blocks follow after invoking 
Eqs. (44) and (45). 

To make sure this is the case, let us represent the 
correction TckJ in terms of four II x n blocks 

T(k) = M(k) %) ! ! &4 ‘h 
(52) 

Different off-diagonal blocks are introduced in 
Eq. (52) in connection with the non-Hermitian 
nature of the matrix Tck,. 

It is noteworthy that the off-diagonal blocks 
both of the matrix W(i) defined by Eq. (11) and 
shown in Eq. (24) and of U(i) = H(i) shown in 
Eq. (3) are proportional to the matrices R and 
R’. This proportionality results from the simple 
structure of the matrix YcO, of Eq. (16). Indeed, 
only the signs of blocks of the matrix iY(i, change 
after multiplying it by YcO, when building up the 
matrix W(i) in accordance with Eq. (11). As a 
result, the matrices R and R+ keep taking the off- 
diagonal positions when passing from HQ, to FVci,. 
The established proportionality between the off- 
diagonal blocks of matrices Wcr, and U(i) con- 
tributes significantly to the implicit similarity of 
Eqs. (38) and (51). 

After substituting Eq. (52) for k = 1 into 
Eq. (51), the two relations of the latter take the 
form 

E(+,&, + &)E(-) + R = 0 (53) 

-E(_,&, - ‘y@~+, + R+ = 0 (54) 

Eqs. (53) and (54) belong to the matrix equations 
shown in Eq. (22) and the relevant unique solutions 
are 

N(l) = G(1) K(I) = -G;) (55) 

It should be noted that in contrast to Eq. (13) the 
relation shown in Eq. (44) does not determine the 
unique blocks M(i) and L(i) of the matrix T(i). The 
reason for that is the non-Hermitian nature of 
the matrix Tcl,. As with the case of alkanes [12], 
zero matrices M(,, and L(i) (M(i) = L(i) = 0) 
follow from Eq. (44) after accepting additional 

requirements 

M?1, = MU, L?;) = L(1) (56) 

Accordingly, the total matrix Tcl, takes the form 

T(I) = (57) 

which proves to be as close to Y(i) of Eq. (29) as 
possible. 

Substituting Tcl) from Eq. (57) into Eq. (50) 
shows that zero off-diagonal blocks are inherent 
in the two last terms of the expression for Ut21. 
This allows the matrix Uc2, to be replaced by 

u[z, = W(i), T(l)]- (58) 

and the matrix U[z) proves to be defined similarly 
to WQJ of Eq. (11). Furthermore, the off-diagonal 
blocks of U[z, coincide with the matrices Vand Vf 
of Eq. (32). The reason for that is the similarity of 
Y(i) and Tcl, evident from comparing Eqs. (29) and 
(57). Then the relevant two equations resulting 
from Eq. (51) for k = 2 and determining the off- 
diagonal blocks ZVc2, and KQ, of the second-order 
correction Tc2, are 

q+,q2, + N(2)45-) + v = 0 (59) 

4_)K(2, - I+)E(,) + v+ = 0 (60) 

The unique solutions of Eqs. (59) and (60) may be 
expressed in terms of the matrix GcZ, defined by 

Eq. (34) 

42, = G(2) 42) = 3) (61) 

Likewise, from both Eq. (45) and the additional 
requirements 

M(2) = M;, L(2) = q, (62) 

it follows that 

1 
M(2) = -jG(1)Gt,) 

1 
L(2) = -TG;;jG!I) (63) 

As a result, the total matrix Tc2, takes the form 

T(2) = 
- &(l,qi) GP) 

-% 
-lG+ G 

2 (1) (1) 

(64) 

It may be concluded, therefore, that the off- 
diagonal blocks N(k) and K(k) of the correction Tckj 
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are determined by the physical condition shown in 
Eq. (51) whereas the diagonal blocks follow from 
the unitarity requirement of Eq. (41). However, in 
contrast to Eq. (38), the relation of Eq. (51) 
involves not only the Brillouin theorem, but also 
the additional unitarity requirement. This indicates 
an essential role of the latter requirement when 
relating the problems for LMOs and the DM. 

The relations of Eqs. (53) (54) (59) and (60) 
resulting from Eq. (51) resemble Eqs. (27) and 
(35) of the previous section. Furthermore, the 
equality 

K(k) = -Nl’k, (65) 

for k = 1,2 follows from Eqs. (44) and (45). Hence, 
solving Eqs. (53) and (59) and making use of 
Eq. (65) yields Eqs. (55) and (61) without regard 
to Eqs. (54) and (60). Again, Eqs. (53) and (59) 
coincide with Eqs. (27) and (35) respectively. 

