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Abstract

It is shown that the only non-zero submatrix of the bond-order matrix of aliphatic conjugated hydrocarbons (polyenes)
describes the so-called rebonding effect manifesting itself as a redistribution of bond orders between various pairs of 2pz AOs
when building up the molecule. Rules governing both the rebonding effect and its consequences upon the total energy are
formulated in an explicit algebraic form. Arguments are given for the conclusion that the rebonding effect is the quantum-
chemical analogue of the classical concept of conjugation. In addition, the results allowed us to substantiate the concept of the
classical chemistry about the limited valency of carbon atoms in molecules and the additive models for conjugation energy. A
rather involved (dual) nature of the conjugation effect is demonstrated.q 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Simple and general rules governing the mutual
influence of effective atoms and/or bonds in mole-
cules are known to form the basis of the classical
theoretical chemistry [1,2]. In some cases, these
rules are alternatively called effects.

Application of the concept of an effect implies that
certain common consequences are anticipated in simi-
lar constitutional situations whatever the details of the
structure of the particular compound. The inductive
effect of heteroatom describing the influence of the
latter upon the remaining fragment of a saturated
organic molecule [3] may be mentioned here as an
example. The well-known short range nature of this

effect serves to illustrate the above-mentioned
common consequences.

Establishing of quantum-chemical analogues for
classical effects makes an important task. Two ends
may be achieved after solving this problem, namely
substantiation of implicit postulates underlying the
effect under study [4] and discovering new features
of the effect itself. In particular, the quantum-chemi-
cal analogue of the inductive effect found in Ref. [4]
allowed the additive components of the heteroatom
influence to be derived explicitly. It should be
mentioned here that simplicity and general nature
are among the most desired features of the quantum-
chemical analogues being sought.

Conjugation of two coplanar unsaturated fragments
(or of a lone electron pair and an unsaturated group)
[1,2,5] is also among the most popular classical
effects. An additional overlap of 2pz AOs of the neigh-
boring fragments owing to the formally single bond in
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between them is usually considered as the origin of
this effect. Additional stabilization of the whole mole-
cule versus the set of isolated fragments along with
shortening of the initially single bond are the main
common consequences of conjugation [2]. Character-
istic changes in the relevant UV [6,7] and photoelec-
tron spectra [8] also may be mentioned here.

Linear and branched unsaturated hydrocarbons
(polyenes) are a particular type of conjugated mole-
cules. On the whole, conjugation of CyC bonds may
be described by relatively small consequences to the
so-called collective properties of molecules [2], e.g. to
total energies, bond lengths, etc. Indeed, stabilization
energies of polyenes [9] are known to be small as
compared to the total sum of bond energies [10].
Moreover, this additional contribution to the total
energy may be expressed as a sum of modified incre-
ments of separate CyC bonds [10]. So far as the inter-
nuclear distances are concerned [5], the initially-
double bonds remain considerably shorter as
compared to the initially-single bonds, although the
former are lengthened and the latter are shortened
versus the relevant values for the isolated CyC and
C–C bonds, respectively.

Thus, the main aim of this paper is to discover the
quantum chemical analogue of conjugation in hydro-
carbons and to study the principal features of this
effect.

As discussed previously [4], application of the
Hückel type models for molecules under study is the
most promising way of expressing the consequences
of the classical effects in terms of quantum chemistry.
The point is that the common model Hamiltonian
matrices may be constructed for the entire classes of
molecules in the framework of just the above-
mentioned model. This possibility, in turn, allows
common expressions to be obtained for the relevant
one-electron density matrices (DMs) in the form of
power series. Application of these expressions ensure
the simplicity and the general nature of quantum-
chemical analogues being sought.

Aliphatic conjugated hydrocarbons are among the
molecules, the above-described quantum-chemical
approach is applicable to [11]. Moreover, the common
Hückel type Hamiltonian matrix initially constructed
for alkanes [12–16], and thereby the respective
expressions for the one-electron DM proved to be
appropriate for conjugated hydrocarbons as well,

although the rate of convergence of the power series
for the DM was slower in the latter case [11].

Studies of the above-mentioned DM to within the
second-order terms inclusive [16] showed that sepa-
rate building blocks (submatrices) may be revealed in
this matrix, each of them describing certain type of
intramolecular interaction. Quantum chemical analo-
gue of conjugation also is likely to be among these
submatrices. However, we cannot confine ourselves to
the second-order terms of the power series for the
DM, when studying the conjugated hydrocarbons
[11]. Thus, submatrices of the third- and fourth-
order corrections also should be taken into considera-
tion.

