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LETTER TO THE EDITOR

Free electron model for collisional angular momentum mixing
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Abstract. Simple analytical expressions for the cross sections of nf- n'l transitions from
Rydberg-neutral inelastic collisions are obtained on the basis of the free electron model
for electron-perturber scattering. The dependences of the electron~perturber scattering
amplitude on the electron momentum and scattering angle are allowed for. The analytical
results agree well with available numerical calculations. The analysis of the equations
obtained yields a conclusion that the cross sections at /=< I depend weakly on ! and ! for
degenerate states and are proportional to the statistical weights of the final states for
transitions with large energy defects.

There has been considerable interest in collisional processes involving Rydberg atoms
for some fifteen years, reflecting the progress in experimental laser spectroscopy.
Various theoretical investigations of state-changing collisions between Rydberg atoms
and neutral atomic or molecular targets have been made (see, e.g., Stebbings and
Dunning 1983, Kaulakys and Serapinas 1989 and references therein). Simple analytical
expressions have been obtained for the cross sections of elastic broadening and shift
of the Rydberg levels (Omont 1977, Kaulakys 1984), for the cross sections of nl-» n’
transitions, where n’ is a hydrogenic manifold (Gounand and Petitjean 1984, Petitjean
and Gounand 1984, Kaulakys 1985, 1986, Lebedev and Marchenko 1985, 1986, 1987)
in collisions between the Rydberg atom and a structureless neutral atomic particle,
The free electron model based on the analysis of the binary encounter of the Rydberg
electron with an incident particle (Kaulakys 1986) has been generalized for inelastic
collisions of Rydberg atoms with molecules (Kaulakys 1988).

The theory of collisional transitions between states of Rydberg atoms with the
definite orbital quantum number ' of the final Rydberg state, i.e. the theory of the
process

A(n)+B->A(n'l)+B {1)

where A(n/) is the Rydberg atom in the n/-state and B is the atomic particle, is developed
considerably less. There have been only numerical calculations of the cross sections
for the process (1) in the scattering-length approximation or with the inclusion of the
second term in the expansion of the electron-perturber (e-B) scattering amplitude
f.(p, ®) in powers of the electron momentum p (Derouard and Lombardi 1978,
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Matsuzawa 1979, Sasano ef al 1983, Sato and Matsuzawa 1985, Yoshizawa and
Matsuzawa 1985). Although, as far as we know, there are no experimental results for
the cross sections of the specific nl » n'l trans\ﬁions, the knowledge of the cross sections
and regularities of the processes (1) are needed: the transitions (1) govern the popula.
tions of the Rydberg nl states and are closely connected with the different observed
broadenings and shifts of the various Rydberg series (ns, np and nd) and various
fine-structure lines (Kachru et al 1980, Thompson et al 1987, Borstel er al 1988,
Hermann 1988, Heber ef al 1988). One can also refer io ithe papers by Sirko and
Rosinski (1986, 1987) which are devoted to the theoretical investigation of a collisional
fine-structure mixing of the highly excited states.

In this paper, on the basis of the free electron model we obtain simple analytical
expressions for the cross sections of the process (1), taking into account the dependence
of the e-B scattering amplitude on the electron momentum and scattering angle and
investigate the dependence of the cross sections on the parameters of the problem.
Our calculations are similar to those for a nl -+ n’ transition in the free electron model
(Kaulakys 1986). We assume that the electron-perturber scattering is described by the
free electron scattering amplitude, and the transitions between the Rydberg states are
due to the change of the kinetic energy and momentum of the electron in the collision
with the atomic particle B. We choose the coordinate frame such that the electron
momentum p before e-B scattering is directed along the z axis and the electron radius
vector r is in the xz plane. The laws of energy and momentum conservation in the
elastic e-B scattering yield

e =2vpsin(3/2) cos y

cos ¥ = —sin(¥/2) cos ¥, +cos(3/2) sin ¥, cos{e —¢,) (2)

J*r=Jtsin’ ¥ cos ¥'= cos y cos ¥ +sin y sin 9 cos @. (3)

Here e is the energy transferred to the electron in e-B scattering, J' is the electron
angular momentum after e-B scattering, J,=p'r=(n"—1+3)=n" is the maximal
angular momentum of the electron in the n” manifold, &, and ¢, are the angles of the
A(nl)-B collision velocity v; & and ¢ are the e-B scattering angles while y and x' are
the angles between r and p and r and p’, respectively.