Therefore, common system-structure-dependent 
equations shown in Eqs. (27) and (35) are inherent 
in the non-canonical problems for both the LMOs 
and the DM. Solving Eqs. (27) and (35) or using 
the respective integral solutions shown in Eqs. (26) 
and (34), allows the principal matrices G(i) and GC2) 
to be obtained, to which the off-diagonal blocks of 
the corrections YCk, and T(k) are proportional. The 
diagonal blocks of these corrections are expressed 
algebraically in terms of the same matrices GC1) and 
Gc2). Hence, if Eqs. (27) and (35) are solved for a 
given molecule, the corrections inside the LMOs 
and the DM may be obtained on a unified basis. 
This implies the feasibility of a unified localized 
description of saturated organic molecules, 
wherein LMOs and the DM play the role of two 
alternative representations of electronic structure. 

4. Discussion of tbe main features of the unified 
localized description of the electronic structure of 
saturated organic molecules 

As is seen from Eqs. (7), (16), (29), (37), (42), (57) 
and (64), both the DM P and the LMO representa- 
tion matrix T contain the same matrices Ccl), GC2), 
G~I~~,j and G&JG(t) as building blocks. Hence, the 
LMOs and the DM rows (columns) of saturated 
organic molecules prove to be interrelated and 

characterized by the same dependence on the 
structure of the system as was the case with alkanes 

WI. 
The matrix qi, determines both the first-order 

tails of the occupied LMOs containing ABOs and 
the bond orders between BBOs and ABOs, whereas 
the matrix G& causes the analogous second-order 
quantities. Similarly, the matrix G~l~~ij describes 
the tails of the occupied LMOs containing BBOs 
and the bond orders between the latter, whereas 

cjl,G,l) represents the tails of vacant LMOs con- 
taming ABOs and the bond orders between ABOs. 

Let us discuss the dependence of the matrices 
G(i) and Gcz) on the hamiltonian matrix blocks 
EC+,, EC_), R, S and Q. Three cases may be 
distinguished here: 

(1) The case of alkanes described by the matrices 
EC+, and EC_) proportional to the n-dimensional 
unit matrix [12,13], i.e. 

El+, = E(_, = pz (66) 

where p is the negative energy unit. (Energies of all 
BBOs and of all ABOs are assumed to be similar 
for alkanes and the intrasubspace interactions are 
assumed to be of first-order magnitude.) In this 
case Eqs. (27) and (35) may be solved algebraically 
and we obtain 

G;;; = -& 
w G@) = I (SR - RQ) (2) 4~2 (67) 

where the superscript (a) refers to the case of 
alkanes. The elements of these matrices are 

G;;;., = 6’“’ - 
I 

-‘Ril = -+ 
(l)li - 243 

ABOs 

S@jl - C RikQkl 
k 

(68b) 
where the superscripts i andj describe BBOs, while 
k and I refer to ABOs. 

Properties of the matrices Giyi and Giii shown in 
Eqs. (67) and (68) have been studied in Ref. [12]. 
Thus, the element G$/ proportional to the respec- 
tive hamiltonian matrix element Ri and inversely 
proportional to the difference (2p) between the BBO 
energy and the ABO energy has been concluded to 
describe the direct through-space interaction 
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between the BBO @+ji and ABO +(_)l. The magni- 
tude of this interaction was expected to decrease 
rapidly when the relevant interbond distance 
increases. Alternatively, the element G$/ proved 
to represent the indirect interaction of the same 
BOs by means of BBOs $(+jj and/or ABOs $c_)~ 
playing the role of mediators. This interaction was 
expected to be of a more long-range nature com- 
pared with the through-space one. As is seen from 
Eq. (68b), the intrasubspace interactions contained 
within the matrices S and Q play an essential part 
in the formation of the indirect interaction between 
the BBO $(+J~ and ABO #(_)I. 

