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Abstract

The general expression for the common one-electron density matrix (DM) of saturated organic molecules obtained
previously in the framework of the Hu¨ckel type model [V. Gineityte, J. Mol. Struct. (Theochem) 343 (1995) 183] has been
applied to investigate intermolecular bonding. To this end, the total DM of two interacting molecules has been expressed as a
sum of two matrices, the first one coinciding with the direct sum of DMs of isolated molecules and the second one being a
correction describing the intermolecular bonding. As a result, additive intra- and intermolecular contributions have been
revealed both within occupation numbers of basis orbitals and within the total energy of interacting molecules, and an internal
additivity of intermolecular terms with respect to increments of pairs of bonds has been established. These results have been
used to substantiate the local models of intermolecular bonding commonly used when studying the early stages of chemical
reactions between two saturated molecules. Conditions for which the local model is adequate have been formulated explicitly.
q 1999 Elsevier Science B.V. All rights reserved.

Keywords:Chemical reactions; One-electron density matrix; Intermolecular bonding; Saturated organic molecules; Total energy

1. Introduction

Studies of chemical reactions are among the main
goals of quantum chemistry [1–5]. As with electronic
structures of isolated molecules [6], chemical
processes may be investigated from both quantitative
and qualitative points of view. In the former case the
relevant results (if sufficiently accurate) allow certain
predictions to be made about the reaction path and
transition states [7]. It should be noted, however,
that extremely involved numerical calculations of
potential energy surfaces are required for quantitative
studies of most reactions.

Alternatively, simple approaches and models are
usually used when looking for qualitative rules
governing chemical processes. In contrast to numeri-
cal results, these rules commonly embrace certain
type of reactions instead of an individual process. In
this case, qualitative rules serve to provide classifica-
tion and interpretation of the entire information about
chemical reactions.

The so-called PMO theory [1] of chemical reactiv-
ity of organic compounds based on the perturbation
theory in the framework of the Hu¨ckel model is
among the most popular qualitative approaches. An
early stage of reaction is usually studied using this
method. In particular, bimolecular processes are
modelled by formation of an intermolecular bonding
represented by respective resonance parameters.
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Intramolecular interactions, i.e. resonance para-
meters between pairs of basis orbitals inside isolated
molecules, are taken into account from the very outset
of applying the PMO theory. This step coincides with
diagonalization of two separate Hamiltonian matrices
and obtaining two sets of delocalized (canonical)
MOs of individual molecules. Taking into account
the intermolecular resonance parameters constitutes
the second step of this theory. A perturbative
approach is applied there for diagonalization of the
total model Hamiltonian matrix in the basis of delo-
calized MOs of individual molecules.

Turning to the basis of delocalized MOs creates an
impression that whole molecules participate in the
reaction under study even if local fragments actually
come into contact. Local characteristics of interacting
molecules, e.g. charges on atoms, coefficients of high-
est occupied and/or lowest vacant MOs, etc. also may
be obtained and studied in the framework of the PMO
theory. Nevertheless, the above-described impression
remains because the canonical MOs, which these local
characteristics are based on, depend on the structure
of the whole system.

The above-described standard PMO theory was
especially successful in studying chemical reactions
of conjugated hydrocarbons and their derivatives.
This fact allows us to believe that the concept of a
non-local intermolecular interaction taking place
between entire molecules is actually adequate for
conjugated systems.

So far as reactions of saturated molecules are
concerned, an opposite approach is applied here
[1,2,4,8]. The essence of this approach is as follows:

Intermolecular interaction is studied directly in the
basis of localized orbitals with no regard for intra-
molecular interactions. For example, a local inter-
action between the lone pair orbital of nucleophile
and the antibonding orbital of the Z–C bond of the
substituted alkane (Z is a heteroatom) is considered
when investigating an SN2 process instead of numer-
ous interactions between delocalized MOs of both
molecules.

