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Ab*mct. Analytical expressions for dipole matrix elements between high atomic states of 
non-hydrogenic and perturbed hydrogenic atoms are derived. The theoretical investigation 
i s  fulfilled for discrete and continuum atomic states and for the one-dimensional atom. It 
is shown that the quantal transition probabilities between perturbed atomic state5 depend 
on the nature of penurbation, e.g. matrix elements forthe hydrogenic atom in an electromag- 
netic field differ from those of the non-hydrogenic atom. The results obtained generalize 
and increase the accuracy oi same known expressions for the non-hydrogenic atom and 
extend them for the perturbed hydrogenic atom. Funher, the analysis of classical dynamics 
and the derivation of mapping equations of motion for the one-dimensional atom in a 
harmonic field is fulfilled. The relationship between the energy change of the classical 
atom i n  a harmonic field and expressions far dipole matrix elements is revealed and 
analysed. 

1. Introduction 

The progress in experimental laser spectroscopy of high atomic Rydberg states and 
the great attention being paid to the non-linear and multiphoton ionization requires 
computation of transition probabilities between non-hydrogenic atomic states of high 

mechanical expressions of the dipole matrix elements between non-perturbed states 
of integer principal quantum numbers n, n’ are available (Gordon 1929, Bethe and 
Salpeter 1957). However, their complex analytic structure means that one needs to 
look for approximations as the quantum numbers grow larger. The semiclassical 
approximation for the discrete spectrum of hydrogen-like atoms has been performed 
by Bureeva (1968). The generalization of the semiclassical approximation for electric 
multipole transitions and the test of the applicability of the J W K B  approximation and 
classical perturbation theory for hydrogenic atoms has been fulfilled by Heim et a/ 
(1989). 

The extension of the semiclassical formulae for dipole matrix elements to non- 
hydrogenic Rydberg states using the quantum defect method has been undertaken by 
Davydkin and Zon (1981) for discrete spectrum and by Delone et a/ (1989) for 
continuum states. Although the results of Davydkin and Zon (1981) are widely used 
they contain some imperfections, The main formulae of this paper contain some terms 
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with erroneous sign and thus they do  not fulfil some well known exact results, e.g. the 
limiting result when s = v’- Y + 0. 

On the other hand, the considerable interest in the non-linear ionization of the 
hydrogenic atoms by a microwave field (for review see Casati et al 1987, 1988) requires 
computation of transition probabilities between states of high fractional effective 
principal quantum numbers of the perturbed hydrogenic atom. The transitions between 
strongly perturbed states may be considered either as transitions in the continuum 
(Gontis and Kaulakys !?W) or as transitions he!wecn photonic s!a!es of a Rydberg 
atom in a harmonic field (Casati et al 1987, 1988, Gontis and Kaulakys 1991). These 
transition amplitudes are related to some characteristics of stochastic dynamics of the 
hydrogenic atoms in a microwave field such as the diffusion coefficient of the electron 
in the energy space and the localization length of quantal suppressed diffusion. The 
diffusion coefficient can be obtained from the mapping form of the classical equations 
of motion. As was noticed by Gontis and Kaulakys (1987) the energy change of the 
electron during the period of classical intrinsic motion in the Coulomb field, due to 
the interaction with a harmonic field and diffusion coefficient expression, depends on 
the starting condition, i.e. on the integration interval. The local diffusion coefficient in 
the energy space may be derived on the basis of quantum mechanics as well. It follows 
from the correspondence principle that the classical and quantum descriptions have 
as a consequence the same conclusions, i.e; a great number ofuncorrelated one-photon 
transitions result in the diffusion of the electron in the energy space identical to the 
diffusion due to the stochastic classical motion (Gontis and Kaulakys 1987)t. Thus, 
the analysis of the quantal transition probabilities may clarify some vagueness in the 
mapping description of the classical dynamics of the hydrogen atom in a microwave 
field. 

