
THEO 
CHEM 

ELSEVIER Journal of Molecular Structure (Theochem) 430 (1’998) 97-104 

Total energies of alkanes in terms of through-space and through-bond 
interactions. Analysis of the one-electron density matrix 

V. Gineityte 

institute of Theoretical Ph.wics and Astronomy, Costauto 12. 2600 Vilnius. Lithuanicl 

Received I September 1997; accepted 12 September 1997 

Abstract 

The total energy of alkanes has been expressed in terms of two principal matrices G ,I) and G,?) introduced previously [V. 
Gineityte, J. Mol. Struct. (Theochem), 343 (1995)183] and describing the direct (through-spat:) and indirect (through-bond) 

interactions of bond orbitals (BOs). As a result, the stabilization energy of an alkane versus the respective set of isolated bonds 
has been related to sum of squares of the through-space interactions over the whole molecule. The common one-electron density 
matrix (DM) of alkanes containing the same matrices G,, , and G,*, has been transformed into the basis of sp’-hybrid AOs of 
carbon atoms and I sn AOs of hydrogen atoms. Analysis of this new representation of the DM allowed the stabilization energy 
to be alternatively expressed as spur of the so-called rebonding matrix. This matrix is among the building blocks of the 
transformed DM and describes redistribution of bond orders when making up an alkane molecule. In this connection, stabiliza- 
tion of alkanes has been concluded to be due to the rebonding effect. The extent of additivity of the stabilization energy with 
respect to contributions of separate bonds also has been studied. 0 1998 Elsevier Science B.V. 

Kewords: Bond orbitals; Density matrix; Alkanes 

1. Introduction 

Total energies are among the most popular 
quantum-chemical characteristics of molecules. In 
addition, these are directly comparable to experi- 
mental data, viz. to heats of formation and/or atomi- 
zation (see ref. [I]). 

The observed heats of formation of alkanes [2] are 
known to be expressable as sums of almost transfer- 
able bond increments [3,4]. This fact usually serves 
to substantiate the so-called localized models for 
these molecules [4]. Moreover, heats of formation 
of normal alkanes linearly depend on the number of 
carbon atoms. Finally, the branched isomers (if not 

overcrowded) are more stable as compared to the 
respective normal alkanes [2,4]. 

The Hiickel type model along with the usual per- 

turbation theory (the PM0 method) [3,4] has been 
successfully applied for interpretation of the depend- 
ence of heats of formation of alkanes upon their 
structure. Algebraic expressions for total energies 
also have been studied in the framework of the 
above-mentioned approach. It has been shown that 

the first order correction Et,, of the total energy E 
vanishes, whilst the second one (E(2)) contains a sum 
over pairs of bonds [4]. Given that the resonance 
parameters are only taken into account between the 
nearest-neighbour (geminal) bonds, the corrections 

0166.1280/98/$19.00 0 1998 Elsevier Science B.V. All rights reserved. 
P/f SO1 66- 1280(97)00390-4 



98 V. GineitytdJournal of Molecular Structure (Theochem) 430 (1998) 97-104 

E (2) describe the above-enumerated experimental 

regularities in the heats of formation of alkanes fairly 
well. 

New possibilities for interpretation of total energies 
of alkanes are likely to follow from the results 

of Refs [5-10). In these contributions a common 
Hamiltonian matrix (H) has been constructed for 

alkanes and the relevant common expression for the 
one-electron DM P has been obtained by means of 

perturbations theory (PT) in the general case without 

specifying the structure of the particular compound. 

The total energy E of any quantum-mechanical 
system is known to be related to the respective DM 

(E = Spur(PH)) [ 11,121. In this connection, a common 
expression for the total energy of alkanes becomes 

feasible, and this energy might be related to definite 
peculiarities of the common DM. Otherwise, the total 

energy and the common DM of these molecules are 
both likely to be interpretable in the same terms. 