As it was shown previously [11], the number of
non-zero submatrices of the DM becomes largely
reduced if we turn to alternant hydrocarbons. On the
other hand, the conjugation effect is evidently relevant
also to this type of molecules. Hence, the quantum-
chemical analogue of conjugation is likely to be found
among non-zero blocks of the DM just of alternant
hydrocarbons. In this connection, the above-
mentioned particular case is studied in this paper.

Thus, in Section 2, we start with the exploration of
the DM of alternant conjugated hydrocarbons to
within the fourth-order terms inclusive. Later, in
Section 3, the main features of the conjugation energy
are discussed.

2. Redistribution of bond orders when building up
a conjugated hydrocarbon. The rebonding effect

Let us consider an alternant conjugated hydrocar-
bon containingn initially-double (CyC) bonds.

All the 2pz AOs of carbon atoms will be described
by the uniform Coulomb parametersa taken to be
equal to zero for the sake of convenience. Let us
also assume that our molecule consists of isolated
CyC bonds to within the zero-order approximation
[11]. In this connection, resonance parametersb
referring to the initially-double bonds and taken
equal to one are included into the zero-order Hamil-
tonian matrixH(0). On the other hand, resonance para-
meters of the initially-single (C–C) bonds also are
assumed to be equal to one, but are incorporated
into the first-order Hamiltonian matrixH(1) as in
Ref. [11].
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Let the 2n-dimensional basis set {x} consisting of
2pz AOs to be divided into twon-dimensional subsets
{x 0} and {x 00} so that orbitals belonging to the same
initially-double bond find themselves in different
subsets. Furthermore, let us enumerate the basis func-
tions in such a way that orbitals belonging to the same
CyC bond acquire the coupled numbersi andn 1 i.
Such a numbering of basis orbitals allows the subsets
{x 0} and {x 00} to be considered as coinciding with the
two subsets of orbitals usually distinguished within
the basis sets of alternant hydrocarbons [17–19].

As a result, the following 2n × 2n-dimensional
Hamiltonian matrix may be constructed for the alter-
nant hydrocarbons [11]

H � H�0� 1 H�1� �
0 I

I 0

�����
����� 1 0 B

B1 0

�����
����� �1�

whereI is ann-dimensional unit matrix representing
the resonance parametersb � 1 corresponding to the
CyC bonds and taking the positions�i;n 1 i�, andB is
an n × n-dimensional block (submatrix) containing
the resonance parameters referring to the initially-
single (C–C) bonds. The superscript ‘1 ’ of Eq. (1)
designates the transposed matrix.

As it was shown in Refs. [11–16], the DM (bond-
order matrix) P corresponding to the Hamiltonian
matrix H of Eq. (1) may be expressed in the form of
power series with respect to parameters included in
the first-order matrixH(1), i.e.

P�
X∞
k�0

P�k� �2�

and the correctionsP�k� are of the following constitu-
tion [11]

P�0� �
I I

I I

�����
�����; P�k� �

0 V�k�

V1
�k� 0

�����
�����; k � 1;2…

�3�
The n × n-dimensional off-diagonal blockV�k�

specified below proves to be the only non-zero subma-
trix of the correctionP�k� of alternant hydrocarbons.
Thus, it is the matrixV�k� that is likely to represent the
quantum-chemical analogue of conjugation.

As with any matrix [20], the matrixV�k� may be
expressed in the form of a sum of its symmetric part

Mp
�k� and of its skew-symmetric partGo

�k�; viz.

V�k� � Mp
�k� 1 Go

�k�: �4�
The superscriptsp and o here and further designate
symmetric and skew-symmetric matrices. The
symmetric partsMp

�k� of matricesV�k� of alternant
hydrocarbons take the form [11]

Mp
�0� � I ; Mp

�1� � 0; Mp
�2� � 2�Go

�1��2;
Mp
�3� � 2�Go

�1�;G
o
�2��1;

Mp
�4� � 2�Go

�1�;G
o
�3��1 1 2�Go

�2��2 2 2�Go
�1��4

�5�

where the notation […,…]1 stands for an anti-
commutator of matrices. The principaln × n-dimen-
sional matricesG0

�k��k � 0; 1;2;3�; in turn, have been
expressed as follows:

Go
�0� � 0; Go

�1� � 2
1
2

Ro
;

