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Abstract

The article contains an application to pericyclic reactions of the non-canonical method of molecular orbitals (MOs) suggested previously

[V. Gineityte, J. Mol. Struct. (Theochem), 343 (1995) 183; 487 (1999) 231] and based on obtaining the localized MOs (LMOs) and the

respective one-electron density matrix (bond order matrix) directly without any reference to delocalized (canonical) MOs. The thermal

electrocyclic closure of polyenes containing N CaC bonds (C2NH2NC2) is modelled by emergence of additional resonance parameters

between 2pz AOs of the terminal carbon atoms C1 and C2N. At the early stage of the reaction, alterations in the total energies due to the above-

specified perturbation are related to bond orders (P1,2N) between the terminal AOs of respective initial (open) polyene chain. As a result, an

analogue of the famous Woodward–Hoffmann rule is formulated in terms of alternating signs of bond orders P1,2N for growing N values.

Moreover, a relation is established between the signs of P1,2N and those of direct (indirect) interactions of orbitals of terminal CaC bonds by

means of orbitals of intervening bonds. For later stages of the same process, the relevant alterations in bond orders themselves are studied,

and these also are shown to yield an analogous selection rule. An additional insight is given into the mechanism of the closure process, viz.

choice between a cyclic- and Möbius-array-like overlap topology of 2pz AOs of carbon atoms is shown to be made at the very early stage of

the reaction. Inasmuch as bond order matrices are closely related to respective LMOs and thereby belong to the localized way of representing

electronic structures (see the above-cited references), the results obtained may be considered as a localized description of pericyclic

reactions.

q 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Numerous pericyclic reactions have been discovered and

studied within the last decades including the so-called

electrocyclic transformations [1–3]. Definition of these

reactions involves an assumption that a ‘concerted reorgan-

ization of bonding occurs throughout a cyclic array of

continuously bounded atoms’ [1]. In other terms, no local

reaction center is supposed to be peculiar to these processes

in contrast to other organic reactions. It is no surprise in this

connection that the canonical method of delocalized

molecular orbitals (the CMO method) proved to be

extremely successful in interpretation of pericyclic

reactions.

The first accounting for the high stereospecificity of

electrocyclic transformations was based on consideration of
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symmetry properties of CMOs. In particular, the highest-

occupied MO (HOMO) of the acyclic member of the

reactant–product pair [4–6] was shown to play the most

important role in the thermal electrocyclic closure processes

of polyenes. On this basis, the famous selection rule was

formulated, and it is known nowadays as the Woodward–

Hoffmann rule.

Several extended approaches to interpretation of the

same reactions have been developed later including the MO

and/or state correlation diagrams on going from reactant

through transition state to product [7], the frontier MO

(FMO) theory [8] and studies of stability of the supposed

transition state by invoking the concept of the Hückel and

Möbius aromaticity [9,10]. It is also noteworthy here that all

the above-enumerated approaches are directly or indirectly

based on consideration of CMOs and their transformations

during the process.

It is known, however, that the set of CMOs is not the

only possible set of one-electron orbitals of a molecular
Journal of Molecular Structure: THEOCHEM 714 (2005) 157–164
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Fig. 1. The initial arrangement of the terminal bonds (C1aC2 and C2NK1a

C2N) of the polyene chain C2NH2NC2 with respect to the system of

coordinates. The labels attributed to the terminal hydrogen atoms serve to

display the same molecule in the plane zy in Fig. 2.
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system [11,12]. Moreover, orbitals localized mainly on

particular chemical bonds of the given system may be

found among alternative (non-canonical) sets of MOs,

and these are usually referred to as localized MOs

(LMOs). Accordingly, localized approaches present an

alternative to the delocalized way of representing

electronic structures based on CMOs. Applicability of

these approaches to polyenes of a small and medium size

is beyond any doubt [13,14].

The most traditional way of obtaining LMOs consists in

transforming the set of occupied CMOs using various

localization criteria [11,12]. As it turned out later, however,

both canonical and non-canonical MOs (NCMOs) may be

obtained directly without invoking the alternative set

[15–19]. On this basis, an equivalence of the CMO and

NCMO methods has been concluded [14]. Moreover, these

methods were shown to describe complementary aspects of

electronic structures. In this context, a question of particular

interest is about applicability of the NCMO method to

pericyclic reactions.

