THEO
CHEM

www.elsevier.com/locate/theochem

Journal of Molecular Structure (Theochem) 585 (2002) 15-25

On the relation between the stabilization energy of a molecular
system and the respective charge redistribution

. *
V. Gineityte
Institute of Theoretical Physics and Astronomy, Gostauto 12, 2600 Vilnius, Lithuania

Received 25 October 2001; accepted 5 December 2001

Abstract

A power series for total energies of molecules is derived using the previously-obtained series for the one-electron density
matrix (DM) P [J. Mol. Struct. (Theochem) 343 (1995) 183] and the well-known relation between the energy E and the DM P
(E = Trace (PH), where H is the Hamiltonian matrix). Two components are revealed within any correction E, of the new
series so that one of them describes the kth order energy alteration due to charge redistribution and the another represents the
analogous alteration owing to formation of additional bond orders vs. those of the system underlying the zero order Hamiltonian
matrix. Molecular-structure-independent but k-dependent relations are established between the above-specified two com-
ponents for k = 0, 1, 2, 3, 4. These relations allow the total correction E, to be expressed in terms of charge transfer energy
of respective order and thereby yield a general interdependence between the stabilization energy of a molecular system and the
relevant charge redistribution for any number of participating orbitals and for any type of change in the structure of the system.
Non-trivial consequences of this principal result of the paper also are revealed, in particular an interrelation between the frans-
effect of substituent studied recently [J. Mol. Struct. (Theochem) 532 (2000) 257] and the well-known gauche- and cis-effects
describing the most stable conformations of substituted alkanes and alkenes, as well as of related heteroatom-containing
compounds. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

Implicit and/or explicit assumptions about inter-
dependence between the stabilization energy of certain
molecular system and the relevant charge redistribution
may be found almost throughout the theoretical organic
chemistry. For example, the electron-donating (accept-
ing) effect of a substituent upon a conjugated fragment
and the relevant increase of stability of the system are
considered as two interdependent aspects of the same
mesomeric (resonance) effect [1-4]. This viewpoint is
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based on numerous experimental facts, e.g. on com-
parison of dipole moments of conjugated molecules to
those of non-conjugated compounds containing the
same substituent, as well as of respective heats of
hydrogenization. Analogous two aspects reveal them-
selves also in the case of the so-called direct conjuga-
tion of two substituents in disubstituted benzenes
(see Ref. [5] and references cited therein). Further-
more, the well-known assumption about propor-
tionality between relative stabilities of molecular
ions and the extents of delocalization of their positive
(negative) charge deserves mentioning here [1,4].
Finally, an analogous assumption is invoked when
discussing stabilities of the so-called charge transfer
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complexes relatively to respective isolated components
[6].

A simple accounting for the interdependence under
discussion follows from the valence bond method
[1,4,6]. Indeed, the larger is the relative increment
(IC,*) of the wave function Wo(D* — A”) referring
to the ionic resonance structure (D¥ — A7) in the
linear combination for the final wave function of the
system Y,

V=C,¥(D-A)+C¥,D" —A) (D

the more significant charge transfer is expected
between the electron-donating subsystem (D) and
the electron-accepting one (A). At the same time,
the whole system becomes stabilized more signifi-
cantly relatively to the energy E(D — A) correspond-
ing to the purely covalent structure D — A. In the
framework of the one-electron (MO) method, an
analogous relation follows from a two-level model
where an interaction is considered between an
initially-occupied orbital of the electron-donating
subsystem (D) and an initially-vacant orbital of the
accepting subsystem (A). In some cases, a model of
a one-dimensional potential well is invoked for the
same purpose [2].

It is evident, however, that the majority of mole-
cules and molecular systems hardly may be described
adequately either by two resonance structures or by
two one-electron orbitals to say nothing of the one-
dimensional potential well. In this context, the main
aim of this paper consists in obtaining a general rela-
tion between alteration in the total energy and the
respective charge redistribution for any number of
participating orbitals and for any type of change in
the structure of the system.

Total energies of molecules (E) are known to be
expressible either in terms of one-electron energies
of occupied molecular orbitals or via elements of
the one-electron density matrix (bond order matrix)
P [7-9]. To achieve the above-specified end, the latter
definition will be used. Given that our system may be
described by certain one-electron Hamiltonian matrix
H (e.g. of the Hiickel type), the respective energy is
simply expressed as follows

E = Trace(PH) 2)

The right-hand side of Eq. (2) evidently contains both
diagonal and off-diagonal elements of the matrix P.