The most appropriate way of doing this, however, is 

determined by the choice of the initial basis set. Thus, 
on the basis of bond orbitals (BOs) the common DM 
of alkanes (P’) has been expressed [8] in terms of two 
principal matrices G (, ) and GC2) describing the direct 
(through-space) and indirect (through-bond) inter- 
actions of BOs. The very concept of these interactions 

has been suggested in Refs [ 13- 151 and used for inter- 
pretation of photoelectron spectra of molecules con- 
taining saturated hydrocarbon fragments [ 13-211 and 
of localized MOs of saturated organic molecules in 

general [8,9,22,23]. Application of these terms for 
interpretation of the total energy of alkanes is 

among the main aims of this paper. 
The sp”-hybrid AOs (HAOs) of carbon atoms and 

1s~ AOs of hydrogen atoms make an alternative 
basis when studying the common peculiarities of 
the electronic structure of alkanes [5-71. Use of this 
basis allows intrabond characteristics (e.g. bond 
dipoles) to be studied more easily as compared to 
the basis of BOs. On the whole, the common DM of 
alkanes in the basis of HAOs (P) describes the details 
of the electron density distribution in a far more 
convenient way as compared to the DM P’. In this 
connection, a relation of the total energy of alkanes 
to certain peculiarities of the DM P also seems to be 
desirable. 

The above-mentioned DM of alkanes, P’, may be 
evidently transformed into the basis of HAOs and 1 sn 

AOs provided that BOs are defined just in this basis. 
However, new combinations of the principal matrices 

GCI, and GC2) including their complex-conjugate 
counterparts are likely to arise within the DM of 

alkanes after this transformation. These combinations, 
in turn, may be expected to represent new types of 
intramolecular interactions being expressed in terms 

of the through-space and through-bond ones. Then, 

the DM of alkanes P and thereby the total energy E 
are likely to be directly determined just by the above- 

mentioned composite interactions. In this connection, 
revealing these new interactions and using them for 
interpretation of both E and P is also an aim of this 
paper. 

2. Algebraic expressions for the common DM and 
the total energy 

Let us start with the common model Hamiltonian 
matrix of alkanes (H) in the basis of HAOs of carbon 
atoms and Len AOs of hydrogen atoms [5-71. For 

simplicity let us call them both the HA0 basis. To 
construct the matrix H, the Hiickel type model 
based on taking into account the most essential prop- 
erties of the respective self-consistent Fockians will 

be used. 
In this basis the non-neighboring resonance inte- 

grals and the differences between both the various 

neighboring resonance integrals and between the 
diagonal elements Hii of the matrix H may be con- 
sidered [5-7,10,24-261 as first order terms with 
respect to the mean value (PO) of the neighboring 

resonance integrals (see also Section 5). The averaged 
diagonal element (ao) and the above-defined para- 
meter PO will be used as the reference point and 
energy unit, respectively; the equalities (~a = 0 
and PO = 1 will be accepted. 

Let us divide the initial 2n-dimensional basis set 

of HAOs (x) (n stands here for the number of 
bonds in alkane) into two n-dimensional subsets (x’ ) 

and (x”) so that the strongly overlapping pairs of 
the neighboring orbitals find themselves in the 
different subsets. Furthermore, let us enumerate 
the basis functions in such a way that the neighbor- 
ing pairs of orbitals acquire the coupled numbers i and 
II + i. Then the initial Hiickel type Hamiltonian 
matrix (H) for any alkane in the basis {x) may be 
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presented as a sum of zero order (H(O)) and first order 
terms (H,,,), the former containing the averaged 
neighboring resonance integrals equal to 1 in the posi- 
tions (i,n + i), and the latter involving the remaining 

terms 

where I is the n-dimensional unit matrix, and A, B and 
C are n x n-dimensional matrices corresponding to 
subsets {x’ ) and (x”) and their interaction, respectively. 
The superscript ‘ + ’ designates the transposed matrix. 