The above-described local model may be traced
back to respective modification of the PMO theory
for saturated molecules where delocalized MOs are
replaced by localized two-center bond orbitals [1].
When applied to intermolecular bonding, however,
this local model seems to be based on an implicit

assumption that the intermolecular bonding may be
studied independently of the intramolecular one. In
other words, the above two types of interactions are
assumed to be additive. Moreover, the consequences
of the intermolecular interaction are supposed to
depend mainly on the structure of the directly contact-
ing fragments.

In this paper we are about to substantiate the above-
mentioned implicit assumptions and hence bear out
the local models for intermolecular bonding of satu-
rated organic molecules. In addition, we will reveal
the conditions for which this model is adequate.

To this end, we will consider the extent of additivity
of inter- and intramolecular contributions both to the
total one-electron density matrix (DM) and its parti-
cular elements and to the energy of two interacting
molecules. Thereupon, we will study the internal
structure of the intermolecular terms.

The additivity of electronic structure characteristics
obtained using the standard PMO theory is known to
be rather low (except of the trivial additivity of the
first order corrections) [1]. Furthermore, the deloca-
lized (canonical) MOs are hardly the most appropriate
terms for substantiation of the local model. Hence, it
would be advisable to avoid turning to the basis of the
canonical MOs at all.

Therefore, we are about to employ the direct
way of obtaining the one electron DM and the
total energy of any saturated system [9] based on
the solution of the commutation equation [10] by
means of a perturbative approach. Thus, the general
algebraic expression for the DM of any saturated
system obtained in [9] will be applied here to the
case of two interacting molecules. Additivity of the
total DM will be studied in Section 2, whilst that of
occupation numbers and of the total energy is
discussed in Section 3. The case when only two
bonds of interacting molecules come into contact is
considered separately in Section 4.

2. Intra- and intermolecular contributions to the
one-electron DM of two saturated molecules

The basis of bonding and antibonding bond orbitals
(BOs) along with lone pair orbitals (if any) has been
used in [9] when deriving the general algebraic
expressions for the DM of any saturated system. In
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addition, the total basis set {f} has been divided into
two subsets {f(1)} and {f(2)} containing the bonding
BOs (BBOs) along with lone pair orbitals and the
antibonding BOs (ABOs), respectively. Furthermore,
the intersubset interactions have been assumed to be
first order terms vs. the energy differences between
BBOs and ABOs.

As a result, the common Hu¨ckel type Hamiltonian
matrix of saturated moleculesH has been expressed as
a sum of first- and second order matrices, i.e.

H � H�0� 1 H�1� �1�

where

H�0� �
E�1� 0

0 2E�2�

�����
�����; H�1� �

S R

R1 Q

�����
����� �2�

The diagonal blocks (submatrices)E(1) 1 S and
2E(2) 1 Q of the total matrixH contained the intra-
subset interactions (resonance parameters), whilst the
off-diagonal blockR involved the intersubset reso-
nance parameters. The minus sign in front ofE(2)

has been introduced for convenience, and the super-
script 1 designates the transposed matrix. It is also
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Fig. 1. A diagram representing the intra- and intermolecular interactions between the moleculesA and B. Matrices containing resonance
parameters between various subsets of basis orbitals are shown in the upper part (a). The case of a local intermolecular contact is displayed in the
lower part of the diagram (b).



seen that zero order intrasubset interactions are
allowed in Eq. (2), and these are included into
submatricesE(1) andE(2).

The one-electron DM (bond order matrix) corre-
sponding to the Hamiltonian matrixH has been
obtained in [9] in the form of power series. The first
three terms of this series are

P�0� �
2I 0

0 0

�����
�����; P�1� � 22

0 G�1�

G1
�1� 0

�����
�����; P�2�

� 22
G�1�G

1
�1� G�2�

G1
�2� 2G1

�1�G�1�

������
������ �3�

whereI is the unit matrix. The matricesG(1) andG(2)

have been expressed in the form of integrals

G�1� �
Z∞

0
exp�E�1�t�R exp�E�2�t�dt;