The direct way of obtaining LMOs [15–19] is based on

the Brillouin theorem, which, in turn, resolves itself into the

block-diagonalization problem for the relevant Fockian or

Hückel type Hamiltonian matrix. To solve this problem, the

so-called non-commutative Rayleigh–Schrödinger pertur-

bation theory (NCRSPT) has been developed [18,19]. An

important feature of this approach consists in the relation

between the block-diagonalization problem and the direct

way of obtaining the respective one-electron density matrix

(DM) on the basis of solution of the commutation equation

[18]. As a consequence, interrelated power series have been

derived for the DM (P) and for the relevant LMO

representation matrix (T) that are expected to converge (or

diverge) simultaneously [14,18]. This implies the matrices

T and P to offer alternative localized representations of

electronic structures.

Under these circumstances, adequacy of the one-electron

DM (bond order matrix) for interpretation of pericyclic

reactions (if established) would imply applicability of the

localized approach in general. Moreover, equivalence of the

localized and delocalized ways of representing electronic

structures [14] would acquire an additional support. Finally,

some new aspects of the very reaction mechanism may be

expected to follow. It is precisely the exploration of

applicability of the bond order matrix to pericyclic reactions

that this paper is aimed at.

As an initial step of this work, we will consider the

thermal electrocyclic closure of polyenes. We are about to

demonstrate that the famous Woodward–Hoffmann rule

[1–6] (the reaction is allowed in the disrotatory and

conrotatory fashions for systems of 4nC2 and 4n electrons,

respectively) may be formulated on the basis of bond orders

without any reference to canonical MOs. To this end, we

will employ the power series for the DM P resulting from

the direct solution of the commutation equation by means of

the NCRSPT [18].
Members of the above-mentioned power series have

been expressed in terms of principal matrices G(k) describ-

ing the direct (through-space) and indirect (through-bond)

interactions of bond orbitals (k here and below stands for the

order parameter). The very concept of direct and indirect

interactions has been suggested in Refs. [20–23] and used

for interpretation of photoelectron spectra of molecules

[20–29] and of localized MOs [15–18,30,31]. Employment

of these terms for interpretation of pericyclic reactions is

also among the aims of the present study.

In the framework of the Hückel model, the electrocyclic

closure of a polyene chain may be modelled by emergence

of a new resonance parameter between AOs of the terminal

carbon atoms. At the very early stage of the reaction, this

additional parameter may be assumed to take a small value

vs. those of the initially single (C–C) bonds. Sections 2 and

3 are devoted to investigation of just this case, viz. of

alterations in total energies due to the above-specified

perturbation of the chain. When the process goes on and the

new resonance parameter becomes comparable with those

of the C–C bonds, changes in the internal bond orders of the

chain also may be revealed. The results of the relevant

investigation are overviewed in Section 4.
2. Studies of an early stage of the closure process.
The expressions for bond orders

Let us start with an open polyene chain (C2NH2NC2)

containing N CaC bonds and 2N p-electrons. Let the

system of coordinates to be chosen so that the principal

plane of the molecule coincides with the xy plane (Fig. 1).

The carbon atoms of this chain will be then represented by

2pz AOs c1, c2,.,c2N that are supposed to be characterized

by uniform Coulomb parameters a. Resonance parameters

between pairs of neighboring AOs (cr, crC1) also will be

assumed to take uniform values b for simplicity [14]. For

other pairs of AOs, the resonance parameters are supposed

to take zero values.

Let us assume now that an additional local perturbation

represented by the resonance parameter g1,2N between the

terminal AOs c1 and c2N arises in our chain due to its

closure. Inasmuch as bond orders P1,2N between these AOs

take non-zero values in the initial (open) polyene chain [14],
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the relevant alterations in total energies coincide with the

first order corrections defined as follows [32–34]
DE zEð1Þ Z 2P1;2Ng1;2N : (1)
Let the energy reference point to be defined by an

assumption that aZ0. Moreover, the equality bZ1 will be

accepted and this implies our energy unit to be negative. We

may then expect that positive corrections E(1) correspond to

allowed reactions, whereas negative ones refer to forbidden

processes.