(2) The case of molecules described by diagonal 
matrices EC+, and EC-J, i.e. by intrasubspace inter- 
actions of first-order magnitude. Explicit expressions 
for 

? 
articular elements of the two relevant matrices 

G(I1), and G&, but not for the matrices themselves, 
fo low in this case from Eqs. (26) and (34) ‘1 

Gcd). = ,-g+W _ _ Ril 
(l)ll (‘)li - E(+)i + E(_)l 

G(d), = ,-$W _ 1 
w c2)li - E(+)i + E(_), 

BBOs 
4jRjl 

ABOs 

c c 

Rik Q/cl 
X - 

i E(+), + &)I k E(+)i + E(-)k 

(69b) 

where the superscript (d) refers to the case of diago- 
nal matrices E(+J and EC_, with the elements EC+), 
and El_,/. Comparing Eqs. (68) and (69) shows that 
cases (1) and (2) differ only in denominators of the 
relevant expressions for the matrix elements. As a 
result, the conclusions referring to case (1) hold 
true for case (2) as well. 

As is seen from Eqs. (72) and (73), alterations of the 
occupation numbers against the respective initial 
values equal to 2 and 0 for BBOs and ABOs, 
respectively, are determined by sums of contribu- 
tions associated with the direct interactions of the 
BBO (ABO) under study and the remaining ABOs 
(BBOs). Hence, the additive nature of the occupa- 
tion numbers may be concluded on the basis of 
Eqs. (72) and (73) provided that the matrices 
EC+, and EC_, are diagonal. 

(3) The most general case of molecules described From Eqs. (72) and (73) it follows also that 
by arbitrary negative definite matrices EC+) and changes in the occupation numbers of BOs when 
EC_,. No simple relation between the elements of building up the molecule are determined by the 
the matrices G(t) and G(2), on the one hand, and interactions between BOs of different types 
that of the blocks S, R, Q, EC+, and EC_,, on the (BBOs and ABOs). This conclusion may be consid- 
other hand, may be established in this case. Hence, ered as a generalization of the relevant rules for 
the element G(t)il may not be interpreted as a direct two-level systems. Indeed, interactions between 
through-space interaction between the BBO $(+)i either two occupied or two vacant orbitals are 
and the ABO #(_)r. Accordingly, the interaction known to lead to no charge transfer, whereas inter- 
between these BOs may be expected to be of a actions between an occupied and a vacant orbital 
non-local nature in this case. present the opposite situation. When discussing 

Let us consider the occupation numbers 
(populations) of BOs. These follow from the 
diagonal elements of the matrices PcO) = Z+ Ycol 
and Yc2, shown in Eqs. (16) and (37). Thus, the 
populations of the BBO d(+)i and the ABO 4(_jrn 
are 

ABOs 

BBOs 

x(-)m = 2 C (Gcl)im)’ 
i 

(70) 

(71) 

In case (2) the expressions for G$) and G&, 
shown in Eqs. (69a) and (69b) may be substituted 
into Eqs. (70) and (71). We then obtain 

and 

BBOs 

x;ym = 2 c (&j2 

i CE(+)i + E(-)m)2 
(73) 
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saturated organic molecules we have to work with a 
set of n initially occupied BBOs and with a set of n 
initially vacant ABOs. 

Let us now look for the relations between the 
occupation numbers of BOs Xc+ji and Xc_jM and 
the respective LMOs. Let us consider the general 
case (3) of arbitrary negative definite matrices EC+) 
and EC_). The occupied LMO Q(+)i to within first- 
order terms follows from Eqs. (42) and (57) and 
takes the form 

ABOs 

Q(+)i = 4(+)i - C d+)jCt,)h 

1 

(74) 

As in Ref. [12], let us define the delocalization 
coefficient D~+)i of the LMO qc+)i 

ABOs 

D(+)i = C (ci,)li)* 
I 

(75) 

Then the occupation number Xc+ji of the BBO 4(+)i 
shown in Eq. (70) proves to be related to the 
delocalization coefficient Dc+)i 

x(+)i = 2(1 - D(+)i) (76) 

Hence, the population of the BBO $(+I~ lost when 
making up the LMO 9 (+)i appears to be propor- 
tional to the total delocalization of the latter. 
Accordingly, for an ABO 4(_)m we obtain 

X(-,m = 2&n (77) 

where 

BBOs 

D(-)m = C (G(l)im)* (78) 

is the delocalization coefficient of the vacant 
LMO ‘I?_),. Hence, the population Xc_,,,, that 
the ABO 4(-j, acquires when making up the 
respective LMO !IJ_J~ is proportional to the total 
delocalization of this LMO. 

Therefore, the relations between the populations 
of BOs and the extent of delocalization of respec- 
tive LMOs established in Ref. [12] for alkanes are 
valid for any saturated molecule. 