G�2� �
Z∞

0
exp�E�1�t�V exp�E�2�t�dt �4�

where

V � SG�1� 2 G�1�Q �5�
Let us introduce the following simplified notations

for integrals shown in Eq. (4)

G�1� � �E�1�uRuE�2��; G�2� � �E�1�uVuE�2�� �4a�
The above-described form of the DM may be easily

applied to the case of two interacting saturated mole-
culesA andB. To this end, the subset of BBOs {f(1)}
will be further subdivided into two parts {f�a��1�} and
{f�b��1�} referring to moleculesA andB, respectively.
Similarly, the subset of ABOs will consist of two parts
{f�a��2�} and {f�b��2�}. As a result, the total basis set may
be represented in terms of four subsets, i.e. {f} �
{{ f�a��1�}, { f�b��1�}, { f�a��2�}, { f�b��2�}}.

The blocks (submatrices) of matricesH(0) andH(1)

will be subdivided accordingly, viz.

E�1� �
E�a��1� 0

0 E�b��1�

������
������; E�2� �

E�a��2� 0

0 E�b��2�

������
������; S

�
Sa M

M 1 Sb

�����
�����; R �

Ra K

L Rb

�����
�����; Q �

Qa T

T1 Qb

�����
�����
�6�

The blocks of Eq. (6) denoted by superscripts (a)
and (b) contain interactions (resonance parameters)
inside the moleculesA and B, respectively, whilst
the blocksM , K , L andT consist of the intermolecu-
lar interactions as shown in Fig. 1a. Eq. (6) also
involves an additional assumption that intermolecular
resonance parameters are first order terms comparable
to those contained within the matricesRa andRb.

The block-diagonal structure of matricesE(1) and
E(2) resulting from the above-mentioned assumption
implies that matrices exp(E(1)t) and exp(E(2)t) are
block-diagonal too. As a result, the total matrixG(1)

may be represented in terms of four blocks, viz.

G�1� �
G�a��1� G�K ��1�

G�L ��1� G�b��1�

������
������ �7�

where the blocksG�a��1� and G�b��1� taking the diagonal
positions within the matrixG(1) contain intramolecu-
lar interactions only. Using the notations shown in Eq.
(4a) we obtain

G�a��1� � �E�a��1�uRauE�a��2��; G�b��1� � �E�b��1�uRbuE�b��2�� �8�
The off-diagonal blocks of the matrixG(1), in turn,

depend on the intermolecular resonance parameters,
viz.

G�K ��1� � �E�a��1�uK uE�b��2��; G�L ��1� � �E�b��1�uL uE�a��2�� �9�
It is seen that these blocks turn into zero matrices if

the intermolecular resonance parameters contained
within the blocksK and L vanish. Hence the sub-
matricesG�K ��1� and G�L ��1� may be referred to as the
intermolecular subblocks of the matrixG(1).

Using Eqs. (3) and (7), the first order correctionP(1)

of the DM P may be obtained in terms of intra- and
intermolecular subblocks.

The above-described structure of the matrixG(1)

proves to be essential also in the formation of the
second order correctionP(2) of the DM P. Thus,
sums of intra- and intermolecular contributions arise
within the diagonal positions of productsG(1)G

�1�
�1� and

G�1��1� G(1) owing to the above-described constitution of
the matrixG(1), e.g. the sumG�a��1�G

�a�1
�1� 1 G�K ��1� G

�K �1
�1�

stands for the first diagonal block of the matrix
G(1)G

1
�1�. An analogous additivity proves to be inher-

ent in the matrixV defined by Eq. (5) and thereby in
the matrixG(2). As a consequence, the total DMP of

V. Gineityte / Journal of Molecular Structure (Theochem) 465 (1999) 183–192186



the interacting moleculesA andB may be represented
in the form of a sum

P� Pisol 1 dP �10�

to within second order terms inclusive.
Let us consider the terms of Eq. (10) separately.
The first three corrections making up the matrix

Pisol take the form

where

G�a��2� � �E�a��1�uVauE�a��2��; G�b��2� � �E�b��1�uVbuE�b��2�� �12�

are the second order intramolecular terms, and

Va � SaG�a��1� 2 G�a��1�Qa; Vb � SbG�b��1� 2 G�b��1�Qb �13�

It is seen that the matrixPisol actually contains the
direct sum of DMs of isolated molecules. In particu-
lar, P(1)isol involves intramolecular bond orders
between occupied and vacant BOs of moleculesA
andB separately, whereas P(2)isol contains intramole-

cular diagonal blocks in addition. Diagonal elements
of the latter evidently describe the intramolecular
charge transfer.