Go
�2� � 2

1
2
�SpGo

�1� 2 Go
�1�Q

p�;

Go
�3� � 2

1
2
�SpGo

�2� 2 Go
�2�Q

p�1 2�Go
�1��3:

�6�

The matricesRo, Sp andQp arising from Eq. (6) are
related to submatricesB andB1 of the initial matrixH
of Eq. (1). Let us define the following matrices for
convenience:

Ko � B1 2 B; Jp � B1 1 B : �7�
The matricesRo, Sp andQp are

Sp � 2Qp � 1
2

Jp
; Ro � 1

2
Ko : �8�

The skew-symmetric partsGo
�k� of matricesV�k�, in

turn, are proportional to the respective principal
matricesGo

�k�; viz.

Go
�k� � 2Go

�k�: �9�
Let us now turn to the interpretation of matrices

V�k�. The zero-order correctionP(0) defined in Eq.
(3) consists of four unit matrices. As a result, uniform
occupation numbers of basis orbitals and uniform
bond orders between pairs of basis functions (x 0i and
x 00n1i) corresponding to the initially-double (CyC)
bonds both equal to one follow to within the zero-
order approximation (Note that the bond orders
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referring to the CyC bonds take the diagonal positions
of the off-diagonal blocks of the correctionsP�k��.

Inasmuch asGo
�k�ii � 0 for anyi, diagonal elements

of submatricesV�k� coincide with those of their
symmetric partsMp

�k�; i.e. V�k�ii � Mp
�k�ii : Hence, the

kth-order corrections to the bond orders between
pairs of basis orbitalsx 0i andx 00n1i are determined by
the respective diagonal elements of the matrixMp

�k�:
Let the bond orders of the initially-double (CyC)

bonds to be called the neighboring bond orders,
whereas the remaining bond orders (including those
of the initially-single bonds) are referred to as the non-
neighboring bond orders.

From the definition of matricesMp
�k� shown in Eq.

(5), it follows that diagonal elementsMp
�k�ii are condi-

tioned by certain combinations of elements of
matricesGo

�k21�;G
o
�k22�; etc. The latter, in turn, are

known to describe the respective corrections to the
bond orders between bonding and antibonding bond
orbitals (BOs) [15,21] of different initially-double
bonds (the BOs are defined as normalized sums and
differences between pairs of AOsx 0i andx 00n1i). This
implies that thekth-order corrections to the neighbor-
ing bond orders are actually made up of the (k 2 1)th
and lower-order corrections to the non neighboring
bond orders. Thus, the neighboring and the non-neigh-
boring bond orders prove to be inter-related, viz. the
larger are the latter within previous corrections
P�k21�; P�k22�, etc., the more the former are altered
within the subsequent correctionP�k�. Let us discuss
this point in more detail.

The equalityMp
�1� � 0 seen from Eq. (5) yields zero

values for the first-order corrections to the neighboring
bond orders of any hydrocarbon, whilst the non-neigh-
boring bond orders between bonding BOs (BBOs) and
antibonding BOs (ABOs) belonging to different CyC
bonds are represented by elements of the principal
matrix Go

�1�: These elements, in turn, determine the
second-order corrections to the neighboring bond
orders. Indeed, from Eq. (5) it follows that:

Mp
�2�ii � V�2�ii � 22

X
j

�Go
�1�ij �2 , 0 �10�

and this expression serves to bear out the above state-
ment. It is seen that alteration (lowering) of the neigh-
boring bond order of theIth CyC bond is proportional
to sum of squares of the first-order increments to the
non-neighboring bond orders formed by the BBO of

the Ith bond with ABOs of other CyC bonds.
Similarly, the third-order corrections to the neighbor-
ing bond orders prove to be determined by first- and
second-order corrections to the non-neighboring bond
orders, etc.

It is seen, therefore, that redistribution of bond orders
actually takes place when building up a hydrocarbon,
and it may be called the rebonding effect. In this connec-
tion, the matrixV�k� may be interpreted as thekth-
order rebonding matrix. Substituting Eq. (3) into Eq.
(2) allows the total DM to presented in the form

P�
I V

V1 I

�����
����� �11�

where

V � I 1
X∞
k�1

V�k� �12�

is the total rebonding matrix expressed in the form of
a power series.

The above-established meaning of the matrixV
supports our expectation that the rebonding effect is
the quantum-chemical analogue of conjugation. Indeed,
lowering of the neighboring bond orders along with the
emergence of the non-neighboring bond orders is in
line with the observed lenghtening of the initially-
double bonds and shortening of the initially-single
bonds owing to conjugation [5] (Section 1).