Let us define n bonding BOs (o,+)~ (k = 1,2.. .n) and n 
antibonding BOs p(_jrn (m = n + 1,n + 2,...2n) as 
normalized sums and differences of pairs of HAOs 

belonging to the same chemical bond ]9,10]. It is 
now convenient to transform the matrix H of Eq. (I) 
into the basis of BOs, to write the relevant DM P’ in 
terms of matrices G(,, and G(,, [8] and thereupon to 
retransform the matrix P’ into the HA0 basis again. 

The relevant transformation matrix U takes the form 

and the new Hamiltonian matrix H’ = U’HU becomes 

where 

s= $(A+C)+(R+B+)I;Q-$(A+C)-(R+R+)I 

R=;[(A-C)-(R-R+)] (4) 

The one-electron DM P’ corresponding to the 
Hamiltonian matrix H’ has been obtained in Ref. [S] 
in the form of power series with respect to parameters 
included into the matrix H '(,), The first three terms of 
these series are 

P' (2) = - 2 
G(I,GlL Go, 

6, -‘%G,,, 
(5) 

The principal matrices G(,, and Gtz, are 

I 1 
GoI= - 5R; G,,,= -$SR-RQ) 

and their elements take the form 

' G(2,,m = z B!?sS,Ri,,- AT$V R,,Q,, j r 

(6) 

The matrix G, I> proportional to the matrix R con- 
tained within Eq. (4) evidently describes the direct 

(through-space) interactions between bonding BOs 
(BBOs) and antibonding BOs (ABOs), whereas G,?) 
represents the indirect (through-bond) interactions 

of the same BOs. Both BBOs p(+y and ABOS (P~--)~ 
play the role of mediators in the indirect interaction. 

After retransforming Eq. (5) into the HA0 basis, 
we obtain the respective terms of the DM P 

T+Y2, 
0 

P(2) = 

M +2G,,) 

M+ZG;>; T-S, 
(8) 

where 

l-l,, , = - 2G;;) 

l-Ic2, = - 2G;,, 

(9) 

(10) 

T=[G;I,G,,,l_= -;[(A-C).(B-B+)I_ (11) 

M=-GI,,G;,-G&I=-$((A-C)2-(l?-B+)2) 

(12) 

and the notation [ - - . - - J stands for the commutator 
* 

of matrices. The matrices GTkj and GckI (k = 1,2) are 
the symmetric and skew-symmetric parts of the 
matrices Gck, defined as follows [27] 

1 0 1 
G;k, = $Gik, + G;k$ ‘+,, = $Gc”i -G&j) (13) 
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Using eqns (4), (6) and (13) we obtain 

1 0 1 
CT,,= - $A-C), G(,,= -&B-B+) 

1 
GT2)= - $CB+B+C-Al?+ -BA), 

1 

(14) 

G~~,=8((B+)2-B2-[A,C]_). (1% 

The total energy of alkanes E may be defined as 

111,121 

E =Spur(PH). (16) 

After substituting the power series for P and for H an 
analogous series for E may be obtained. The first three 

terms of the latter are 

E(O) = %urW~o$‘(o,) = 2n, 

E(I) =Spur(H(#(I) +Hu+‘(o$ 

=2SpurS=Spur(A+B+B++C) 

and 

E(2) =SP-(H(I+‘(IJ +H(o$‘($= 

=2Spur(G~I~G;;,+G~~G~I,)= 

(17) 

(18) 

(194 

(19b) 

BBOs ABOs 

=4 T F (Gc,j;d2= (19c) 

=$pur((A-C)2-(B-Bt)2). (19d) 

Thus, we have derived the expressions for the DM P 
and for the total energy of alkanes in terms of matrices 
G,,, and G,z,. It is seen that definite combinations of 
these matrices actually play the role of building 
blocks of the DM P. These blocks will be analysed 
separately in the next Section. 