The first three corrections of the second termdP of
the DM P take the form
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P�0�isol �
2I 0

0 0

�����
�����; P�1�isol � 22

0 0 G�a��1� 0

0 0 0 G�b��1�

G�a�1�1� 0 0 0

0 G�b�1�1� 0 0

��������������

��������������
�11a�

P�2�isol � 22

G�a��1�G
�a�1
�1� 0 G�a��2� 0

0 G�b��1�G
�b�1
�1� 0 G�b��2�

G�a�1�2� 0 2G�a�1�1� G�a��1� 0

0 G�b�1�2� 0 2G�b�1�1� G�b��1�

��������������

��������������
�11b�

dP�0� � 0; dP�1� � 22

0 0 0 G�K ��1�

0 0 G�L ��1� 0

0 G�L �1�1� 0 0

G�K �1�1� 0 0 0

��������������

��������������
�14a�

dP�2� � 22

G�K ��1� G
�K �1
�1� F�ab�

�2� G�ab�
�2� C�ab�

�2�

F�ab�1
�2� G�L ��1�G

�L �1
�1� D�ab�

�2� G�ba�
�2�

G�ab�1
�2� D�ab�1

�2� 2G�L �1�1� G�L ��1� N�ab�
�2�

C�ab�1
�2� G�ba�1

�2� N�ab�1
�2� 2G�K �1�1� G�K ��1�

��������������

��������������
�14b�



where the subblocks of the second order correction
dP(2) are

G�ab�
�2� � �E�a��1�uVabuE�a��2��; G�ba�

�2� � �E�b��1�uVbauE�b��2��
�15a�

C�ab�
�2� � �E�a��1�u�Wab 1 Yab�uE�b��2��; D�ab�

�2�

� �E�b��1�u�Xba 1 Uba�uE�a��2�� �15b�

F�ab�
�2� � G�a��1�G

�L �1
�1� 1 G�K ��1� G

�b�1
�1� ; N�ab�

�2�

� G�a�1�1� G�K ��1� 1 G�L �1�1� G�b��1� �16�
and

Vab � MG �L �
�1� 2 G�L ��1�T

1
; Vba � M 1G�K ��1� 2 G�L ��1�T

�17a�

Wab � SaG�K ��1� 2 G�K ��1� Qb; Yab � MG �b��1� 2 G�a��1�T

�17b�

Xba � SbG�L ��1� 2 G�L ��1�Qa; Uba � M 1G�a��1� 2 G�b��1�T
1

�17c�
The first order correctiondP(1) shown in Eq. (14a)

contains intermolecular bond orders between occu-
pied and vacant BOs proportional to intermolecular
resonance parametersK ij andL ij . Analogously, diag-
onal elements of the second order correctiondP(2)

describe the intermolecular charge transfer. It is also
seen that bothdP(1) anddP(2) turn into zero matrices if
L � K � M � T � 0. Hence, the correctiondP may
be entirely associated with intermolecular interaction.

Therefore, the total DM of two interacting mole-
cules consists of a sum of two matrices, the first one
containing the direct sum of DMs of isolated mole-
cules and the second one being a correction originat-
ing from the intermolecular interaction.