In this paper it is shown that the quantal transition probabilities between perturbed 
hydrogenic atom states with fractional effective principal quantum numbers depend 
on the nature of perturbation. Thus, for the non-hydrogenic atoms the perturbation 
of the Coulomb potential is considerable only at small distances while for the hydro- 
genic atoms in an electromagnetic field the perturbing potential is long range. As a 
result of this difference the expressions for the dipole matrix elements between atomic 
states with high effective principal quantum number of the perturbed hydrogenic atom 
(see equations (23) and (24) below) differ from those for the non-hydrogenic atom 
(equation (16) below). In addition, the relationship between the dipole matrix elements 
and the energy change of the classical atom in a harmonic field is revealed and analysed 
and the mapping equations of motion are derived. 

Note that by the term ‘non-hydrogenic atom’ we understand to mean the real atom, 
quantum states of which differ from the hydrogenic due to the deviation of the atomic 
core potential from the Coulomb potential; while the term ‘perturbed hydrogenic atom’ 
means the hydrogenic atom in an external field, quantum states of which differ from 
the hydrogenic due to the perturbation by the external field. Of course, one can examine 
the quantum transitions between perturbed states of the non-hydrogenic, e.g. alkali- 
metal atom states. However, the behaviour of the non-hydrogenic atoms in a strong 
electromagnetic field, e.g. the mechanism of multiphoton ionization, differs from that 
of the hydrogenic atom (see, e.g. Stoneman et a/  1988 and references therein) and, 
therefore, those problems are beyond the scope of this paper. 

t Here we do not discuss the quantum localization phenomenon which is related with correlations of 
one-photon transitions and manifests four times lhrger some diffusion time (see Casati el (11 1987, 1988). 
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The paper is organized as follows. After an introduction we present the analytical 
expressions for the quasiclassical radial wavefunctions of the non-hydrogenic and 
perturbed hydrogenic atoms (section 2 ) .  In  section 3 the derivation and analysis of 
the quasiclassical dipole matrix elements between high discrete states of the non- 
hydrogenic and perturbed hydrogenic atoms are given, while sections 4 and 5 are 
devoted to the dipole matrix elements for the continuum states and one-dimensional 
atom, respectively. The results of these sections generalize and increase the accuracy 
of some known expressions for the non-hydrogenic atom and extend them for the 
perturbed hydrogenic atom. Section 6 is devoted to the analysis ofthe classical dynamics 
of the one-dimensional hydrogen atom in a harmonic field, to the connection of the 
energy change of the classical atom in a harmonic field with expressions for the dipole 
matrix elements and to the derivation of the iterative (mapping) equations of motion 
for the classical hydrogen atom in an oscillating electric field. In section 7 some 
conciusions are drawn. 

2. Quasiclassical approximations for wavefunctions 

Calculation of the matrix elements for the dipole momentum between atomic states 
requires the radial wavefunctions of the excited atomic states. For high states one can 
use the quasiclassical approximation. The quasiclassical solution R,,, of the radial 
Schrodinger equation for a highly excited atom can be expressed as 

1 Pvr = r R V I =  (-)”* 2 COS[ 1: k ( r )  d r - i x  
& k ( r )  

in the c!assI~a!!y a!!nwed region of motion a n d  some exponentially decreasing functions 
outside this region (see e.g. Landau and Lifshitz 1960). The local wavenumber k ( r )  
i n  equation ( 1 )  is given by 

2 E  - 2 U (  r )  -7 
where the potential U ( r )  which defines the motion of the Rydberg electron may be 
expressed as a sum oftwo terms-the Coulomb potential and the perturbation potential 
A U ( r ) ,  i.e. 

1 
U ( r ) = - - + A U ( r )  r 

The energy of  state E is, in the usual way, related to the effective principal quantum 
number U and the quantum defect p, 

v = n - jL , .  ( 3 )  
1 E = - -  

2 u2 

The roots of the wavenumber k ( r ) ,  r, and r 2 ,  are two turning points which delimit the 
region of the classical motion. 