Thus, a relation between the total energy E and charge
redistribution may be anticipated, if we succeed in
eliminating the off-diagonal elements of the matrix
P (P, i # j) from the expression of Eq. (2). Feasibil-
ity of such an elimination follows from interdepen-
dences between separate blocks (submatrices) of the
bond order matrix P established previously [10] on the
basis of the so-called non-commutative Rayleigh—
Schrodinger perturbation theory (NC RSPT) [11].
Thus, we will invoke the power series for the matrix
P derived in Ref. [10].

Orbitals localized on separate fragments of the
system under study are likely to make up the most
appropriate basis set for investigation of intra-and/or
intermolecular charge redistribution. As it is shown in
Refs. [5,12—15], orbitals of this type comply with the
requirements of the NC RSPT and thereby are able to
play the role of basis functions underlying the power
series for the matrix P (no specifying of basis func-
tions was required when deriving this series in Ref.
[10]). So far as the structures of the fragments them-
selves are concerned, individual chemical bonds both
of saturated [12] and of conjugated [13] molecules
and phenyl rings along with substituents [5,14] may
be mentioned here, as well as separate molecules of
many-molecular systems [15]. In this connection, our
basis set will be assumed to consist of certain number
of fragmental orbitals of any constitution and of any
extent of localization.

It should be also mentioned here that members of
the power series for the bond order matrix P to within
the fourth order inclusive prove to be essential when
describing an electron density redistribution among
localized orbitals [5,13,16,17] in contrast to the
well-studied case of delocalized (canonical) orbitals
of two interacting molecules or molecular fragments,
where confinement to second order corrections proves
to be sufficient [9,18]. Hence, corrections Py, and E,
to within k = 4 are studied in this paper.

Terms of power series for both the bond order
matrix P and the total energy E to within the second
order inclusive were derived in Refs. [10,11,19]. On
the other hand, Refs. [5,16,17] contain some discus-
sion of the subsequent corrections P, and P, In
this connection, we will confine ourselves to a brief
summary of the relevant expressions (Section 2).
Thereupon, we will formally define two components

within any correction E, (denoted by Ez,f)) and EE,E)))
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and demonstrate their interdependences for various
k values (Section 3). Expressions for total correc-
tions Ey in terms of either EEE‘)) or EEE)) follow
directly from these interdependences. Section 4
deals with interpretations of components EEZ‘)) and
E((E)). It is shown that the first component Eg,f‘))
coincides with the kth order charge transfer energy
under certain conditions. Just this result along
with the above-mentioned expression for Ejy, in
terms of E((Z‘)) yields a relation being sought. Applica-
tions of the relations obtained are discussed in
Section 5.

2. Expressions for the one-electron density matrix
and total energy to within the fourth order terms
inclusive

Let the total basis set of fragmental orbitals (FOs)
{9} to be divided into two subsets {9} and {¥)}
containing the initially-occupied and the initially-
vacant basis functions, respectively [10]. The inter-
subset resonance parameters are assumed to be first
order terms vs. the energy differences between orbi-
tals of different subsets [10,11,13—15]. Then the
Hiickel type one-electron Hamiltonian matrix H of
our molecular system may be expressed as a sum of
first—and second order matrices, i.e.

H=Hg + Hg, 3)
where
E., 0 S R

The diagonal blocks (submatrices) E)+ S and
—E_y+ Q of the matrix H contain the intra-
subset interactions (resonance parameters) along
with one-electron energies of FOs, whilst the off-
diagonal block R involves the intersubset inter-
actions. The minus sign in front of E._, is
introduced for convenience, and the superscript “ +’
designates the transposed matrix. It is also seen
that zero order intrasubset interactions are allowed
in Eq. (4) and these are included into submatrices
E,and E).

The one-electron density matrix (DM) P corre-
sponding to the Hamiltonian matrix H of Eqs. (3)

and (4) has been obtained in the form of power series,
ie.

k=0

Separate members of this series may be represented in
the form

X+  Gu

Py = -2 (6)

(+)

where X+ and X - may be called the intrasubset
population matrices. These contain the occupation
numbers of basis orbitals along with intrasubset
bond orders. The off-diagonal blocks G, contain
intersubset bond orders and may be referred to as
intersubset coupling matrices.