3. Additivity of occupation numbers of basis
orbitals and of the total energy

Additivity of occupation numbers of BOs with
respect to intra- and intermolecular contributions
follows directly from the results of Section 2. Indeed,
any alteration in occupation number vs. that of an
isolated BO (equal to 2 and 0 for BBOs and ABOs,

respectively) contains a sum of two terms describing
the intra- and intermolecular contributions as it is seen
from Eqs. (10)–(17c). For example, the occupation
number of the BBOf�a��1�i of the moleculeA takes
the form

x�a��1�i � 2 1 Dx�a��1�i � 2 1 Dx�a�intra
�1�i 1 Dx�a�inter

�1�i �18�
whereDx�a��1�i is the total alteration consisting of intra-
and intermolecular contributions equal to

Dx�a�intra
�1�i � 22

Xvac�A�

p

�G�a��1�ip�2 �19a�

Dx�a�inter
�1�i � 22

Xvac�B�

m

�G�K ��1�im�2 �19b�

respectively, where the sums embrace the vacant BOs
of moleculesA andB.

Each of the contributions shown in Eqs. (19a) and
(19b), in turn, is additive with respect to increments of
separate bonds (lone pairs).

On the whole, the above results show that the inter-
molecular contributions to occupation numbers may
be considered independently from the intramolecular
ones. Thus, the intermolecular increment to occupa-
tion number of anABO, f�a��2�i is

Dx�a�inter
�2�i � 2

Xocc�B�

l

�G�L ��1�li �2 �20�

To consider the influence of the intermolecular
interaction on the internal characteristics of bonds
(e.g. dipole moments), occupation numbers of sp3-
hybrid AOs (HAOs) and 1s AOs of hydrogen atoms
(IsH AOs) are required, and these result from the
above-described DMP after transforming it into the
HAO basis [11,12]. The bond orbitals (BOs) are
assumed to be defined as linear combinations of
pairs of HAOs and 1sH AOs belonging to separate
bonds in this case.

Let us consider theI-th Z-C bond containing two
HAOs xZ and xC. Then the occupation numbers of
these orbitals (xZ andxC) may be expressed as follows
[12]

xZ�xC� � 1^ cosgI 1
1
2
DxI ^ pI ^ dI �21�

wheregI � arctg(2/a), anda� aZ 2 aC is the relevant
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difference in the Coulomb parameters of HAOsxZ and
xC. The third term of Eq. (21) is the total alteration in
the population of theI-th bond (DxI � Dx(1)i 1 Dx(2)i).
The forth term (pI) is the secondary dipole moment of
the I-th bond equal to

pI � 22G�2�ii singI �22�
where22G(2)ii coincides with the bond order between
the BBOf(1)i and ABOf(2)i. And finally,dI is the so-
called depolarization dipole moment equal to

dI � 1
2
�Dx�1�i 2 Dx�2�i�cosgI �23�

and containing the alterations of the occupation
numbers of the BBOf(1)i and ABOf(2)i and thereby
being directly related to the charge transfer.

Let us assume now that theI-th bond belongs to the
moleculeA. Then additivity of the total alteration in
the population of this bond (DxI) with respect to intra-
and intermolecular contributions is evident.

For the dipole momentspI anddI we obtain

pI � pintra
I 1 pinter

I ; dI � dintra
I 1 dinter

I �24�
where

pintra
I 2 2G�a��2�ii singI ; pinter

I � 22G�ab�
�2�ii singI �25�

dintra
I � 2

Xvac�A�

p

�G�a��1�ip�2 1
Xocc�A�

j

�G�a��1�ji �2
8<:

9=;cosgI

�26a�

dinter
I � 2

Xvac�B�

m

�G�K ��1�im�2 1
Xocc�B�

l

�G�L ��1�li �2
( )

cosgI

�26b�
These results imply that the total second order

corrections within the occupation numbersxZ andxC

are additive with respect to contributions of intra- and
intermolecular bonding (the initial values of occupa-
tion numbers are 1̂ cosgI).

Let us turn now to the total energy of two interact-
ing molecules.