If the perturbation potential A U ( r )  is small (lAUl<< l / r )  the wavenumber k ( r )  
according to equation (2) can be expressed in the form (see Beigman and Bureeva 
(1981) for an analogy) 
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where the local wavenumber for the Coulomb potential 

E sin 5 - - 
r u ( l  - E  cos 5) 

is introduced. For the Coulomb potential it is convenient to introduce the parametric 
equations of motion 

t =  ~ ~ ( 6 - 8  sin 5) rE.2 = v2( 1 F E )  

here E denotes the eccentricity of the classical orbit and 6 (-m < (< m) is the parameter. 
The quasiclassical quantization condition for the excited state can be expressed as 

1: k(r )dr=(n ,+f )?r  (7)  

where the radial quantum number, n,= n - I - 1, is equal to the number of zeros of 
the radial wavefunction. According to equations (3)-(7) we have 

' 2  A U( r) d r  
= 6, - I,, k d r )  

k,(r) d r  = ( U  - I -f)n 

with 6, being the non-Coulomb scattering phase related to the quantum defect p, by 
the relationship 6, = rp,.  

Finally, the radial part of the perturbed hydrogenic or  non-hydrogenic atom 
wavefunction may be approximated as 

1 2 
P,, = ( )"2 cos [ ' k,( r )  d r  + 6,( r )  - i ? r  

?ru'k,(r) .: 
where 

(9 )  

Note that using equations (7) and (S),  the initial equation (1) for the radial wavefunction 
can be written as 

which contains the right sign of the asymptotic at r +  r2 (see, e.g. Landau and Lifshitz 
1960)t. 

3. Quasiclassical dipole matrix elements for discrete states 

The radial dipole matrix element of a transition vl+ u'l' is given by the well known 
expression 

(u l~r~u ' / ' )=  lom P J r ) P d r ) r d r .  (12) 

t One should note the missing phase in the analogous equation (2)  of the paper by Davydkin and Zon 
(1981) which results in the erroneous signs of the main final expressions in that paper. 
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Our calculations of the matrix element (12) are similar to those by Heim et a /  (1989). 
Substituting equation (9) into equation (12) one replaces the product of the two cosines 
by half the sum of the cosines of the difference and the sum of their arguments. 
Neglecting the rapidly oscillating cosine of the sum of the phases and holding only 
linear terms in the expansion of the difference of the phases in powers of s =  U ' - U  

and A = / ' - I  one finally finds that 

(13) ( I - E  cos f ' - E ) +A(()]  dg s ( 6 - c  sinf)-AlcosC' 

where 

(14) 

For the dipole transitions, AI = +1 and that is why equation (13) reduces to 

(ullrlu'l i  1) =& 1 (cos[s(g- E sin f)+A(g)](cos 5- E )  
7 ," 

i-sin[s(g-e sin ()+A(()]  sin #)(I - -E  cos f )  dg. (15) 

Later in this section we will analyse the different special cases of equation (151, i.e. 
we will derive expressions for the matrix elements of the non-hydrogenic atom and of 
the hydrogenic atom in an external field. 

3. I .  Non-hydrogenic Rydberg atoms 

For the non-hydrogenic atoms the potential which defines the motion of the Rydberg 
electron deviates appreciably from the Coulomb potential only at small distances, i.e. 
the perturbation potential A U ( r )  is short-range, while the main contribution to the 
radial integral (15) occurs at large distances, i.e. r-u' .  Thus, in equation (15) the 

A = a,.- 6, .  Therefore, integration of equation (15) by parts yields 
A:=--".."" ^'-.I. ^ _ ^ ^  r....., ..-L "-"A&..-:.." ..I.""-" A,.., --.. I.e-e..,.."n.4 I . . . t l . ~  ̂̂ _^ t..... 
U , , , ~ L C I L C C  "L U l C  ,,"II-c""I"III" JC(L"C1L"& p,,'"b." U\',, ".'7J .b1Jlarr" "J L l l L  I"...,LPII, 

Here J,(z) and J:(z) are the Anger function and its derivative with respect to the 
argument z. In addition, the identity A =  ?r(An-s)  was used. Equation (16) with 
accuracy to the signs of some terms coincides with equation (9) by Davydkin and Zon 
(1981). Let us analyse equation (16) more carefully. 