Let us consider now the closure process in more detail

(Fig. 2). The negative lower lobes of the 2pz AOs c1 and

c2N will overlap one with another most significantly

during a disrotatory reaction (Fig. 2a). Consequently, a

disrotatory process is accompanied by formation of a

positive overlap integral S1,2N between AOs c1 and c2N

and thereby of a positive resonance parameter

ðg
ðdisÞ
1;2N O0Þ. Again, a conrotatory way of reaction gives

rise to the primary overlap of lobes of AOs c1 and c2N

of different signs and thereby to a negative value of the

same parameter ðg
ðconÞ
1;2N !0Þ. It may be expected, there-

fore, that allowed thermal reactions proceed in a

disrotatory fashion if P1,2NO0, whilst the same processes

chose a conrotatory way if P1,2N!0, where the P1,2N

evidently refers to the acyclic hydrocarbon. Hence, it is

the sign of the bond order between the terminal AOs of

the open polyene that determines the predominant way of

its subsequent closure process. This implies that estab-

lishing the dependence between the sign of the bond

order P1,2N and the total number of electrons in the chain

is the principal aim of our study. To this end, we are

about to derive and analyze the algebraic expressions for

P1,2N using the above-discussed power series for the

bond order matrix [18,35].

Members of this series have been originally rep-

resented [18] in the basis of bonding and antibonding

orbitals of the initially double (CaC) bonds that were

referred to as bond orbitals (BOs). The latter, in turn,

have been defined as normalized sums and differences of

pairs of 2pz AOs involved within separate CaC bonds.

For example, BOs of the first and of the last CaC bond
Fig. 2. Schemes representing the disrotatory (a) and the conrotatory

(b) closures of the chain from the front of the molecule.
take the form

4ðCÞ1ð4ðKÞ1Þ Z
1ffiffiffi
2

p ðc1Gc2Þ;

4ðCÞNð4ðKÞNÞ Z
1ffiffiffi
2

p ðc2NK1Gc2NÞ;

(2)

where the subscripts (C) and (K) here and below stand for

the bonding BOs (BBOs) and antibonding BOs (ABOs),

respectively. The upper and lower signs of the right-hand

sides of these expressions also correspondingly refer to

BBOs and ABOs. Let the notation ~P stand for the bond order

matrix of polyenes in the basis of BOs.

To derive the expression for P1,2N, however, an

alternative representation of the DM in the basis of 2pz

AOs is evidently required. The latter is easily obtainable by

transforming the original matrix ~P into the basis of AOs.

The relevant unitary transformation matrix may be con-

structed using the definition of BOs of Eq. (2). The final

expression for the bond order P1,2N takes the form

P1;2N Z
1

2
ð ~PðCÞ1;ðCÞN K ~PðKÞ1;ðKÞN C ~PðCÞN;ðKÞ1 K ~PðCÞ1;ðKÞNÞ:

(3)

The right-hand side of Eq. (3) contains elements of the

DM ~P in the basis of BOs, the latter being indicated by

subscripts (C)i and (K)j. Expressions for these elements

may be taken from Refs. [18,35] and are discussed below.

Let us start with partition of the relevant initial

Hamiltonian matrix ~H of Refs. [18,35]. The zero order

term ~Hð0Þ was assumed to coincide with a diagonal matrix

containing one-electron energies of BOs, whereas the first

order matrix ~Hð1Þ involved resonance parameters between

BOs. An assumption about relatively small values of the

latter vs. the energy differences between BBOs and ABOs

formed the basis of expressions for elements ~Pij as sums of

corrections ~P
ðkÞ
ij of various orders (k). Convergence of this

power series for open polyene chains of small and medium

size has been verified in Ref. [14].

Given that the subscripts i and j correspond to a BBO

(4(C)i) and to an ABO (4(K)j), respectively, as it is the case

with last two elements of the right-hand side of Eq. (3), the

corrections ~P
ðkÞ
ðCÞi;ðKÞj (kZ1,2,3.) take the form

~P
ðkÞ
ðCÞi;ðKÞj ZK2GðkÞij; (4)

where G(k)ij are elements of the principal matrices G(k)

introduced previously [18] and determining various types of

direct and indirect interactions between orbitals 4(C)i and

4(K)j.