At first, we determine the averaged over the velocity directions of the atom B
differential cross section d*o,_g( p)/de dJ” for the transfer of the energy € and receiving
angular momentum J' by the electron in the e-B scattering. By analogy with Kaulakys
(1986) the differential cross section can be obtained by integrating the squared modulus
of the e-B scattering amplitude |f.(p, 4)|° over the scattering angles 9 and ¢ and
averaging over the angles 3, and ¢,, under the condition that the electron had acquired

’
"hP angrov o ﬂﬂd nnonlnr momentum ’
i [ AAE L ATRR By

LW WRLWiI gy [ 5 LA A T8 )

d20'e- (P) 1 . ,!9 , ) . r
de dBJrZ za !f:(P, ﬂ)lza £ —ZUp Sll’lECOS ¥ 8(} Z_J“% SanX )
xsin &4 sin 9, d9 dd, dp do,. (4)

The differential cross section for the energy and angular momentum transfer to the
Rydberg atom A(nl) in collision with the perturber B, d*o,_x/de dJ7, is related to the

Ny e AL

cross section (4) by the relationship (see Kaulakys (1986) for an exhaustive explanation)

d*oay 1 J'mdza s(p) 2 3
a1 [“d0en(p) d 5
dsdjaz v o dEdeZ |gI(P)|P P ( )

where g.;(p) is the radial wavefunction of the Rydberg electron in momentum space.
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Integrating equation (4} first over ¢,, then over &, and ¢, substituting it into
equation (5) and in the usual way passing from the continuous variables ¢ and J” to
the discrete ones n’ and /', we have (see Kaulakys 1986)

UnJ,n'r'=J o(p)lg.(p)I’p* p,:—-»lAi""""'I )
P v
Qr+1nv2
a(py="—"—5 75—
LU H
X [J.xsza I.fe(p: x)|2 dx +J*:” |fe(p, x)lz dx ]
x1 [(1_'x)(xz_x)(x“'xl)]”‘2 —xz [(l—x)(—xl—x)(x;-!-x)]m )
(7N
Here
= cos 9 2= min(1-2pi/ p?, ¥x,
X =cos X min( P/ P, Fx o) ©

X ={[n* =+’ [0 = (F+ 5T = I+ D+ DY/ nn'.

Equations (6)-(8) constitute the solution of the problem of expressing the cross sections

of nl = n’l' transitions (1} in terms of the e-B scattering amplitude. Let us analyse these
expressions.

Integration of equation (7} over ! results to the cross section for #/ - n’ transition

(Kaulakys 1986)

T « " 0
Onln="3 13 J‘ dplg.(p)I’p® J [£i{ p, D) cos Edﬂ
LA

vn Pe

a,=2sin—'(ﬂ).
P,

Expression (9) may also be derived from the impulse approximation (Kaulakys 1985,
Lebedev and Marchenko 1986).
For isotropic e-B scattering (s scattering) expression (7) can be integrated up

9)

(2Ir+1)\/_ 2[F(‘P|,k 1) F((Pz,kz)]
+
o(p)= 2 n's |f5 )l 1)1/2 (1+x2)”2 (10)
where F(g, k) is the elliptic integral of the first kind and
1/2 (2.1 1/2
[ X—x it X F X
km“(l:':xl,z) $r2=sil ( X=X, ) ' 1)

The cross section takes a particularly simple form for transitions without energy defect,
AE, ,v=0,i.e for n'= n of hydrogenic states. In such a case equations (6} and (10} yield

(21'+1)J‘ 2[ K(k,) K(ky) ]
: 3 + 12
Tptar = lf( )| xl)uz (1+x2)l/’2 (12)
Ifs(p)|2=J 1A | pP)P® dp AE,.p=0 (13)
1]

where K is the complete elliptic integral of the first kind. In the scattering length
approximation, | f,( p}> = L?, and for I, I'« n the expression (12) may be written in the

following form

27L? 2I'+1 (2i+1)*2r +1)"?
= Cypr Cp=——————K(k k,=

Tninl oin? Cr,r Le w(I+1'+1) (k1) 1 I+7+1 (14)
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Using the asymptotic expression K(k)=3In[16/(1—k?)] as k- 1, one obtains?

oo 2L 4+l
s Ty

Using the expression K (k) =#/2 if k« 1, we have from equation (14)

1<|V—f«i+l+1 LI'<n (15)

1 for < ' i
Cpp=
Y i(zt’+1)/(21+1) for V'« I« n. (17)

It follows from equation (12) that C;,=1, if I'~n. Note the relationship C;,=
Cip(21+1)/(2I'+1), which follows from the condition of a detailed balance.

The completed analysis yields a conclusion that the cross section for nl- nl’
transitions if =<V, I« n and AE,, . =0, depends very weakly on / and I'. It foliows
from the structure of expression (7) that the same conclusion is correct not only for s
scattering but for p and d scattering, too. Note that this conclusion is right only if the
free electron approximation is valid. For low principal quantum numbers, n < (|L|/v)"/?,
the nl— nl' transitions may be investigated in the adiabatic approximation (Kaulakys
1982). Such investigation indicates the significant dependence of the cross sections on
fand !