Given that the one-electron DM of the system under
study is represented by Eq. (3), the relevant total
energy may be defined as [10]

E � Spur�PH� �27�

and expressed in the form of power series. The first
two terms of this series take the form

E�0� � 2SpurE�1�; E�1� � 2SpurS �28�
and contain the sum of one-electron energies corre-
sponding to doubly-occupied BOs. The second order
correctionE(2) is

E�2� � Spur�H�1�P�1� 1 H�0�P�2�� �29�
Substituting Eqs. (1)–(3) into Eq. (29) and invoking

Eq. (27) of [9] in addition, we finally obtain

E�2� � 2Spur�G�1�R1 1 RG1
�1�� �30�

Let us consider now the case of two interacting
molecules. To this end, the expressions forR and
G(1) in terms of four submatrices as shown in Eqs.
(6) and (7) should be substituted into Eq. (30). We
then obtain

E�2� � E�a��2� 1 E�b��2� 1 E�inter�
�2� �31�

where

E�a��2� � 2Spur�G�a��1�R1
a 1 R1G�a�1�1� �; E�b��2�

� 2Spur�G�b��1�R1
b 1 RbG�b�1�1� � �32�

are the increments of intramolecular bonding. The last
term of Eq. (31) takes the form

Einter
�2� � 2Spur��G�K ��1� K1 1 KG �K �1�1� �1 �G�L ��1� L1

1 LG �L �1�1� �� �33�
and describes the intermolecular interaction energy.
The expression of Eq. (33) may be represented in an
alternative form, i.e.

Einter
�2� � 22

Xocc�A�

i

Xvac�B�

m

G�K ��1�imK im

2 2
Xocc�B�

l

Xvac�A�

j

G�L ��1�li L li �34�

It is seen that the intermolecular interaction energy
is additive with respect to contributions of various
pairs of bonds.

We may conclude, therefore, that occupation
numbers of basis orbitals of two interacting molecules
and the relevant total energy both contain zero order
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terms corresponding to isolated basis functions and
two additive second order corrections describing the
contributions of intra- and intermolecular bonding
separately. Hence, intermolecular contributions to
the above-mentioned characteristics may be studied
independently of intramolecular ones.

An internal additivity of the intermolecular
contributions also follows from the above-described
results. Thus, occupation numbers of HAOs contain
sums of three terms describing the intermolecular
charge transfer, polarization and depolarization of
bonds, respectively. Moreover, both the total inter-
molecular contributions and their separate compo-
nents are additive with respect to increments of
pairs of bonds.

The above conclusions, in turn, may be regarded as
a consequence of additivity of the one-electron DM
described in Section 2.

4. The case of a local intermolecular contact.
Substantiation of the local models for
intermolecular bonding

Let us suppose now that only two bonds (lone pairs)
of moleculesA andB (the Ith and theJth one) come
nearer when these molecules contact. As a result, four
intermolecular resonance parameters shown in Fig.
1b, i.e.

M ij � kf�a��1�i uĤuf�b��1�jl; T ij � kf�a��2�i uĤuf�b��2�jl; K ij

� kf�a��1�i uĤuf�b��2�jl; L ji � L1
ij � kf�b��1�j uĤuf�a��2�il

�35�

may be assumed to take considerable values, whereas
the remaining resonance parameters may be
neglected. In other words, local nature of the intermo-
lecular overlap (resonance) parameters will be
assumed. However, this does not necessarily ensure
an analogous local nature of consequences of this
interaction.

Thus let E�a��1�, E�b��1�, E�a��2� and E�b��2� be arbitrary
matrices. Then non-zero elements arise within the
intermolecular matricesG�L ��1� and G�K ��1� not only
between pairs of orbitals (f�a��1�i ,f

�b�
�2�j) and

(f�b��1�j ,f
�a�
�2�i) but also between the remaining orbitals.

For example, the elementG�K ��1�kl equals to

G�K ��1�kl �
Z∞

0
�exp�E�a��1�t��kiK ij �exp�E�b��2�t��jl dt �36�

and it does not vanish also fork ± i and l ± j.
Let us consider now the particular case when

E�a��1�;E
�b�
�1�;E

�a�
�2� andE�b��2� are diagonal matrices

containing one-electron energies of BOs, i.e.