The zero order term ~P
ð0Þ
ðCÞi;ðKÞj of Eq. (4) takes a zero value.

The first order element G(1)ij determining the correction
~P
ð1Þ
ðCÞi;ðKÞj has been expressed as follows

Gð1Þij ZK
h4ðCÞijĤj4ðKÞji

EðCÞi KEðKÞj

(5)
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and described the direct (through-space) interaction

between orbitals 4(C)i and 4(K)j. The numerator of the

right-hand side of Eq. (5) contains the Hückel type

Hamiltonian matrix element (resonance parameter) between

basis orbitals indicated within the bra- and ket-vectors, and

the denominator involves the relevant difference in one-

electron energies.

Similarly, the second order element G(2)ij takes the form

Gð2Þij Z
1

EðCÞi KEðKÞj

!
XBBOs

m

SimRmj

EðCÞm KEðKÞj

K
XABOs

n

RinQnj

EðCÞi KEðKÞn

( )
;

(6)

where the meanings of designations coincide with those of

Eq. (5), and

Sim Z h4ðCÞijĤj4ðCÞmi;

Rmj Z h4ðCÞmjĤj4ðKÞji;

Qnj Z h4ðKÞnjĤj4ðKÞji:

(7)

This element describes the indirect interaction between

the same orbitals by means of a single mediator, and both

the BBOs (4(C)m) and ABOs (4(K)n) are able to play this

role. To be an efficient mediator, however, the orbital under

consideration should overlap with both 4(C)i and 4(K)j.

Hence, orbitals situated in between the indirectly interacting

orbitals meet this condition best of all.

Finally, the element G(3)ij describes the indirect inter-

action of BOs 4(C)i and 4(K)j by means of two mediators.

The expression for this element takes the form [35]
Gð3Þij Z
K1

EðCÞi KEðKÞj

XBBOs

n

XBBOs

m

SinSnmRmj

ðEðCÞn KEðKÞjÞðEðCÞm KEðKÞjÞ
K

XBBOs

n

XABOs

r

SinRnrQrj

ðEðCÞn KEðKÞjÞðEðCÞn KEðKÞrÞ

�(

C
SinRnrQrj

ðEðCÞi KEðKÞrÞðEðCÞn KEðKÞrÞ
C

RirR
C
rnRnj

ðEðCÞn KEðKÞrÞðEðCÞr KEðKÞjÞ
C

RirR
C
rnRnj

ðEðCÞi KEðKÞrÞðEðCÞn KEðKÞrÞ

�

C
XABOs

p

XABOs

r

RirQrpQpj

ðEðCÞi KEðKÞpÞðEðCÞi KEðKÞrÞ

)
: ð8Þ
Pairs of mutually overlapping orbitals situated in

between the BOs 4(C)i and 4(K)j are the most efficient

mediators of this indirect interaction.

Let us turn again to Eq. (3) and consider the remaining

elements ~Pij. If both subscripts i and j refer to BBOs, we

obtain

~P
ð0Þ
ðCÞi;ðCÞj Z 2dij; ~P

ð1Þ
ðCÞi;ðCÞj Z 0;

~P
ð2Þ
ðCÞi;ðCÞj ZK2

XABOs

r

Gð1ÞirG
C
ð1Þrj;

~P
ð3Þ
ðCÞi;ðCÞj ZK2

XABOs

r

ðGð1ÞirG
C
ð2Þrj CGð2ÞirG

C
ð1ÞrjÞ;

(9)
where the superscripts of the left-hand sides indicate the

orders of respective corrections, whilst the superscripts C
of the right-hand sides denote elements of the Hermitian-

conjugate matrices GC
ðkÞ.