The blocks X+ and X - have been expressed in
Refs. [10,11] in terms of matrices Gy—1), Gy-2), etc.
taking the off-diagonal positions in the previous
corrections Py_y), Py-2), etc. Thus, the first four
blocks X, and X, take the form

Xo+ = =1, Xo- =0, X+ =Xa- =0,
_ + _ +
Xo+ = 6yGay. Xo)- = G1hGa)s
_ + +
Xoy+ = GGy + GGy Xi3)-
+ +
= GG t GGy,
+ + + )
Xay+ = GGy t Gp)Giy + GG
+ +
T G0)G1H GGy,
_ + +
Xay- = GGy t G3)Gay + GG

+ +
+61)GyG)Gay

where [ is the unit matrix. The relations of Eq. (7)
coincide with those between separate blocks (sub-
matrices) of corrections P mentioned in Section 1.

The intersubset coupling matrices G, in turn, meet
the matrix equations of the form

EGuy + GrE-) + Wiy =0 ®)
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where

Wa) =R, Wo) = SGa) = G0,

Wi = 5Ga) = Go)@ — (RG(+1>G<1> + G(UG(JE)R)»
W) = S8Gs) — G @ — [R(G%G(z) + G;E)G(l))

+(G<1>G<+2> + G<2>G<+1>)R]
©)
From Egs. (2), (3) and (5) it is seen that the total
energy E also may be expressed in the form of

power series like that of Eq. (5). Moreover, two
terms are present within any correction E,, viz.

()] (B)
Eg =Eg +Eg (10)

where

E((ZL)) = Trace(P(k)H(o)) = _2TraCC(X(k)+E(+)

+ Xp-E-) an
and
E{) = Trace(Py—1)Hq)) = —2Trace(Xy—1)+S
= Xg-1-0)
— 2Trace(Gy—HR"
+ G-nR) (12)

For the first two members of the power series, we
obtain

Eg = E((g‘)) = 2Trace E(4), Eq) = EE%) = 2Trace S
(13)

The sum of these two corrections coincides with the
total one-electron energy of isolated FOs. Given that
the one-electron energy of any FO is entirely included
into the respective diagonal element of the matrix E 4,
(this may be evidently done without any restriction),
the equality E;) =0 [20,21] follows. For k>1,
however, both components Ef,‘f)) and EEE)) take non-
zero values and these are studied in Section 3.

3. Interrelations between the two components of
the correction E,

From Eq. (11) it follows that the first component
Ef,‘:)) of the correction E, contains only the kth order
intrasubset population matrices. Alternatively, the
second component EEE’)) depends on both diagonal
and off-diagonal blocks of the matrix P-1) (see Eq.
(12)). Hence, certain interrelations may be expected
between EE,‘:)) and EE,E')) if we invoke the expressions for
X+ and X)— in terms of G— ), G-2), etc. shown in
Eq. (7).

To derive these relations, let us start with second
order terms (k = 2). Substitution of expressions for
X+ and X5, from Eq. (7) into Eq. (11) and a subse-
quent cyclic transposition of matrices inside the Trace
sign yields an alternative form of EE,‘:)) , Viz.

Ef‘z")) = —2Trace[G) (G E(+) + E—\G)] (14)

After invoking the Hermitian conjugate counterpart of
Eq. (8) for k = 1, the term of Eq. (14) within the round
brackets may be replaced by —R . Comparison of the
obtained expression for Eg)) to that for Eg)) (the latter
follows from Eq. (12) after taking into account the
equalities X(j)+ = X(;)- = 0 and Trace(G(k_l)R+) =
Trace(G(J;_ hR)) yields the following interrelation
between the two components of the second order
energy

ES) = —2E3) (15)

Using Eqgs. (10) and (15), we also obtain a compact
expression for the total second order correction

E(Z) = _ZTrace(G(])R+) (16)

Let us turn now to the third order terms (k = 3). The
first component of the correction E3, takes the form

Eég)) = _2TraCC[Gé)(E(+)G(1) + G(I)E(_))
+ +
+ G(Z)(G(1>E(+> + E<—>G<1>)]

= 4Trace(GR") (17)

where the second relation of the right-hand side
results after replacing the terms within the round
brackets by —R and —R ™, respectively.

The second component EEE)) follows from Eq. (12)
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EEE)) = —ZTrace[Ga)(SG(l) — G(I)Q)]

— 4Trace(GpR™") (18)

The term within the first round brackets of Eq. (18)
coincides with the matrix W, of Eq. (9). On the other
hand, this matrix may be replaced by the sum
—E4)Go) — GoE(-) as Eq. (8) indicates. Thereupon,
the matrix G(;) may be eliminated from the expression
for Eg)) using Eq. (8) for k = 1.