The expansion ofthe functions J,,(sE) and J:<(SE) in powers ofs are (Watson 1958) 
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Thus, the limiting case of equation (16) for n ' = n ( s = 9 )  results in the exact matrix 
element of the hydrogenic atom (see e.g. Heim er a1 1989)t 

( n / l r l n / i  I)  = - i n 2 & .  (18) 

For the integers s = A n  # O ,  ( - I )~"J_, , (hne)=J, , (Ane)  and (-I)""JL,,(Ane)= 
J;,(Ane) where J J z )  is the Bessel function. So equation (16) reduces to the quasi- 
classical approximation for the hydrogen atom (Bureeva 1968, Heim el a1 1989). The 
expansions of the functions J-,(sE) and JL,(s-E) in powers of ( I  --E)<< 1 are 

The functions JL,(s) and JL,(s) are strongly s dependent. For small s they may be 
evaluated by equations (17) while in asymptotic form 

Where 

Note the relationships J-,(s)=J,(-s) and JL,(s)=-J:(-s). For small I < <  n i t  is 
convenient to expand expression (16) in terms of 

a =-= ( I + P + l ) < <  
2 G  

As a result of such an expansion we finally have 

The functions Fo(s)=-JLy(s), F ,=J_, (s ) - ( l / s~r)  sin sn and F2=-[JL,(s)+ 
(3/7r) sin ST] for O < s S  2 have been tabulated by Davydkin and Zon (1981). 

3.2. Perturbed hydrogenic atom 

Let us consider now the quasiclassical dipole matrix elements between states of the 
perturbed hydrogenic atom, e.g. the hydrogenic atom in a microwave field. In such a 
case the perturbing potential is long-range, e.g. for the hydrogenic atom in an electric 
field parallel to the x-axis, A U ( r )  = x F .  So, it follows from equations (IO) and (14) 
that S,( r )  = 0 and A( r )  r2 .  In general, the dependence of A(.$) on the argument 
in equation (15) is essential but unknown. If such a dependence in the integration 

0 if r 

t Note the missing '-'sign in equation (63.5) by Bethe and Salpeter (1957) 
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interval of the main contribution to the integral (15) is weak, then equation (15) 
reduces to 

where E,(z)  and E J r )  are the Weber function and its derivative with respect to the 
argument z. 

E . ( i ) = i i - ' ~ ~ s i n ( s 8 - ; s i n  8)dO. (226)  

The symbol i denotes some average value of A(,$) from the interval of the main 
contribution to the integral (15). One should notice that equation (22a)  is the generaliz- 
ation of equation (16) for non-hydrogenic atoms. Particularly, for non-hydrogenic 
atoms i = A =  a ( A n  -s) and the substitution of this condition into equation (22a)  
yields equation (16). For the perturbed hydrogenic atom A(,$)-O if 5-0  and A ( f )  + 

w(An - s) if 5- 2rr. Now we will consider the cases of low and high relative transition 
frequency s. For small s the main contribution to the integral (15) results from the 
region f-257, that is why in equation (22a)  i - r r ( A n  - s )  and (22a)  reduces to 

For s >> 1 the cosine and sine functions in equation (15) are rapidly oscillating if ,$a rr 
and the main contribution results from ,$<< 1 where A( ,$ )=O.  Therefore in equation 
(22a)  i = O  and one obtains 

( u / l r l u ' l * l ) = -  JL(s&)-- + E  sin s7r + 

The expansions of the functions J,(sa) and J : ( s e )  in powers of ( I - & ) < <  1 are 

[ J$(sE) -__ s > > l .  (24 )  ""I S 7r S T  

J,(se) = Js(s) - s ( l  - & ) J : ( s ) + O ( (  1 
J:(sE) = J : ( s ) + ( l  - & ) J : ( s ) + O ( ( l -  E ) ~ ) .  

(25 )  

While for the asymptotic forms of the functions J,(s) and J:(s) one can obtain the 
expressions (see Watson 1958, Abramowitz and Stegun 1972) 

a sins71 b 
J., ( S )  = + ~ - - 

27rs 70s"' 

where constants a and b are defined by (20h).  
Note that the matrix elements for the transitions between the states of the perturbed 

hydrogenic atom when sc 1, equation (23), coincide with the matrix elements for the 
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non-hydrogenic atoms (161, which for the high transition frequencies, s >> 1, equation 
(24), differ from equation (16). Such a discrepancy is caused by the range difference 
of the perturbing potentials AU(r).  In the non-hydrogenic atoms the perturbing 
potential i s  of atomic origin and short range; while in the case of the perturbed 
hydrogenic atom, the perturbing potential AU(r)  is external and long range. Multi- 
photon transitions between perturbed states of the non-hydrogenic (potassium) atom 
have been examined by Stoneman et a1 (1988). 