The explicit interrelations between the cor- 
rections Y(k) and Tck, obtained in Ref. [ 121 for 

alkanes 

Y(1) + T&Y(0) -t Y(O)T(l) = 0 (7% 

Y(2) + Y(O) T(2) + q, Y(O) 

+ T;, Y(o) Tp, + T $‘(I) + Y(I)T(I) = 0 (80) 

also prove to be valid for any saturated molecule. 
Coincidence between the occupation numbers of 
BOs and those of respective LMOs suffices to 
prove this statement. Indeed, no more is required 
here to substitute Eqs. (7) and (42) into the product 
T’PT describing the DM in the LMO basis, and 
then to use the equality 

T’PT = Z+ Ycol (81) 

which implies zero-matrix conditions for the 
transformed corrections Y[i) and Y[2). 

Let us eliminate T;, and T& from Eqs. (79) and 
(80) on the basis of Eqs. (44) and (45) as was per- 
formed in the case of Eqs. (46) and (47). We then 
obtain 

[Y(o), +,I- + Z(k) = 0 

instead of Eqs. (79) and (80), where 

(82) 

Z(1, = Y(1) (83) 

Z(2) = P’(I)> T(I,I- 

+ q, Y(O) T(1) - q, T(1) Y(O) + Y(2) (84) 

Comparing Eqs. (82) (17) and (51) indicates a simi- 
larity of these equations. As with Eqs. (17) and 
(51), the relation of Eq. (82) may be shown to deter- 
mine the off-diagonal blocks of the corrections Tck, 
in terms of blocks of the corrections Ylkj. 

Therefore, equations for LMOs with respect to 
DM instead of the hamiltonian matrix may be 
formulated and these resemble the relevant equa- 
tions of Eq. (51) based on the Brillouin theorem. 
However, in contrast to Eqs. (17) and (51) con- 
taining the block-diagonal matrix Hcoj, Eq. (82) 
involves the diagonal matrix Ycoj of Eq. (16). 
Hence, Eq. (82) may be solved algebraically for 
any saturated organic molecule. This gives rise to 
the mutual proportionality between the respective 
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blocks of the corrections YtkJ and TCkj seen from 
comparison of Eqs. (29), (37) (57) and (64). 

On the whole, the interrelations between the 
LMOs and the DM of saturated molecules dis- 
cussed in this section also contribute to the equiva- 
lence of the two localized representations of the 
electronic structure. 

5. Concluding remarks 

As is seen from the above analysis, the different 
initial problems for the LMOs and the DM become 
similar after taking into account the specific struc- 
ture of the hamiltonian matrix for saturated 
organic molecules. The block-diagonal form of 
the zero-order term HcO, and the constitution of the 
zero-order corrections YcO, and T(o) play the most 
important part in the formation of this similarity. 
As a result, common equations determining the build- 
ing blocks CC11 and GC2, of both the LMOs and the 
DM follow, and these prove to be the only system- 
structure-dependent equations within the relevant 
noncanonical problems. Therefore, a single physical 
condition determining the electronic structure of satu- 
rated organic molecules may be assumed to underlie 
both the commutation relation for the DM and the 
Brillouin theorem for the orthogonal LMOs. 

The above investigation also shows that the 
commutation relation of Eq. (4) contains excessive 
requirements relative to that which is sufficient for 
obtaining the unique DM of saturated molecules. 
Indeed, the zero-matrix condition for the off- 
diagonal blocks of the commutator [H, yl_ suffices 
to determine the DM. Again, additional require- 
ments, such as the unitarity condition and the 
equality TcO, = Z, prove to be necessary when refor- 
mulating the Brillouin theorem into the form simi- 
lar to the off-diagonal part of the commutation 
relation. As a result, it is the set of the orthogonal 
BO-like LMOs that serves as an alternative to the 
DM when describing saturated organic molecules 
in a localized way. 

In contrast to the canonical eigenvalue problems 
for the hamiltonian matrices, different roles of 
the diagonal intrasubspace blocks and of the off- 
diagonal intersubspace blocks are revealed in the 
non-canonical problems under discussion. Thus, 

equations determining the principal matrices Gcl) 
and GCZ) follow from the off-diagonal blocks both 
of the commutator [H,y3_ and of the transformed 
hamiltonian matrix T+HT. Again, it is the off- 
diagonal blocks of the corrections Y(k) and T(k) 
that follow from these hamiltonian-containing 
requirements. Therefore, the physical conditions deter- 
mining the electronic structure of saturated organic 
molecules may be concluded to act between the sub- 
spaces of BBOs and ABOs and not inside the latter. 
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