The increment of Eq. (20) represents the interaction 

between the BBO p(+)i and ABO c~(-,~ of the ith bond 
by means of either the BBO pctli or ABO ‘pc-u of the 
jth bond. This interaction depends on the mutual 
arrangement of the ith and jth bonds only and it is 
independent of the rest of molecule. 

3. Interpretation of the one-electron DM of alkanes 

To establish the meaning of the matrix T defined 
by Eq. (1 l), let us turn to Eq. (5). It is seen that the 
population of the BBO Pi lost when making up 
the molecule and that acquired by the ABO pc-,i are 

PI 

The zero order correction PCO, of the DM P involves AX(+ -2iG,,,G&Iiiv A-J$-);=2tG~,G~I,lii (21) 

elements equal to 1 in the positions (in + i), and these 
correspond to the neighboring pairs of HAOs. Hence, 

alkanes resemble a set of n isolated chemical bonds to 
within the zero order approximation. 

The matrix II,,, of the correction PC,, may be called 

the first order polarization matrix. Indeed, dipole- 
like populations + II,,,ii follow from this matrix for 
strongly interacting pairs of HAOs (xi’ and x~+~“). The 

relevant bond dipoles are determined by the respec- 
tive local differences in Coulomb integrals (Aii - Cii). 
Again, the dipole moment + II,t,;i of the ith bond is 
proportional to the direct interaction between BOs of 

this bond cp(+); and ~p(_,~. It is noteworthy that GTk,i; = 0 
and thereby GFk)ii = G(k)ii follows from Eq. (13) for 

both k = 1 and k = 2. This also implies zero first 
order corrections to the neighboring bond orders of 

HAOs. 
Let us turn to the second order correction PC2). The 

matrix IIc2, defined by Eq. (10) may be described as 
the second order intrabond polarization matrix. Thus, 
elements of this matrix of opposite signs ( 2 IIcz,ii) 
correspond to HAOs xi’ and xn+i” belonging to the 
same bond. In contrast to the first order polarization, 
however, the elements IIcz,ii contain indirect inter- 

actions between BOs p(+)i and ‘Pi of the ith bond 
by means of BBOs and ABOs of other bonds. 
Hence, the second order dipoles are of non-local 

nature in alkanes. 
Any element IIcz,ii is additive with respect to partial 

increments of separate bonds. Thus, the contribution 

of the jth bond to the second order dipole of the ith 
bond ( ? IIcz,ii) is 

~~;ki = - ~(S,Rji -RiiQji> = $C,B,i -BijAii) (20) 
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respectively. Then the diagonal element Ti, of the 
matrix T describes a half of the total population of 
the ith bond lost (acquired) when building up the 
alkane molecule. Therefore, the diagonal elements 

of the matrix T describe redistribution of population 

among bonds, and the matrix T may be called the 
interbond charge transfer matrix (Note that SpurT = 
0 and the charge conservation condition proves to be 

fulfilled). 
As with the bond dipole t- I& the element T,, is 

additive with respect to partial increments of separate 

bonds. The contribution of the jth bond to the element 
Ti; takes the form 

Tjl’= a{ (R;i)2 -(Rij)2} = ~(A~-Cii)(B,-B,) (22) 

The increment TjJ’ depends on the difference between 

squares of the direct (through-space) interactions of 

the BBO p(+); and ABO qt_)j , on the one hand, and 
that of the BBO (p,+) and ABO Cp(_)i* on the other hand. 