The earlier results of numerical calculations for the cross sections o, by a
quasiclassical method (Derouard and Lombardi 1978) and in the impulse approxima-
tion (Matsuzawa 1979) turn out to be the partial cases of the conclusions following
from equations (12)-(17). A comparison of the values of the coefficients C;, according
to equations (14)-(16) with the available numerical results, is given in table 1. The
agreement of the analytical results (12)-(16) with the numerical quasiclassical
(Derouvard and Lombardie 1978) and impulse (Matsuzawa 1984) approximations and
the analytical expression for the elastic scattering cross section (Kaulakys 1984) is, as
a rule, within the limits of 10-20%.

As follows from equations (6)~(11) the cross sections for nl/— n’l’ transitions with
the energy defect of the transition AE,,,,-# 0 are smaller than for transitions between
degenerate states. The analysis of equations (6) and (10} in the scattering length
approximation yields

2aL2V+1
Unr,n'a':—vgn's—}ﬁf(f) E=n*p =1 l<n (18)

where the integral

a0

I{€) =J lgu(P) (P —pJp dp
Pe

has been introduced and shown graphically by Kaulakys (1985, 1986, 1988). According

to equation (18) the cross sections of nl— n'l' transitions with large energy defects,

contrary to the cross sections for transitions between degenerate states, at /<[ are

proportional to the statistical weights of the final states. This agrees with the results

of numerical calculations (Sasano et al 1983, Sato and Matsuzawa 1985).

tFor I'=1 the integral K{k) logarithmically diverges. However, this divergence may be avoided by the
averaging of the coefficient C;, over |I'—I| in the interval {—1, 1). Such averaging means, that to the definite
I, there cotresponds not a precise angle y but an interval Ay = 2/n.
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Table 1. Comparison of the coefficients C,,, according to equations (14)-(16), with
numerical calculations by a quasiclassical method for 13d - 13/ transitions (Derouard and
Lombardi 1978) and in the impulse approximation (Matsuzawa 1979).

G.r Cyp
Derouard
and
Equation Equation Lombardi  Matsuzawa Equation Matsuzawa
[ (14) (15) (1978) (1979} (16} (1979)
0 023 0.19 022 0.23 0.76 0.58
1 0.75 0.66 0.69 0.70 1.11 1.03
2 1.27F 1.33 1.28 1.27 1.28
3 1.25 1.18 1.29 1.32 1.38 1.46
4 1.23 1.08 1.20 1.38 1.46
5 1.20 1.04 1.10 1.52
6 i.18 1.01 1.02 1.58
7 1.17 0.99 0.93 1.62
8 1.16 0.98 0.88 1.66
9 1.16 0.97 0.84 1.70
10 1.15 0.96 0.82 1.73
11 1.14 0.96 0.77 1.76
12 1.14 0.95 0.76 1.78

T From equation {16).

In most cases one measures experimentally only the cross sections for quenching
on nl states with small I Such cross sections are determined by transitions to the
nearest n' hydrogenic manifold with the smallest transition energy defect, AE,, .=
min({8;}n*>, [1—{8;}]n**), where {8} is the fractional part of the quantum defect.
Some of the n'l’ states with smalil /=0,1,..., I;—1 are separated from the manifold
n' due to the quantum defects, while the states with [ = §,, [+ 1,..., n—1 are degener-
ate. According to the above analysis the cross section for the transition from the nl
state to the level n’ with "= I, can be written in the form

1— /1’ £=1

1—(lo/n’)? E=1. (19)

o=poue B
At {8,} =0.5, transitions to two groups of states with n'=n*¥0.5 are significant, and
the quenching cross section for the nl state is the sum of two cross sections of type
(19). The cross section (19) together with the elastic scattering cross section o,  makes
up the broadening cross section for the nl state.

Summarizing, the free electron model based on an analysis of a binary collision
of the Rydberg electron with an incident atomic particle (Kaulakys 1986) is suitable
for investigation of the nl> n’l’ transitions and enables us to derive simple analytical
expressions for the cross sections. In this case, the cross sections of the processes are
given by the electron-perturber scattering amplitude, with allowance for the depen-
dence on the eleciron momentum and scattering angle.

The cross sections for transitions between degenerate states at /=< I' depend weakly
on ! and [, while for transitions with large energy defects are proportional to the
statistical weights of the final states. The extension of the free electron model for m
changing and fine-structure mixing collisions is desirable and, in our opinion, possible.
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