4. Quasiclassical dipole matrix elements for continuum states 

Dipole matrix elements for continuum-continuum transitions are required for the 
theoretical treatment of the above-threshold ionization phenomenon and bremsstrah- 
lung in the ionic field. The calculations of such matrix elements are similar to those 
for bound-bound transitions. The wavefunction of the continuum spectrum may be 
written, by analogy with equation (9) (see also Delone et a /  1989), as 

Here k,(r) is the local wavenumber for the Coulomb potential 

E = [ 1 + k2(  I +  f)2]1/2 

k is the momenta related to the energy of the state in the usual way, E = fk2, and E > 1 
is. :he eccer.:ricity of :he hype:bo!a; xhi !e  !he pa:a-et:lc eq-ation: of E-O!iOr. ir, the 
continuum can be expressed as 

r=k-2(Ecosh(-1)  t = k - ' ( ~ s i n h ( - ( )  rE = ( E  - 1 ) / k 2 .  (291 

Further calculations are analogous to those performed in section 3. Thus, we finally 
find the expression for the radial dipole matrix element of transition k/+ k'l* 1, i.e. 
?he eq.iv.!ent af eq..tiot? ! ! 5 )  

( k / l r l k ' / * l ) = F  {COS[S(E sinh e-()+A([)](~-cosh 5) 
wk 

*- sin[s(E sinh (-5)+A(()] sinh t } ( ~  cosh 5- 1 )  d( (30a)  

1"- 
where 

S=- ~ = [ l + k k ' ( T + f ) ~ ] ' / '  (kk')''2 T =  ; ( I+  r). (30b)  

The analysis of expression (300) is similar to the analysis of equation (15). 

limiting case Is(<< 1 

k' 

For the non-hydrogenic atom (A(() = A )  after integration by parts one obtains the 

s cos A In--sin 2k' A )] (31) 
ww E W E  

where w = IAEI, y = e C  = 1.781.. . , and C is the Euler constant. 
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The expansion of equation (30a) in terms of n = ( e 2 -  I)‘” in the asymptotic limit 
Is1 >> 1 is 

For the hydrogen atom (A = 0) performing a partial integration of equation (30a) twice 
yields the result following from the Heisenberg correspondence principle which relates 
the matrix element with the Fourier component of the hyperbolic motion (Landau and 
Lifshitz 1977) 

where H : ’ ( z )  is the Hankel function of the first kind. The limiting cases of equation 
(33) are the expressions (31) and (32) with A = O .  It should be noted that equations 
(30)-(32) are the generalization for the non-hydrogenic atoms and a # 0 of the corre- 
sponding expressions by Delone et al (1989)t. 

5. The one-dimensional atom 

In the past few years much theoretical and experimental work has been devoted to 
the investigation of highly excited atoms in microwave fields. The simplest approxima- 
tion of this system is the one-dimensional hydrogen atom model, which conveniently 
describes an actual hydrogenic atom prepared in a very excited state (see Casati et a /  
1987, 1988) as well as the surface-state electrons on liquid helium (Jensen 1984). The 
Hamiltonian of the one-dimensional hydrogen atom is 

while the wavefunctions Va(x) can be expressed as 

i.e. they coincide with the solutions P&) of the radial Schrodinger equation of the 
hydrogen atom for s-states (Jensen 1984). The parametric equation of motion for x is 

x = u2(1 -cos 5) t=u’([-sin[). (36) 

That is why the expressions for the matrix elements of the one-dimensional atoms 
follow from the results given above. Requiring only to use in all equations above E = 1 
and to change the sign of matrix element; because for the one-dimensional atom r = x 
equals -xofthe three-dimensional atom with E = 1 (compare (36) with (39)).Therefore, 
the dipole matrix elements for the one-dimensional atom are 

(ulxlu’j= - ( ~ / l r l u ’ l ’ j l ~ = ~ , , = ~ = ~ .  (37) 
One should notice that as the really one-dimensional atom, A =  6 ‘ -  6 is usually a small 
quantity as the perturbation of the same symmetry states, especially with near energies, 
does not vary much. 