3. Peculiarities of the rebonding energy of
alternant hydrocarbons

The total energy of any system follows from the
general relation [22]

E � Spur�PH�: �13�
Substituting Eqs. (1) and (2) into Eq. (13) yields a

power series for the energyE of an alternant hydro-
carbon, i.e.

E �
X∞
k�0

E�k�: �14�

The zero-order term of Eq. (14)�E�0� � 2n� describes
the sum of energies ofn isolated CyC bonds [16].
Other correctionsE�k��k $ 1� take the form

E�k� � 2SpurMp
�k� 1 2Spur�V�k21�B

1�: �15�
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The first increment of Eq. (15) is proportional to the
sum of thekth-order corrections to the neighboring
bond orders, whereas the second one involves the
(k 2 1)th order rebonding matrixV�k21�. It should
be also noted here that diagonal elements of the latter,
i.e.V�k21�ii � Mp

�k21�ii do not contribute to the correc-
tion E�k�, as diagonal elements of matricesB andB1

usually take zero values [11] (this is because of the
close values of the neighboring resonance parameters
that may be entirely included into the zero-order
Hamiltonian matrix shown in Eq. (1)). Moreover,
the matricesB and B1 contain elements equal to
one only in the positions corresponding to the initi-
ally-single bonds in conjugated hydrocarbons [11].
This implies that only the non-neighboring bond
orders referring to the initially-single bonds contribute
to the second term of Eq. (15). Hence, the correction
E�k� may be called thekth-order rebonding energy and
denoted byE�k�reb.

Furthermore, thekth-order rebonding energy may
be rewritten in the form

E�k�reb� E0�k�reb 1 E 00�k�reb �16�
where

E 0�k�reb� 2SpurMp
�k� �17�

E 00�k�reb� 2Spur�Go
�k21�K

o�1 Spur�Mp
�k21�J

p�: �18�
The second part of the rebonding energy�E00�k�reb� is
rewritten here into a more “symmetrized” form being
more convenient for further derivations. The matrices
Ko andJp are defined in Eq. (7).

It is seen that alternations in the total energy origi-
nating from thekth-order corrections to the neighbor-
ing bond orders and from the (k 2 1)th-order
corrections to the non-neighboring bond orders are
being summed up within the correctionE�k�reb. This
result describes how the rebonding effect manifests
itself within the total energy.

As the kth-order corrections to the neighboring
bond orders are conditioned by the (k 2 1)th-order
corrections to the non-neighboring bond orders
(Section 2), certain interrelations may be expected
between the relevant increments to the correction
E�k�reb defined by Eqs. (17) and (18).

To find these relations, let us start with the second-
order terms�k � 2� (The first-order correctionE(1) to

the total energyE takes a zero value provided that the
neighboring resonance parameters are entirely
included into the zero-order Hamiltonian matrix and
SpurJp � 0). As is seen from Eq. (10),Mp

�2�ii , 0 and
E 0�2�reb , 0 in b units. This implies that lowering of
the neighboring bond orders leads to certain destabi-
lization of the system. On the other hand, if we substi-
tute the equalitiesMp

�1� � 0 andKo � 24Go
�1� into Eq.

(18) for k � 2, the expression forE00�k�reb of the form

E 00�2�reb� 24SpurMp
�2� �19�

results, where the definition of the matrixMp
�2� is also

used. This part of the correctionE(2)reb is positive inb
units and causes certain stabilization of the whole
system.

Comparison of Eqs. (17) and (19) shows that

E00�2�reb� 22E0�2�reb �20�
for any alternant hydrocarbon. Thus, the two incre-
ments to the second-order rebonding energy are inter-
dependent. Moreover, the stabilization energy of an
alternant hydrocarbon due to the formation of the non-
neighboring bond orders exceeds twice the respective
destabilizing effect caused by alternations in the
neighboring bond orders.