As a result, the whole component E((E)) becomes
expressed in terms of Trace(GR ). After comparing
this expression to Eq. (17) we obtain the following
relation

B — a
2EY) = —3ES) (19)

and the compact form of the third order energy
E@ = —2Trace(GpR") (20)

Let us consider now the fourth order correction Ey,.
The first component of this correction takes the form

EE::)) = —2Trace[G(§)(E(+)G(l) + G(I)E(_))
+G (G*E +E G*)
o\CnE+) + E-Gay
+Go)(Er Gy + GoE-)
+G GGy (EGay + G(I)E(*))] (2D

As with previous corrections, Eq. (8) allows the terms
within the round brackets of Eq. (21) to be replaced by
—R, —R", —W; and —R, respectively. Then the
newly-derived term 2Trace(G(J§) W) should be
considered separately.

Use of the definition of the matrix W, of Eq. (9)
allows this term to be expressed as follows

2Trace(G, W) = 2Trace[G1)(SG) — G2,0)] (22)

For further remaking of this expression, let us invoke
the definition of the matrix W, shown in Eq. (9). We
then obtain

2Trace(G 5, W) = 2Trace(G,W3))
+ 4Trace(GHRG(1)Gy))  (23)

Let the matrix W3, of the right-hand side of Eq. (23) to
be replaced by —E,\G() — Gp)E(-). Then the matrix

—R" may be substituted for G} )E+, + E_,G},. We
then obtain

2Trace(G 5, W,2)) = 2Trace(G3R")

+ 4Trace(G)RG1)G(1))  (24)

After collecting the terms of the right-hand sides of
Egs. (21) and (24), the following simple expression
for EEX‘)) results

E(§) = 6Trace[(Gg) + GyG(hG1y)R '] (25)

Finally, the second component of the fourth order
correction results from Eq. (12), viz.

B) _ +
E(4) = —2Trace[G(2)<SG(1) - G(I)Q)

+Goy(Gh)S — 0G)) | — 4Trace(G, R ™)
(26)

Matrices W5 and W5, may be used here instead of the
first and second round brackets. Later, the relation of
Eq. (24) should be applied. As a result, the correction
E((E)) becomes proportional to EEZ‘)) shown in Eq. (25)
and their interrelation takes the form

B) _ ()
3EG) = —4E() @7)

Consequently, the total fourth order energy may be
expressed as follows

Eyy = —2Trace[(Ga) + G)G,G1))R'] (28)

The relations of Egs. (15), (19), and (27) may
be represented as a single molecular-structure-
independent but k-dependent relation

(k= DE}) = —kE() (29)

which may be assumed to be valid also for k > 4. This
result implies that the correction E, may be expressed
either in terms of E{) or in terms of EEE’)) as follows

1
EQ).  Eg=—E} (30)

Egp=— P!

k—1
Opposite signs of both components of the total correc-

tion E, also may be seen from Eq. (29) along with the
following inequality for their absolute values

|E§E)>| > |E§g; 31)

After recalling Eq. (10) we may then conclude that the
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correction E, is determined by a difference between
two interdependent components, namely between EEE’))
of a larger absolute value and E((z‘)) of a smaller abso-
lute value. Consequently, it is the sign of EE,E)) that
conditions the sign of the total correction E,.
Before finishing this section, let us also note that all
the above-obtained results are as general as the power
series for the DM P (the latter was shown to be valid
for an extended class of molecules and molecular
systems described by the Hamiltonian matrix of
Egs. (3) and (4) [4,12-15]). Thus, the compact
expressions for corrections Ey, (Egs. (13), (16), (20),
and (28)) make up a power series for total energies of
the same scope of validity. It is also seen that the very
possibility of deriving these compact formula is
largely based on the principal relations between the

() (B)
two components Ey; and Eg).

4. Interpretation of separate components of the
corrections E ). The charge transfer energy

A simple interpretation of separate components
of the corrections E, proves to possible if we turn
to the particular case of diagonal zero order blocks
Ey, and E_, [10] containing elements E.., and
E ), respectively. This implies that both intra- and
intersubset resonance parameters are required to be
first order terms as compared to the intersubset energy
differences.

Let the energy reference point to be chosen in
the middle of the intersubset energy gap so that the
elements E(;); and E; both are negative and the sum
E ) + E) represents the respective energy interval.

Owing to the above-assumed particular form of
matrices E;, and E_,, only diagonal elements of the
intrasubset population matrices Xy, and Xy,- are
actually present within the definition of EE,‘;‘)) shown
in Eq. (11). These elements, in turn, determine the
kth order corrections to occupation numbers of basis
orbitals as Egs. (5) and (6) indicate.