Let us dwell now on the matrix M defined by 
Eq. (12). The diagonal elements of this matrix 

describe alterations in the bond orders between the 
neighboring pairs of HAOs xi’ and xn+;” after build- 
ing up the molecule. These elements are 

Ml<= - C ((Gclui)2+(G(l)d)21 
i 

=-~~{(1Pj;)2+(R,~Z) <O (23) 
I 

It is seen that the correction M,i to the neighboring 

bond order of the ith bond is determined by the sum 
of squares of the direct (through-space) interactions 
of BOs of this bond with all the remaining BOs of 
the molecule. In addition, the correction M;i may be 
related to the total absolute value of the charge 

transfer referring to BOs of the ith bond. Lowering 
of the neighboring bond order against 1 is also seen 
from both Eq. (8) and the negative sign of M,i. 

Furthermore, from Eq. (23) and the expression for 
the correction P, t) ’ it follows that the alteration in the 
order of the ith bond Mii is proportional to the sum 
of squares of the non-neighboring bond orders formed 

by BOs of this bond with the remaining BOs. Thus, 
the larger the absolute values of the non-neighboring 
bond orders referring to orbitals of the ith bond 
become, the more the respective neighboring bond 
order is lowered. As a result, the diagonal elements 
of the matrix M describe redistribution of bond orders 

when making up the molecule, and this matrix may be 
called the rebonding matrix. Additivity of the correc- 
tion M,i is evident and the increment of the jth bond 

Ml;’ = - i( (Rjij2 + (Rij)* ) 

=- ~((A~-C,j~2+(BO-~j;~2) (24) 

depends on the direct interactions between BOs of 

the ith and jth bond only. 
Therefore, separate building blocks reveal them- 

selves within the common one-electron DM of 

alkanes, each of them representing the definite type 
of intramolecular interaction, namely, the first order 
and the second order intrabond polarizations, the 

interbond charge transfer and redistribution of bond 
orders (rebonding). Diagonal elements of the second 

order blocks determining the populations of HAOs 
and the neighboring bond orders are additive with 
respect to contributions of individual bonds. More- 

over, the increment of certain (jth) bond to an element 
referring to the ith bond depends on the mutual 

arrangement of the ith and jth bonds only. 
Because of the well-known acute dependence of 

resonance parameters on the relevant interbond 
distance, extinction of contributions of the jth bond 
to the second order characteristics of the ith bond may 

be expected when the interbond distance (r,,) grows. 
As a result, these characteristics are likely to be deter- 

mined by the nearest environment of the ith bond. 
If the increments of the nearest-neighboring 

(geminal) bonds only are taken into account and trans- 
ferability of resonance parameters for different pairs 

of geminal bonds is assumed (see e.g. [28-301 and 
Section 5) transferable second order characteristics 
follow for all C-H and for all C-C bonds in alkanes. 
Indeed, three and six similar increments, respectively, 
determine any of the above-mentioned matrix ele- 
ments. Again, deviations from transferability of 
bond characteristics might be due either to differences 
in resonance parameters for various pairs of geminal 
bonds or to increments of more distant bonds. These 
increments are evaluated in Section 5. 

4. Analysis of the total energy of alkanes 

The zero and the first order terms E,(,, and EC,, 
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shown in eqns (17) and (18) contain the sum of the 

one-electron energies of isolated bonding BOs in 

accordance with Eq. (3). 
The second order correction EQ) of the total energy 

E shown in Eq. (19a)-( 19d) is positive in our negative 

units PO. Hence, the actual sign of this correction is 
negative and Ec2) may be interpreted as the stabiliza- 

tion energy of alkanes versus the relevant sets of iso- 
lated bonds. The expression for EQ) shown in Eq. ( 1 SC) 

indicates that the stabilization energy consists of a 
sum of squares of the direct through-space inter- 
actions between BBOs and ABOs over the whole 

molecule. Hence any of these interactions contributes 

to stabilization of molecule whatever the mutual 
arrangement of the two involved bonds and the sign 
of the respective resonance integral. 