E�a��1�ik � E�a��1�idik; E�b��1�jm � E�b��1�jdjm; E�a��2�ir

� E�a��2�idir ; E�b��2�js � E�b��2�jdjs �37�
Eq. (37) corresponds to an assumption that intra-

and intermolecular resonance parameters are of
comparable values, and both are first order terms vs.
the differences in the one-electron energies. The elec-
tronic structure characteristics (e.g. occupation
numbers) referring to the above-mentioned approxi-
mation will be further designated by ~.

The elements of the first order matrices
~G�a��1�; ~G

�b�
�1�; ~G

�K �
�1� and ~G�L ��1� describe the direct

(through-space) interactions between the respective
pairs of BOs. For example, the element~G�K ��1�ij takes
the form

~G�K ��1�ij � 2
K ij

E�a��1�i 1 E�b��2�j
�38�

Substitution of expressions like that of Eq. (38) into
Eqs. (19b) and (20) allows the intermolecular contri-
butions to occupation numbers of BOsf�a��1�i andf�a��2�i
of the Ith bond to be expressed as follows

~D x�a�inter
�1�i � 22

�K ij �2
�E�a��1�i 1 E�b��2�j�2

; ~D x�a�inter
�2�i

� 2
�L ji �2

�E�b��1�j 1 E�a��2�i�2
�39�

It is seen that the corrections to occupation numbers
shown in Eq. (39) depend only on squares of the direct
(through-space) interactions between BOs of the two
directly contacting bonds. Further, the respective
contributions for BOsf�b��1�j and f�b��2�j of the Jth
bond are related to those of Eq. (39), viz.

~D x�b�inter
�1�j � 2 ~D x�a�inter

�2�i ; ~D x�b�inter
�2�j � 2 ~Dx�a�inter

�1�i �40�
whilst other orbitalsf(1)k, k ± i, j andf(2)m, m ± i, j
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are characterized by zero intermolecular corrections
to occupation numbers.

Therefore, non-zero intermolecular contributions to
occupation numbers of BOs arise for directly contact-
ing bonds only and these are determined by the nature
and spatial arrangement of these bonds and are inde-
pendent of the remaining fragments of molecules.

The total populations lost (acquired) by theIth and
Jth bonds meet the relation

~D x�a�inter
I � 2 ~D x�b�inter

J �41�

Hence, a local interbond charge transfer between
the Ith andJth bonds actually takes place as a result
of the above-described local intermolecular contact.

Similar conclusions refer also to the internal dipole
moments of bonds. Thus, the intermolecular contribu-
tion to depolarization dipole moment of theIth bond
equals to

~dinter
I �

2
�K ij �2

�E�a��1�i 1 E�b��2�j�2
1

�L ji �2
�E�b��1�j 1 E�a��2�i�2

8<:
9=;cosgI

�42�

whilst the relevant expression for~dinter
J resembles Eq.

(42) only cosgJ stands for cosgI and a plus sign arises
before the braces instead of minus of Eq. (42). Other
bonds (K ± I,J) prove to be described by zero depo-
larization dipole moments. Hence, local nature of the
depolarization effect may be concluded as well.

Given that theIth andJth bonds contain the same
types of atoms (gI � gJ), depolarization of these bonds
proves to be of similar values and of opposite signs. In
the general case, the following ratio may be estab-
lished between the depolarization dipole moments

u ~dinter
I u

u ~dinter
J u

� cosgI

cosgJ
�43�

To study the secondary dipole moments~pinter
I origi-

nating from the intermolecular interaction, the
elementsG�ab�

�2�ii under conditions of Eqs. (35) and
(37) are required. An element of this type takes the

form

~G�ab�
�2�ii �

1

E�a��1�i 1 E�a��2�i

M ij L ji

E�b��1�j 1 E�a��2�i
2

K ij T
1
ji

E�a��1�i 1 E�b��2�j

0@ 1A
�44�

and it describes the indirect interaction between the
BOsf�a��1�i andf�a��2�i of theIth bond by means of either
f�b��1�j orf�b��2�j of theJth bond. This element depends on
the spatial arrangement of theIth andJth bonds only.
The relevant secondary polarization~pinter