Let the populations of an initially-occupied FO
(IOFO) ¥4 and of an initially-vacant FO (IVFO)
¥ to be expressed as follows

P =2+ > Purin Py =2 Pgyy (32)
k=2 =2

where

Pioy+ii = —2X o+ i Py—jj = 2X - ji (33)
are the relevant kth order corrections. Then the first
component EEZ‘)) of the kth order energy takes the form

IOFOs IVFOs
(@) _ _
EQ = D PayriEsi— > Po-jEcy 34)
i 7

As it is seen from Eq. (7), the intrasubset population
matrices X+ and X, - consist of sums of products,
each of them containing two intersubset coupling
matrices of lower orders. This implies that the ele-
ments X1 ; and Xy,—; and thereby the corrections
P+ i and Py, ; may be represented as sums of incre-
ments of individual orbitals of the opposite subset,
viz.

IVFOs « IOFOs @
_ ) _ )
Payeii= D 4 Poo—i = D 4 cm
) m

(35)

(the fact that the subscripts i and j of any element G;
correspond to an IOFO ¥,y and to an IVFO ¢y,
respectively, should be taken into consideration here).
Moreover, the relation
(k) — _ k)

i = T4 (36)
may be easily established on the basis of Eq. (7),
where

@ _ )
95—y = ~2Gayy) (37)

@ _
45— = ~460iGoy (38)

@
diyi— = 460Gy
= 261G G(hG1))y—2Geyy)  (39)

The expression for P, ; of Eq. (35) indicates that the
increment quﬁr))i,(,)l describes the kth order partial
population donated by the IOFO ¢4 to the IVFO
U~y Similarly, qik_))j,(ﬂm represents the partial kth
order population acquired by the IVFO ) from
the IOFO 9 ,,,, whereas Eq. (36) is nothing more
than the charge conservation condition. Using Egs.
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(34)—(36) we then obtain

@ IOFOs IVFOs
Ep = Z Z a2y Eco + Ey) (40)

It is seen that EE,‘:)) consists of partial increments, each
of them corresponding to a pair of basis orbitals of
different initial occupation. Moreover, the increment
referring to the pair of FOs 9, and ¥ is propor-
tional to the partial population transferred between
these basis functions and to the relevant energy inter-
val Eqyy + Ey;.

Therefore, the first component EEZ‘)) of the total kth
order correction E, may be interpreted as the charge
transfer energy.

Let us consider now the second component of the
total energy E(B) One-electron energies of basis orbi-
tals may be entlrely included into the zero order
elements E(,y; and E_); without any restriction. As a
result, the equalities S; =0 and Q; =0 may be
accepted. This implies that the increment EEE)) does
not contain populations of basis orbitals (see Eq.
(12)) and thereby it describes the effect of formation
of new bond orders upon the kth order energy.

Therefore, E(,f‘)) is the only contribution to the total
correction E, describing charge redistribution. More-
over, the first relation of Eq. (30) indicates that the
absolute value of the correction E is proportional to
that of the kth order charge transfer energy E(k) On
the other hand, it is the sign of the bond order energy
E((E)) that determines the actual sign of the total correc-
tion E), i.e. whether the kth order correction Ej
contributes to stabilization or to destabilization of
the system.

For a more detailed interpretation of the above-
obtained relations, let us dwell on the second order
terms (k = 2). From Eq. (37) it is seen that the partial
transferred population qg?)i’(_)j and thereby the total
second order correction P ; to the population of
the IOFO 9, are negative quantities. Such a result
causes no surprise as the total population of an initi-
ally double-occupied orbital necessarily decreases as
a result of charge redistribution.

Furthermore, negative signs of both q( +)l( ) and
Eyy + E); imply a positive sign of E(z)) Hence, the
charge redistribution in itself gives rise to destabiliza-
tion of the system. This conclusion is in line with the
fact that charge is transferred from orbitals of lower

energies (IOFOs) to those of higher energies (IVFOs).
On the other hand, a negative sign of the total second
order energy E,) results from Eq. (30) and it implies
the system being stabilized vs. the set of isolated FOs.

It is seen, therefore, that stabilization of the system
is entirely due to formation of new bond orders owing
to interaction, and the subsequent charge redistribu-
tion actually reduces this stabilizing effect. Neverthe-
less, the absolute value of the final correction E
coincides with the positive charge transfer energy
£

As opposed to the second order term q( +)l (—y» the
signs of the third and fourth order partial transferred
populations defined by Eqs. (38) and (39) are not
evident a priori. Hence, both negative and positive
third and fourth order increments are possible (see
Ref. [17] and Section 5.2).