Using Eqs. (16), (17) and (19), the total second-
order rebonding energy may be represented in the
form

E�2�reb� 22SpurMp
�2� � 22SpurV�2� . 0 �21�

and proves to be positive inb units.
Let us turn now to the third-order correction. After

substituting24Go
�1� for K0 and using the definition of

the matrix Mp
�3� shown in Eq. (5), the firstGo

�k21�-
containing term of Eq. (18) fork � 3 yields
22SpurMp

�3�: The secondMp
�k21�-containing increment

of the correctionE00�3�reb may be reformulated on the
basis of the two alternative expressions for the matrix
Jp, namely

Jp � 2Sp
; Jp � 22Qp �22�

where the latter results from Eq. (8). In addition, the
termSG�1� 2 G�1�Q arising after the application of Eq.
(22) should be replaced by22G�2� in accordance with
Eq. (6). We then obtain

Spur�Mp
�2�J

p� � 2SpurMp
�3�: �23�
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As a result, the correctionE00�3�reb is

E 00�3�reb� 23SpurMp
�3� �24�

and the total third-order rebonding energy equals to

E�3�reb� 2SpurMp
�3� � 2SpurV�3�: �25�

Comparison of Eq. (17) fork � 3 to Eq. (25) shows
that

E 00�3�reb� 2
3
2

E0�3�reb: �26�

The relations of Eqs. (25) and (26) evidently are the
third-order analogues of Eqs. (20) and (21), respec-
tively. It is seen that the two parts of the third-order
rebonding energy also are interdependent as it was the
case withE 0�2�reb andE00�2�reb; only the ratio between the
third-order increments differs from that for the
second-order corrections. Opposite signs ofE0�3�reb

andE 00�3�reb also are noteworthy.
Similar relations may be obtained for the fourth-

order corrections as well, although a more involved
procedure is required to derive them. Thus, the fourth-
order analogue of Eq. (23) is

Spur�Mp
�3�J

p� � 28Spur�Go
�2��2 �27�

where the definition of the matrixMp
�3� is used, and

24Go
�2� is substituted for�Go

�1�; J
p�1 in accordance

with Eqs. (6) and (22). Using the relationKo �
24Go

�1�; the following expression for the total
fourth-order rebonding energy may be derived

E�4�reb� 24Spur{�Go
�2��2 1 �Go

�1��4} : �28�
Let us introduce the designation

V�3� � SpGo
�2� 2 Go

�2�Q
p � 1

2
�Go
�2�; J

p�1 �29�

and note that the matrixV(3) is contained within the
matrix G(3) as it is seen from Eq. (6). As a result, an
alternative expression for Spur�Mp

�3�J
p� may be

obtained, i.e.

Spur�Mp
�3�J

p� � 4Spur�Go
�1�V�3��: �30�

Furthermore, the following relation:

Spur�Go
�1�V�3�� � 22Spur�Go

�1�G
o
�3��1 4Spur�Go

�1��4
�31�

proves to be useful here (definitions of matricesG(3)

and V(3) shown in Eqs. (6) and (29) should be used
when deriving this relation).

On the basis of Eqs. (27) and (30), it follows that

Spur�Go
�1�V�3�� � 22Spur�Go

�2��2: �32�
Again, Eqs. (31) and (32) may be considered as an
alternative expression for Spur�Go

�1�V�3��: Taking the
right-hand sides of these relations, we obtain

Spur�Go
�1�G

o
�3�� � 2Spur�Go

�1��4 1 Spur�Go
�2��2: �33�

Using Eq. (33), theSpur of the matrixMp
�4� may be

represented in the form

SpurMp
�4� � 6Spur{�Go

�1��4 1 �Go
�2��2} : �34�

Eq. (34) may be used for remaking the expression for
E(4)reb shown in Eq. (28). As a result, we obtain

E�4�reb� 2
2
3

SpurMp
�4� � 2

2
3

SpurV�4�: �35�

On the other hand, Eqs. (16), (17) and (35) yield

E 00�4�reb� 2
8
3

SpurMp
�4� � 2

8
3

SpurV�4� �36�

and

E 00�4� � 2
4
3

E0�4�reb: �37�

Therefore, interrelations between the neighboring
and the non-neighboring bond orders (Section 2)
prove to be accompanied by certain molecular-
structure-independent ratios between the respective
increments to the total energy.