Finally, for both i and j corresponding to ABOs, the

relevant corrections are

~P
ð0Þ
ðKÞi;ðKÞj Z ~P

ð1Þ
ðKÞi;ðKÞj Z 0;

~P
ð2Þ
ðKÞi;ðKÞj Z 2

XBBOs

m

GC
ð1ÞimGð1Þmj;

~P
ð3Þ
ðKÞi;ðKÞj Z 2

XBBOs

m

ðGC
ð1ÞimGð2Þmj CGC

ð2ÞimGð1ÞmjÞ:

(10)

Before finishing this section, let us note that the right-

hand sides of Eqs. (9) and (10) also may be interpreted as

indirect interactions between respective pairs of BOs, i.e.

between 4(C)i and 4(C)j, and between 4(K)i and 4(K)j,

respectively.
3. Alternation of bond orders between the terminal AOs

of polyene with increasing number of CaC bonds

In this section, we are about to study the dependence

between the sign of the bond order P1,2N and the total

number of CaC bonds (N) and thereby of electrons in the

chain. To this end, Eqs. (3)–(10) will be used.

It is known that open polyenes are among the so-

called alternant hydrocarbons that are characterized by

specific peculiarities of Hamiltonian matrices and thereby

of related terms. In particular, the principal matrices G(k)
of these molecules were shown to be skew-symmetric

(skew-Hermitian) matrices [14], i.e. GC
ðkÞZKGðkÞ. For

separate elements of these matrices, we accordingly

obtain

GC
ðkÞij ZKGðkÞij Z GðkÞji: (11)

This relation implies coincidence of absolute values

and opposite signs for interactions of any order (k)

between definite pairs of orbitals of the Ith and Jth

bonds, namely between orbitals 4(C)i and 4(K)j and

between 4(C)j and 4(K)i.
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Using Eqs. (4) and (11) we then obtain

~PðCÞN;ðKÞ1 ZK~PðCÞ1;ðKÞN : (12)

Similarly, Eqs. (9)–(11) yield the relation

~PðCÞ1;ðCÞN ZK~PðKÞ1;ðKÞN : (13)

As a result, Eq. (3) may be simplified as follows

P1;2N ¼ ~PðþÞ1;ðþÞN K ~PðþÞ1;ðKÞN : (14)

Let us turn now to particular polyenes and start with the

butadiene molecule (NZ2). The structure of respective BOs

follows from Eq. (2). It is evident that orbitals of CaC

bonds interact directly in this case and thereby first order

elements G(1)12 and G(1)21 take non-zero values. This, in

turn, implies that the first order correction Pð1Þ
1;2N defined by

Eq. (4) yields the principal contribution to the bond order

P1,4. Using Eqs. (2), (5), (7) and (14) we then obtain

R12 Z
1

2
; Gð1Þ12 ZK

1

4
;

P1;4 zPð1Þ
1;4 ZK~P

ð1Þ
ðCÞ1;ðKÞ2 Z 2Gð1Þ12 ZK

1

2
!0:

(15)

It is seen that a negative bond order between AOs c1 and

c4 of butadiene arises owing to the negative value of the

direct interaction G(1)12.

For the hexatriene molecule (NZ3), orbitals of terminal

bonds interact indirectly by means of BOs of the mediating

bond (C3aC4). Consequently, second order corrections

yield the most important contributions in this case. Thus,

from Eq. (9) we obtain

~PðCÞ1;ðCÞ3 z ~P
ð2Þ
ðCÞ1;ðCÞ3 ZK2Gð1Þ12GC

ð1Þ23 Z
1

8
: (16)

Again, orbitals 4(C)2 and 4(K)2 play the role of mediators

in the indirect interaction G(2)13 and

~PðCÞ1;ðKÞ3 z ~P
ð2Þ
ðCÞ1;ðKÞ3 ZK2Gð2Þ13 ZK

1

4
: (17)

Substituting Eqs. (16) and (17) into Eq. (14) yields the

following final result

P1;6 z ~P
ð2Þ
1;6 Z

3

8
O0 (18)

indicating a positive sign of the bond order P1,6 between the

terminal AOs of the hexatriene. The positive indirect

interaction G(2)13 yields the most significant contribution

to the above-mentioned result.