Let any partial charge transfer taking place from an
initially-occupied basis orbital to an initially-vacant
one and described by a negative increment qglﬁr))iq(_)j
to be called a normal one. Accordingly, a charge
transfer of an opposite direction represented by a
positive increment qgkﬁ)i’(,)j will be referred to as an
abnormal partial charge transfer. In the latter case, a
negative contribution to the charge transfer energy
and a positive one to the total correction Ey, will be
obtained. Thus, such a pair of orbitals yields a de-
stabilizing increment to the total energy.

To summarize the above results, let the stabiliza-
tion energy AEg, to be defined as a difference
between the total energy E and the sum of one-
electron energies of isolated basis orbitals (FOs), the
latter coinciding with the sum E, + E() shown in
Eq. (13). Then the first relation of Eq. (30) yields an
expression for the total AE,, in terms of charge trans-
fer energy, viz.

AEy, = — kZz T ! . Ey) 41)

where EEZ‘)) is shown in Eq. (40).

5. Applications of the relations obtained

Let us start with a notation that elements G, of
matrices G, also acquire simple interpretation under
an assumption about diagonal structure of zero order
matrices Ey and E, [10]. Thus, the first order
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element G;); takes the form

_ R;j
—_— (42)
Epy + Ey

Gayj =
and describes the direct (through-space) interaction
between the IOFO ¥,y and the IVFO & . It is
seen that a non-zero value of the resonance parameter
Rjj is required for a non-zero direct interaction to arise.
Accordingly, the second and third order elements
(Gy; and G3);) represent the indirect interactions of
the same orbitals by means of one and two mediators,
respectively [4], and a zero value of the resonance
parameter R; is allowed in this case. From Egs.
(37)—(39) it also follows that a second (and higher
order) partial charge transfer takes place between
two directly interacting orbitals (i.e. when Gy; # 0),
whilst only a fourth order charge transfer is peculiar
to pairs of directly non-interacting orbitals (when
Gy = 0). The non-local nature of the partial trans-
ferred populations qgljr))i‘(_)j for k =3 and k = 4 also
deserves mentioning here. Indeed, these partial incre-
ments contain indirect interactions of orbitals ¥
and ¥ and thereby depend implicitly on the
whole set of FOs.

Now we are about to examplify the relations of
Sections 3 and 4 for k = 2, 3, and 4 separately.

5.1. The mesomeric effect in mono-substituted
benzenes

Let us start with demonstrating a simple relation
between the electron density redistribution in mono-
substituted benzenes due to substitution [14] and the
relevant stabilization energy [18]. Let us dwell first on
the case of an electron-donating substituent D, which
may be represented by a single initially-occupied
orbital ¥4, [14].

It is evident that the orbital ., interacts directly
with the initially-vacant orbitals of the phenyl ring
(benzene). Hence, the electron-donating effect of the
substituent D upon this ring is described by second
order terms of the power series.

The first order matrix elements G, representing
the above-mentioned direct interactions follow from
Eq. (42), viz.

ob oa

v GoeTTon @

G(l)dS ==

where the subscripts 5 and 6 refer to the initially-
vacant MOs of benzene ¥ _)s and ¥ of the appro-
priate symmetry (which ensures non-zero values for
resonance parameters Ry and Ry). The positive
constants o and € represent the resonance parameter
of the C,,—D bond and the one-electron energy of the
orbital 94, respectively, whereas the coefficients
a = 0.408 and b = 0.577 coincide with those of the
standard MOs of benzene at the site of substitution.

The direct interactions shown in Eq. (43) determine
the relevant partial transferred populations in accor-
dance with Eq. (37), viz.

@ _ O'2b2 @ L 0'2612
Aenacs = T2 gy denacs = TH )2
(44)

Thereupon, Eq. (40) may be used to obtain the expres-
sion for the charge transfer energy

(@) _ (2) (2)
E(z> = Q(+)d,(—)5(E(+)d + E(—)S) + (1(+)d,(—)6(E(+)d
+ E(—)6)

=207 b + a >0
0 et (e+2

which coincides with the absolute value of the stabil-
ization energy |AEy)-

It is seen that both AE,, and EE‘z")) are additive with
respect to contributions of IVFOs s and ¥ and
inversely proportional to the electronegativity of the
substituent D. At the same time, positive bond orders

Pd5 = _2G(1)d5 > O, Pd6 = _ZG(l)d6 >0 (46)

(45)

are formed between pairs of orbitals (45,3 -)s) and
(Y400 (-)) as Eq. (6) indicates and these also are
determined by the same direct interactions G;);s and
Giyds-

It is evident that an electron-accepting substituent
(A) may be treated similarly [14]. The relevant IVFO
¥y, along with IOFOs of benzene make up the
appropriate basis set in this case.