Comparison of Eqs. (20), (26) and (37) allows us to
expect that the relation of the form

E 00�k�reb� 2
k

k 2 1
E 0�k�reb �38�

holds true for anyk. This relation yields some essen-
tial features of the rebonding effect:

1. From Eq. (38) it follows thatE 00�k�reb! E0�k�reb if
k! ∞. This result implies a mutual compensation
of both increments to the rebonding energy when
the order of the correction grows. Hence, the power
series for the total energy is likely to converge
rapidly even if sufficiently large non-neighbor-
ing bond orders arise within the correctionP�k�
(this is the case only for polyenes as shown in
Ref. [11]).
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2. The relation shown in Eq. (38) allows the totalkth-
order correctionE�k�reb to be rewritten either in
terms of Mp

�k� as shown in Eqs. (21), (25) and
(35) or in terms of�V�k21�B

1�: As a result, two
alternative forms of the total rebonding energy
Ereb become possible, namely

Ereb�
X∞
k�2

1
�1 2 k� E

0
�k�reb�

X∞
k�2

2
�1 2 k� SpurMp

�k�

�39�
and

Ereb�
X∞
k�2

1
k

E00�k�reb�
X∞
k�2

2
k

Spur�V�k21�B
1�: �40�

Hence, the total rebonding energy may be inter-
preted either as an interbond interaction energy
related to the formation of the non-neighboring
bond orders or as the energy describing the respec-
tive intrabond effects.

3. Using Eq. (39) allows the total rebonding energy
Ereb to be represented in the form

Ereb�
Xn
I�1

Ereb�I � �41�

where

Ereb�I � �
X∞
k�2

2
�1 2 k� SpurMp

�k�ii �42�

is the increment of theIth CyC bond.
It is seen that the total rebonding energy of an
alternant hydrocarbon is additive with respect to
increments of particular initially-double (CyC)
bonds. Moreover, each of these increments
depends only on corrections to the neighboring
bond order of the bond under consideration. This
conclusion is in line with the fact that the observed
conjugation energies of polyenes are expressible as
sums of modified increments of separate CyC
bonds [10].

4. Eqs. (15–18) may be substituted with Eq. (38) and
the following interrelation results:

SpurV�k� � 1
k

2 1
� �

Spur�V�k21�B
1� �43�

which may be interpreted as a conservation condi-
tion for bond orders. Indeed, this relation indicates

that the sum of thekth-order corrections to the
neighboring bond orders is proportional to the
sum of the�k 2 1�th-order corrections to the non-
neighboring bond orders corresponding to the initi-
ally-single bonds.

Hence, the non-neighboring bond orders may be
formed at the expense of the neighboring bond orders,
and vice versa. This result may be considered as the
quantum-chemical analogue of the classical concept
of limited valency of carbon atoms in molecules [23].

4. Conclusion

The results of this paper allow us to conclude that
the rebonding effect is the quantum-chemical analo-
gue of conjugation in hydrocarbons. The main argu-
ments for this conclusion are as follows:

1. The rebonding matrix is the only non-zero subma-
trix of the DM of alternant hydrocarbons, and the
total energy of these systems coincides with the
rebonding energy.

2. Alterations in bond orders due to rebonding are in
line with respective changes of bond lengths owing
to conjugation.

3. Rules governing the rebonding effect are common
to any aliphatic hydrocarbon. Just the same is
known to be the case with rules governing conju-
gation.

4. Consequences of the rebonding effect being repre-
sented in terms of power series are small. This
conclusion coincides with the observed insignifi-
cant changes in lengths of the C–C and CyC bonds
versus their standard values [5] and with small
conjugation energies as compared to total sum of
bond energies [10].

The above-drawn conclusion about the quantum-
chemical analogue of conjugation allowed us to
formulate the principal features of the effect in an
explicit mathematical form. The following aspects
may be mentioned here:

1. The bond orders arising between AOs of different
CyC bonds within the�k 2 1�th-order correction
P�k21� to the bond-order matrixP and alternations
of bond orders inside the CyC bonds within the
subsequent correctionP�k� are interrelated as
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described by the conservation condition for bond
orders shown in Eq. (43).

2. Within the kth-order correction to the total
(rebonding) energy, additive contributions of
opposite signs correspond to the above-mentioned
two types of alterations in bond orders.

3. The two increments to thekth-order rebonding
energy are described by molecular-structure-inde-
pendent butk-dependent ratios.

4. Two alternative representations of the total
(rebonding) energy are possible, viz. the represen-
tation in terms of newly-formed bond orders
between AOs of different CyC bonds and that in
terms of alterations of bond orders inside the CyC
bonds.

5. The total (rebonding) energy is additive with
respect to increments of particular CyC bonds.

The results of the paper contribute to the substan-
tiation of the concept of limited valency of carbon
atoms being among the principal postulates of the
classical chemistry, as well as of additive models for
conjugation energy [10]. Moreover, the obtained
results indicate a dual nature of conjugation, i.e. it
may be considered either as an interbond interaction
or as an intrabond effect.
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