Finally, third order indirect interactions contribute most

substantially to the bond order P1,8 between AOs c1 and c8

of the octatriene molecule (NZ4). The first increment of

this correction ð ~P
ð3Þ
ðCÞ1;ðCÞ4Þ follows from the last relation of

Eq. (9). Inasmuch as G(1)1rs0 for rZ(K)2 and GC
ð1Þr4Z

Gð1Þ4r s0 for rZ(K)3, we obtain

~P
ð3Þ
ðCÞ1;ðCÞ4 ZK2ðGð1Þ12Gð2Þ42 CGð2Þ13Gð1Þ43Þ; (19)
where

Gð1Þ12 ZK
1

4
; Gð1Þ43 Z

1

4
;

Gð2Þ42 ZK
1

8
; Gð2Þ13 Z

1

8
:

(20)

Substituting Eq. (20) into Eq. (19) yields

~PðCÞ1;ðCÞ4 z ~P
ð3Þ
ðCÞ1;ðCÞ4 ZK

1

8
!0: (21)

Let us turn now to the second increment of the same bond

order, viz. to ~P
ð3Þ
ðCÞ1;ðKÞ4 defined by Eq. (4). Four pairs of

orbitals of intervening bonds, viz. (4(C)2, 4(C)3), (4(C)2,

4(K)3), (4(K)2, 4(C)3) and (4(K)2, 4(K)3), are able to play the

role of mediators in the third order indirect interactions

G(3)14 determining the increment ~P
ð3Þ
ðCÞ1;ðKÞ4. As a result, the

following expression may be derived from Eq. (8)

Gð3Þ14 ZK
1

8
½S12S23R34 K2S12R23Q34

K2R12RC
23R34 CR12Q23Q34
: (22)

After substituting the appropriate values of resonance

parameters we obtain that

Gð3Þ14 ZK
3

32
!0; ~PðCÞ1;ðKÞ4 z ~P

ð3Þ
ðCÞ1;ðKÞ4 Z

3

16
O0

(23)

and

P1;8 zPð3Þ
1;8 ZK

5

16
!0: (24)

Hence, the bond order P1,8 between the terminal AOs of

octatriene proves to be negative as it was the case with

butadiene (see Eq. (15)). This result may be traced back to

the negative value of the indirect interaction G(3)14 seen

from Eq. (23).

It may be concluded, therefore, that the signs of bond

orders P1,2N between terminal orbitals of open polyene

chains alternate with increasing total number of CaC bonds

(N). A similar conclusion follows also from comparison of

the relevant results of numerical calculations [14]. In

contrast to the latter, however, the above-outlined way of

derivation of bond orders yields an additional relation

between the sign of the bond order P1,2N and that of the

respective direct or indirect interaction of orbitals of

terminal bonds, namely both signs prove to alternate

simultaneously with growing total number of CaC bonds.

Furthermore, negative bond orders P1,2N and thereby a

conrotatory closure of the chain is predicted for even N

values, whereas positive signs of P1,2N and thereby a

disrotatory process follows for odd N values. Inasmuch as

4n and 4nC2 electrons, respectively, correspond to these

cases, the above-established result coincides with the

Woodward–Hoffmann rule [1–6]. Thus, it may be accord-

ingly regarded as the analogue of this rule in terms of bond

orders.
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4. Exploration of a later stage of closure. Alterations

in the internal bond orders

Bond orders P1,2N between terminal AOs c1 and c2N of

the initial (open) polyene chain determine the predominant

way of the closure process at the very early stage of the

reaction as demonstrated in Sections 2 and 3. When the

process goes on, however, certain alterations in bond orders

themselves may be expected that refer both to P1,2N and to

the internal bond orders. In this section, we are about to

explore the nature of these alterations for allowed and

forbidden processes. To this end, the new resonance

parameter g1,2N will be included into the first order

Hamiltonian matrix along with resonance parameters

referring to the initially single (C–C) bonds. The notation

g will be used below instead of g1,2N for simplicity.

Let us start with the butadiene molecule (NZ2).

Emergence of the new resonance parameter g between

AOs c1 and c4 yields the following relations

R
ðgÞ
12 Z

1

2
K

g

2
; G

ðgÞ
ð1Þ12 ZKG

ðgÞ
ð1Þ21

ZK
1

4
C

g

4
; P

ðgÞ
1;4 ZK

1

2
C

g

2
(25)

instead of Eq. (15), where the superscript (g) is used here

and below for respective modified characteristics of the

chain. Comparison of Eqs. (15) and (25) shows that an

additional increase of the absolute value of P1,4 is observed

for negative g values, but not for positive ones.