Therefore, an interdependence may be concluded
between the three principal manifestations of the
substituent influence upon the phenyl ring, viz.
between the intramolecular charge redistribution, the
newly-formed bond orders and the stabilization
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energy. This result contributes to substantiation of the
classical concept of the single mesomeric effect being
described by the above-enumerated three aspects.

5.2. Interdependence between the third order trans-
and gauche-effects

A predominant influence of a substituent (D or A)
upon the frans-arranged vicinal bonds (C—C, or Cg—
H) (the so called trans-effect) has been established
both experimentally [22-25] and theoretically
[17,26-29] in substituted alkanes and alkenes. More-
over, different populations of orbitals of the C,(H)
atoms in the cis- and trans-arranged Cg—C, (Cg—H)
bonds [26,30,31] proved to be among the principal
manifestations of this effect.

Application of the power series for the bond order
matrix [10] to investigation of the trans-effect [17]
showed that different extents of the total intramolecu-
lar charge transfer between pairs of orbitals of cis- and
trans-arranged D(A)— C, and Cy—C, (Cg—H) bonds
are peculiar to substituted alkanes and alkenes. More-
over, this dissimilarity has been traced back to differ-
ent signs of the relevant third order increments to
partial transferred populations. (Absolute values of
direct interactions G;); between orbitals of the
above mentioned pairs of bonds and thereby the
second order increments to the partial transferred
populations were shown to fall close together).

In the case of an electron-donating substituent D,
the partial charge transfer between its electron-
donating orbital and the antibonding orbital of the
Cy—C, (Cg—H) bond proved to be of primary impor-
tance. For molecules containing an electron-accepting
substituent (A), the partial charge transfer between the
bonding orbital of the C3—C, (Cz—H) bond and the
antibonding orbital of the A—C, bond played the deci-
sive role. In both cases, however, a normal (negative)
third order partial charge transfer corresponds to
trans-arranged pairs of the D(A)- C, and Cg-C,
(Cg—H) bonds and an abnormal (positive) increment
of the same absolute value refers to cis- arranged pairs
of the same bonds.

These results along with the relations of Egs. (30)
and (40) allow us to conclude that the third order
interactions of the trans-arranged pairs of the above-
specified vicinal bonds contribute to stabilization of
the system, whereas the analogous interactions of the

cis-arranged pairs yield destabilizing increments to
the total energy. This, in turn, promotes an expecta-
tion that molecule will addopt that conformation
which is described by the maximum number of
trans-arranged pairs of bonds D(A)-C, and Cz-C,
(Cg—H) and by the minimum number of analogous
cis-arranged pairs. For 1,2-disubstituted ethanes and
ethylenes containing either two electron-donating
substituents or two electron-accepting ones, it is the
gauche- and the cis-conformations, respectively, that
meet the above condition best of all. As a result, we
arrive at the well-known gauche- and cis-effects
describing the most stable conformations of disub-
stituted ethanes and ethylenes [1,5,32-41] (the
gauche-arrangements of the two lone electron pairs
established experimentally in molecules N,H,
[5,32,35,36] and H,O, [32] may be mentioned as
examples of the gauche-effect. Similarly, the two
vicinal C,—D; and Cg-D, bonds addopt a gauche-
arrangement in the most stable conformations of
1,2-difluoroethane [5,34,37] and of 1,2-dimethoxy-
ethane [38]. The related cis-effect may be examplified
by a greater stability of cis-1,2-disubstituted ethylenes
vs. respective trans-isomers [5,34,39,40]).

It is seen, therefore, that a relation between the
trans-effect of substituent and the well-known
gauche- and cis-effects is among non-trivial conse-
quences of the above-established interdependence
between stabilization energy and charge redistribu-
tion. Moreover, the obtained relation yields a simple
accounting for the increased stability of gauche- and
cis-conformations: it is the latter that offer better
conditions for the normal charge redistribution.

5.3. The intersubstituent interaction in (D,A)-
disubstituted benzenes as an example of the fourth
order effects

As with the mesomeric effect of a single substituent
upon the phenyl ring (Section 5.1), the intersubstitu-
ent interaction in (D,A)-disubstituted benzenes (the
so-called direct conjugation of substituents) also
manifests itself as both an additional charge transfer
[4] and an extra stabilization relatively to respective
mono-derivatives [18]. Search for an interrelation
between these two aspects also may be carried out
similarly as it was done in Section 5.1. The only
difference between the two cases consists in different
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orders of terms of our power series (k) that serve to
describe them.