Alternatively, the correction EQ) may be expressed 

in terms of the rebonding matrix M. Thus, comparison 
of Eq. (12) and Eq. (19b)-( 19d) indicates that 

Ec2) = - 2SpurM. (25) 

Hence, stabilization of an alkane versus the relevant 

set of isolated bonds may be concluded to be related to 
the rebonding effect. In this connection EC*) may be 
called the rebonding energy. Furthermore, both sides 

of Eq. (25) may be rewritten as sums of contributions 

of separate bonds, i.e. 

E,,,=-2 CMii= FE{;;, (26) 
i 

where 

,$‘) = _ 2M 
(2) ,lY (27) 

are the increments of particular bonds. Hence, the 
total energy of alkanes consists of a sum of contribu- 
tions of separate bonds to within the second order 
terms inclusive. The extent of transferability of incre- 

ments of similar bonds E$ is directly related to that of 
Mii (Section 3). 

From Eq. (27) it follows also that each contribution 
I!?$; to the second order correction E(2) is proportional 
to the respective correction Mii to the neighboring 
bond order of the ith bond. Owing to the additivity 
of the elements Mi, (Section 3), a two-fold additiv- 
ity of the stabilization energy follows from Eq. (27). 

Opposite signs of the corrections Eiii and Mi, and 
thereby of EC*) and SpurM are seen from eqns (27) 
and (25) and this fact also deserves attention. Thus, 

stabilization of the system owing to the rebonding 

effect goes together with lowering of the neighboring 

bond orders. This result causes no surprise if we take 
into consideration that two matrix products are con- 

tained within the definition of EC*) shown in Eq. (19a), 

i.e. 
II 

E(z) = E(2) + E(2) 3 (28) 

where 

Ec2) = S~W(H&-‘~,,) = 2SpurM 

I, 
E~2~=Spur(H~,~P~,~)= -4SpurM 

= i C {(A~-C~)2+(B~-Bji)2) > 0. PO) 
‘>I 

The specific structure of the matrix H(O) seen from 
Eq. (1) provides for the direct relation between the 
negative term EC,)’ and the sum of the neighboring 
bond orders. Hence, lowering of these bond orders 
by itself gives rise to destabilization of the system in 
accordance with the expectation. The second term 

Ecz,” is positive and it may be related to the formation 
of the non-neighboring bond orders contained within 

the correction PC,,. Hence, the final stabilization of 
alkanes versus the relevant sets of isolated bonds 
may be accounted for by the fact that the total stabil- 
izing effect of the newly-formed non-neighboring 
bond orders exceeds twice the total destabilizing 

effect due to reduction of the neighboring bond 

orders. 

5. Estimations of particular increments to the DM 
and the total energy of alkanes 

To evaluate separate terms of Sections 3 and 4, let 
us employ the set of parameters of Ref. [31]. The 
diagonal Hamiltonian matrix elements have been 
taken equal to negative values of respective ionization 

potentials. 
The ionization potentials for ordinary AOs (Z(2sc) = 

21.3; Z(2pc) = 11.5; I(lsH) = 13.6 eV [32]) have been 
used to evaluate the respective values for HAOs 
(I(sp3) = (1)/(4)[1(2sc) + 3/(2pc)] = 13.95 eV), as 
well as the resonance parameter for two HAOs of 
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the same carbon atom [4] @(sp’,sp3) = - (I)/ 
(4)]1(2sc) - 1(2pc)] = - 2.45 eV). Other resonance 
parameters have been estimated on the basis of the 
relation /3 = /3aS/S0 where PO and S,, are standard 

values of resonance and overlap integrals for nearest 
pairs of 2p, AOs in conjugated hydrocarbons (S, = 

0.247; PC, = - 2.5 eV). For C-C and C-H bonds in 
alkanes we then obtain fl,, = - 6.55 eV and ficH = - 

6.75 eV, and their mean value is PO = - 6.65 eV. It is 
seen that differences both between flee and PCH and 
between I(sp’) and f( I su) are first order terms with 
respect to PO as assumed in Section 2. 