Let us consider now the alteration in the internal bond

order P23 of the initially single bond of butadiene (C2–C3).

The relevant definition takes the form

P23 Z
1

2
ð ~PðCÞ1;ðCÞ2 K ~PðKÞ1;ðKÞ2 C ~PðCÞ1;ðKÞ2 K ~PðCÞ2;ðKÞ1Þ

(26)

and resembles Eq. (3). The expression for P
ðgÞ
23 also may be

obtained similarly and takes the form

P
ðgÞ
23 Z

1

2
K

g

2
; (27)

where the first increment of the right-hand side (i.e. ½)

refers to the open butadiene chain. It is seen that an increase

of the bond order of the initially single bond (C2–C3) results

for negative g values.

The remaining bond order of butadiene corresponding to

an initially double bond may be expressed as follows

P12 Z
1

2
ð ~PðCÞ1;ðCÞ1 K ~PðKÞ1;ðKÞ1Þ (28)

and contains occupation numbers of BOs of the bond under

consideration. First order corrections to populations of BOs

were shown to take zero values [18]. Consideration of the

second order increments yields the following expression for
the modified bond order P
ðgÞ
12

P
ðgÞ
12 Z 1 K ½ðG

ðgÞ
ð1Þ12Þ

2 C ðG
ðgÞ
ð1Þ21Þ

2
 Z 1 K
1

8
ð1 KgÞ2; (29)

where the last relation is obtained after substituting the

modified matrix element G
ðgÞ
ð1Þ12 of Eq. (25). From Eq. (29) it

follows that the bond order of the initially double bond

becomes reduced more substantially if a negative g value is

assumed.

Hence, redistributions of bond orders of the appropriate

nature are ensured if a negative g value and thereby a

conrotatory way of closure of the butadiene chain is chosen.

Other polyenes also may be studied similarly. Thus,

emergence of the new resonance parameter gZg1,6

between AOs c1 and c6 of the hexatriene molecule gives

rise to first order (direct) interactions between BOs of

terminal bonds (C1aC2 and C5aC6) and thereby to a

definite alteration of the bond order P1,6, the initial value of

which is shown is shown in Eq. (18). We obtain

G
ðgÞ
ð1Þ13 ZKG

ðgÞ
ð1Þ31 Z

g

4
; P

ðgÞ
1;6 Z

3

8
C

g

2
: (30)

Thus, the positive bond order of Eq. (18) becomes

additionally increased if a positive parameter g is

introduced.

So far as bond orders of the initially single bonds of

hexatriene are concerned, a g-independent first order

correction equal to ½ results from Eq. (26). This implies

that higher order corrections should be considered by

invoking Eqs. (6), (9) and (10). For separate increments of

the right-hand side of Eq. (26), we then obtain

~P
ðgÞ
ðCÞ1;ðCÞ2 ZK ~P

ðgÞ
ðKÞ1;ðKÞ2 Z

g

8
; ~P

ðgÞ
ðCÞ1;ðKÞ2 ZK ~P

ðgÞ
ðCÞ2;ðKÞ1 Z

g

2
;

(31)

where the relations shown in Eqs. (12) and (13) also are

taken into account. Substituting Eq. (31) into Eq. (26) yields

the following final result

P
ðgÞ
23 ¼ P

ðgÞ
45 ¼

1

2
þ

5g

8
: (32)

It is seen that a positive parameter g ensures an increase

of bond orders of initially single bonds of hexatriene.