Indeed, no direct interaction was assumed to take
place between substituents D and A in (D,A)-
disubstituted benzenes [4]. As a result, the inter-
substituent interaction proves to be determined by
the fourth order terms of our power series. Then
Egs. (39)-(41) yield the following expression for
the stabilization energy of a (D,A)-disubstituted
benzene

— 4
A = =3 Eq =~ gl:q(-*-)d,(—)s(E(-*-)d T E)s)

@
T a4 -aEqp T E-a)

4
+ 4B T E(—)a)]
47)

where the subscripts (+)2 and (—)5 stand for the high-
est-occupied and lowest-vacant MOs of benzene,
whilst (+)d and (—)a refer to orbitals of substituents
D and A, respectively [4]. Analysis of expressions for
the fourth order transferred populations contained in
Eq. (47) for various isomers [4] showed that both
qﬁf) d(—)s and ‘ZE?)z,(—)a are negative quantities for
para- and ortho-(D,A)-disubstituted benzenes and
thereby contribute to a greater stability of these mole-
cules. Alternatively, the same partial transferred
populations are positive for meta isomers and a de-
stabilizing energy increment follows. The remaining
term qﬁ))d’(,)a always is of a negative sign but its
absolute values meet the following relation

(4)para

(4)ortho
(H)d(—a| =

O > (4)meta

4(+)d(—)a (48)

On the whole, these results are in line with a greater
stability of para- and ortho-disubstituted benzenes as
compared to respective meta isomers [18].
Summarizing all the results of Section 5, we may
conclude that there is a possibility of classification of
various effects on the basis of the order parameter k.
Moreover, it is seen that the influence of the given
effect upon the total energy decreases when the
order parameter grows even if the relevant charge
redistributions are of comparable extents.

6. Concluding remarks

The principal result of the above study lies in
obtaining the relation between stabilization energy
of a molecular system and the relevant charge redis-
tribution in an explicit algebraic form. This achieve-
ment yields a substantiation for an intuition-based
assumption about validity of such a relation for
molecules and molecular systems of an involved
constitution.

Conclusions about the nature of the relation that
may be drawn on the basis of our results are as
follows:

First, the relation involves two additive character-
istics with respect to contributions of pairs of orbitals
of different initial occupation, namely the stabilization
energy and the charge transfer energy. The above-
mentioned contributions, however, generally contain
indirect interactions of the respective two orbitals and
thereby depend on the structure of the whole system.
Thus, an additive but non-local nature of the relation
under study may be concluded.

Second, the relation under discussion is by no
means of a straightforward nature. Indeed, charge
redistribution in itself usually gives rise to destabili-
zation of the system. Moreover, the final stabilization
energy originates from the difference between the
stabilizing effect of the newly-formed bond orders
and the above-mentioned destabilizing increment.
Under these circumstances, however, the above-
established proportionality between absolute values
of the stabilization energy and the charge transfer
energy is an even more surprising result.

Good prospects for further applications of the
obtained relations also deserve mentioning, in parti-
cular in studies of chemical reactions. Indeed, the
direction of the attack of the reagent which is
described by larger normal transferred populations
between orbitals of interacting molecules may be
expected to be accompanied by a more efficient stabil-
ization of the whole system and thereby by an
increased relative reactivity as compared to other
directions (cf. the so-called back attack of nucleophile
vs. its frontal attack during the Sy2 reaction of substi-
tuted alkanes [16]).

The scope of validity of the relation between stabil-
ization energy and charge redistribution also fol-
lows from the above-performed derivation. Thus,
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the relation is valid when the basis set of the system
under study may be divided into two subsets contain-
ing the initially-occupied and the initially-vacant
basis functions so that all the resonance parameters
are first order terms vs. the energy differences
between orbitals of different subsets (This require-
ment is met for an extended class of molecules and
molecular systems [4,12—15]). At the same time, no
specifying either of the number of orbitals participat-
ing in the charge redistribution or of the extent of their
localization is required for derivation of our relation.
The same also refers to the actual structure of the
system and the nature of its alteration.

Given that zero order intrasubset resonance para-
meters are additionally allowed, the relation under
study turns into an interdependence of a more
involved nature wherein the energy of formation of
intrasubset bond orders also is present in the expres-
sion for the total energy alteration along with the
charge transfer energy (see Eq. (11) for the case
when E(y;(i #j) or E_yy(k # [) take non-zero
values). This fact indicates a direction for further
extending the relation studied in this paper.
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