The above-defined resonance parameter /3(sp”,sp’) 

= 0.36 PO makes the main part of the through-space 
interaction (Rij) between geminal pairs of bonds [4]. 
Let the HAOs of the common carbon atom of 

the geminal pair of the ith and jth bond to acquire 

the numbers II + i and II + j (Section 2). Then the 
resonance parameter /3( sp’,sp3) stands for the element 
Ci, (see Eq. (1)). The remaining contributions to R,,, 
viz. A,j, B,i and B,, (see Eq. (4)) vary in their 
values for different types of bonds (C-C-C, C-C-H 

and H-C-H) in the range of 15%. Given that these 
differences are ignored, the equality B, = B,, follows 
15-71 and the contribution of the jth bond to the sec- 
ond order dipole moment of the ith bond equals to 

R{$i =0.014. As a result, IJ?,;, = 0.042 follows for 
any C-H bond in alkanes. It should be also noted 
here that contribution of a single c&arranged next- 

neighbour (vicinal) bond is equal to II~~~i=0.0022, 
whereas the self-contribution of the ith bond is 

I$\,, =0.00073, and these are evidently small correc- 
tions only. 

The above-established value of II(2)rl for C-H 
bonds exceeds the respective absolute value of the 
relevant tirst order dipole (R,, ),, = - 0.026). Opposite 

signs of the first and second order dipole moments 
also are noteworthy. On the whole, these results lead 
to a conclusion that non-zero experimental dipole 
moments for C-H bonds in alkanes [33] are not 
necessarily related to differences in electronegativ- 
ities of hydrogen and carbon atoms. The observed 

dipoles should be attributed to the sum of the first 

and the second order contributions. 
Analysis of Eq. (20) in the case of a C-C bond 

shows that contributions to the element IIcZJii originat- 
ing from the geminal neighbors attached to different 
carbon atoms are of opposite signs and cancel out 

each other. In this context, the immediate reason of 

non-zero second order dipole moments for C-H 
bonds may be concluded to consist in the non- 

symmetric nearest environment of C-H bonds as 

opposed to C-C bonds. 
If we accept the above-mentioned equality B,, = B,i, 

zero interbond charge transfer follows from Eq. (22). 

This implies the dipole-like nature of total occupation 
numbers of HAOs in alkanes [5-71. Furthermore, 
contributions to M;, and E:ii originating from a 

single geminal (jth) and from a single vicinal (kth) 
bond are determined by eqns (24) and (27). These 

are -0.0045 and -0.0005 for M,; and 0.009 and 

0.001 for E:ij. respectively, the latter two being 

expressed in p,, units. 

6. Conclusions 

The common one-electron DM of alkanes in the 
basis of BOs and thereby their total energy may be 
expressed and interpreted in terms of matrices G,,) 

and G(>, describing the direct (through-space) and 
indirect (through-bond) interactions. As a result, the 
second order correction E,?, to the total energy E con- 

sists of a sum of squares of the through-space inter- 
actions over the whole system and gives rise to 

stabilization of molecules versus the relevant sets of 
isolated bonds. 

Furthermore, definite combinations of matrices G,, , 
and G,l, and of their complex conjugate counterparts 
arise within the DM after turning to the basis of 
HAOs. These new matrices play the role of separate 
building blocks of the transformed DM and represent 
new types of intramolecular interaction in alkanes, 
viz. the intrabond polarization, interbond charge 

transfer and redistribution of bond orders (rebonding). 
An alternative interpretation of the total energy 
follows in this case. Thus, the second order correction 
E,?, proves to be expressed as Spur of the rebonding 
matrix. As a result, the total energy of alkanes is addi- 
tive with respect to increments of separate bonds to 
within the second order terms inclusive. Moreover. 

stabilization of alkanes may be concluded to be 
related to the rebonding effect, which involves a 
formation of new bond orders between orbitals of 
different bonds along with reduction of intrabond 
bond orders. 
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