The bond order P12 of the C1aC2 bond of hexatriene may

be found on the basis of Eq. (28), whereas that of the C3aC4

bond is defined as follows

P34 Z
1

2
ð ~PðCÞ2;ðCÞ2 K ~PðKÞ2;ðKÞ2Þ: (33)

Dependence of these bond orders upon the sign of the

new parameter g arises within the third order terms only. To

reveal this dependence, the expressions for ~P
ð3Þ
ðCÞi;ðCÞj and for

~P
ð3Þ
ðKÞi;ðKÞj shown in Eqs. (9) and (10) should be used. The final

result of such a consideration is as follows

P
ðgÞ
12 Z 1 K

1

8
K

g2

8
K

3g

4
; P

ðgÞ
34 Z 1 K

1

4
K

3g

4
(34)
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and indicates more substantial reductions of bond orders

of the initially double bonds for positive g values. Thus,

redistributions of bond orders of hexatriene comply with

our expectations for positive g values and thereby

under an assumption of disrotatory way of closure of

the chain.

It is seen, therefore, that alterations in bond orders

during the closure process yield predictions of the

predominant ways of reaction that coincide with those

following from consideration of bond orders between the

terminal AOs of the initial (open) polyene chain. Hence,

the Woodward–Hoffmann rule based on studies of the

acyclic members of the reagent–product pairs acquire an

additional support.
5. Conclusions

The principal result of the above study consists in

formulating the analogue of the Woodward–Hoffmann rule

for electrocyclic transformations on the basis of the bond

order matrix, the latter being obtainable directly without

invoking the canonical (delocalized) MOs.

The main points underlying this rule are as follows:
1.
 Positive and negative overlap integrals S1,2N are

supposed to arise between the terminal 2pz AOs of

polyenes at the very outset of a disrotatory and

conrotatory closure processes, respectively.
2.
 Choice of the allowed way of the closure process is

determined by the sign of the bond order (P1,2N) between

terminal AOs c1 and c2N of the initial (open) polyene

chain, viz. positive (negative) bond orders predetermine

disrotatory (conrotatory) way of closure.
3.
 The above-mentioned sign of P1,2N alternates with

increasing total number of CaC bonds (N), namely

negative (positive) bond orders correspond to even (odd)

numbers of CaC bonds (N).
4.
 The bond orders P1,2N, in turn, depend on certain matrix

elements describing the interactions between orbitals of

the terminal CaC bonds either directly (cf. the case NZ2

referring to the butadiene molecule) or indirectly by

means of orbitals of intervening bonds. Accordingly,

alternation of signs of P1,2N is determined by an

analogous behaviour of the above-specified interaction

with growing number of intervening bonds.
5.
 Selection rules based on studies of an initial (open)

chain are supported by investigations of subsequent

alterations in bond orders during later stages of the

closure process.
6.
 Redistributions of bond orders of the appropriate nature

are ensured under an assumption about conservation of

signs of resonance parameters g1,2N and of overlap

integrals S1,2N when passing from the very early stage of

the process to its later stages.
Implications of the results obtained for understanding the

mechanism of the closure process also deserve mentioning

here:
1.
 In accordance with the above-established signs of

additional overlap integrals S1,2N between the terminal

AOs of polyenes, formation of a usual cyclic array of 2pz

AOs and of a Möbius array may be expected to take place

at the very early stage of the closure process for the cases

of odd and even total numbers of CaC bonds,

respectively.
2.
 Conservation of signs of overlap integrals S1,2N when

passing to later stages of the reaction along with the

concept of the Hückel and Möbius aromaticity of

corresponding transition structures for odd and even N

values [9,10] indicate that the cyclic- and the Möbius-

array-like overlap topologies, respectively, are peculiar

to closure processes within wide ranges of reaction

coordinates.
3.
 Choice between the cyclic- and the Möbius-array-like

overlap topology of the closure process is determined by

the nature of the (direct or indirect) interaction of orbitals

of terminal CaC bonds by means of orbitals of

intervening bonds, the latter being actually conditioned

by the total number of CaC bonds in the chain.

Generally, the following points proved to be supported

by the results of the above study:
(1)
 Adequacy of the non-canonical method of MOs and

thereby of the localized way of representing electronic

structures for interpretation of pericyclic reactions;
(2)
 Equivalence of the localized and delocalized approaches

to investigate electronic structures in general [14] and the

pericyclic reactions, in particular;
(3)
 Feasibility of a unified quantum-chemical description

both of pericyclic and of ionic reactions in terms of

direct and indirect interorbital interactions (cf. the

recent studies of SN2 [36,37] and of AdE2 [38]

processes).
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