I equals to

~pinter
I � 2

2 singI

E�a��1�i 1 E�a��2�i

M ij L ji

E�b��1�j 1 E�a��2�i
2

K ij T
1
ji

E�a��1�i 1 E�b��2�j

0@ 1A
�45a�

Similarly, the intermolecular contribution to the
secondary polarization of theJth bond of the molecule
B takes the form

~pinter
J � 2

2 singJ

E�b��1�j 1 E�b��2�j

M ji K ij

E�a��1�i 1 E�b��2�j
2

L ji T ij

E�b��1�j 1 E�a��2�i

0@ 1A
�45b�

whereas secondary polarizations of other bonds keep
unchanged, i.e.~pinter

K � 0 unlessK � I,J.
Therefore, non-zero intermolecular contributions to

secondary dipole moments of bonds also arise for
directly contacting bonds only, and these are deter-
mined by the nature and spatial arrangement of
these bonds. The same conclusion evidently refers
to total occupation numbers xZ(xC) of HAOs of inter-
acting bonds.

Let us turn now to the energy of the intermolecular
interactionEinter

�2� shown in Eq. (34). If we substitute
the expressions forG�K ��1�im and G�L ��1�li like that of Eq.
(38) into Eq. (34), we obtain

~Einter
�2� � 2

�K ij �2
E�a��1�i 1 E�b��2�j

1
�L ji �2

E�b��1�j 1 E�a��2�i

24 35 �46�

It is seen that the intermolecular interaction energy
~Einter
�2� turns into a local interbond interaction energy

between the two directly contacting bonds whatever
the structure of the remaining fragments of molecules.
Hence, the remaining fragments of moleculesA andB
may be ignored when studying the intermolecular
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interaction, and a two-bond four-orbital model
becomes adequate.

Therefore, we have substantiated a local model for
investigation of the intermolecular interaction.

5. Conclusions

1. Adequacy of the local model for investigation of
the intermolecular bonding of saturated organic
molecules may be traced back to the above-estab-
lished high extent of additivity of the one-electron
DM and of the total energy of interacting mole-
cules with respect to intra- and intermolecular
contributions. Hence, validity of this model has
nothing to do with relative values of intra- and
intermolecular resonance parameters (comparable
values of these parameters are allowed).

2. Two conditions providing for adequacy of the local
model may be mentioned:

i) Relatively insignificant values of intermolecu-
lar resonance parameters for orbitals of all bonds
except for several directly contacting bonds, i.e. a
local intermolecular contact;
ii) First order magnitude of both intra- and inter-
molecular resonance parameters as compared to
differences in one-electron energies of bonding
and antibonding BOs.

3. Substantiation of the local model of the intermole-
cular bonding carried out in this paper is based on
application of the direct way of obtaining the DM.
No need arises here for diagonalization of the
Hamiltonian matrix and thereby for turning to the
basis of delocalized MOs. In addition, no distin-
guishing of the degenerate and non-degenerate
case is required in contrast to the standard PMO
theory [1,4,5].

4. Similarity between the intra- and intermolecular

interactions in saturated systems also deserves
attention. Thus, investigation of the heteroatom
influence in saturated molecules [12] showed that
intramolecular charge transfer, as well as polariza-
tion and depolarization of bonds are the additive
components of this intramolecular effect. The same
contributions make up the intermolecular bonding
as established above. Additivity of both intra- and
intermolecular interactions with respect to incre-
ments of separate bonds also may be mentioned
among their common features. These, in turn,
may be traced back to similar structures of intra-
and intermolecular contributions both to occupa-
tion numbers of basis orbitals and to their separate
terms as it is seen from Eqs. (19a), (19b), (25),
(26a) and (26b).
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