i Note the wrong factor in equation (4) and the second term in equation (7) by Delone el 01 (1989). Analysis 
of the semiclassical matrix elements for the dipole transitions in the atomic hydrogen has been made by 
Trippenbach el a1 (1989). 
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6. Classical dynamics of the one-dimensional hydrogen atom in a harmonic field 

Dipole matrix elements between the states of high principal quantum numbers are 
closely related to the energy change of a classical atom in a harmonic field and with 
the stochastic diffusive ionization of the hydrogenic atom. However, as was shown by 
Gontis and Kaulakys ( l987) ,  the energy change of the electron in a harmonic field 
during the intrinsic motion period depends on the initial coordinate of the electron, 
i.e. the energy change between two subsequent passages at the aphelion r2 differs from 
the energy change between two subsequent passages at the .perihelion r l .  Note that 
the energy change is proportional to the Fourier component of the electron velocity 
(Gontis and Kaulakys 1987). On the other hand, quantal transition amplitudes between 
the photonic states may he expressed in terms of Fourier components of the electron 
coordinate (Percival and Richards 1970, Gontis and Kaulakys 1991). But, according 
to the Heisenberg correspondence principle, Fourier components are related to the 
appropriate quaniai matrix eiemenis. Lei us anaiyse such reiaiions fur ihe Rydberg 
atom. 

The radial dipole matrix elements ( 1 3 )  and (15) may be expressed in the form (see 
also Davydkin and Zon 1981) 

Here T = 2mu' is the period of the electron intrinsic motion, w.,.= E,..- E,,  and 'p is 
the polar angle while x and y are the Cartesian coordinates of the electron. The 
parametric equations o i  motion ior x, y and p are 

X = u2(COS 6- E )  y = u2( 1 - E 2 ) ' l 2  sin 5 
(39) 

cos 5- E 

I - &  cos 5 t = u3((-sin 6) 

For the one-dimensional hydrogenic, perturbed hydrogenic or non-hydrogenic atoms 
according to expression (38) we have 

(40) 
T S  I:" 2 .  -_  - sin(sT+A)-- x(t)sin[o,~,/+A]dt 

V T  

where the parametric equation of motion for x is given by expressions (36). For the 
hydrogenic atom in equation (40). A=v(An-s) .  According to section 3.2 the same 
is true for the perturbed hydrogenic atom if S S  I .  We see from equations (38)  and 
(40) that the matrix elements are equal to the Fourier sine or cosine (with appropriate 
phases) components taken for half of the period. 

As was'noticed above the perturbation of the classical atom in a harmonic field is 
connected io the Fourier components as well, i.e. with expressions similar to equation 
(40). Let us analyse such perturbation in detail. 
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In  the dipole approximation the interaction of the atom with the electromagnetic 
field is 

V=xF0cos(ot+19)  (41) 
where Fo, w and it are the electric field amplitude strength, angular frequency and 
phase, respectively. The quantal transition amplitudes between the strongly coupled 
highly excited states may be expressed in terms of the classical action function of the 
perturbing potential taken over an unperturbed path (Percival and Richards 1970, 
Go& 2.d Kau!akys 1991). For h~!faf!he intrinsic motion period !he c!assicz! ~ r t i o n  
functions of the perturbing potential (41) are 

0 

A U (  -4K 0) = Fo j-T,2 x ( t )  cos(wtf8)  dr 

(43) 
2u2F, , vu2F0 

AU(0, fT)  = __ sin(as+ 19) -~ [J:(s) cos B-E:(s) sin it] 
W w 

2u'F, . 
AU(iT,  T )  = -- s i n ( m + i t )  

w 
2 , -  

(44) 
T" r" 

w 
~ _ _  [J:(s) cos(@ + 2 x s ) +  E:(s) sin@ + 2 m ) ]  

while for the complete period we have 

(45) 
4v2F0 . 2 ?rav2F0 

AU(-fT, fT)  =- sin TS cos I9 - J.:(s) cos it 
0 w 

(46) 
2auiF0 

AU(0,  T ) = - -  JL,(s) cos(as+ it). 
w 

Thus, the classical action function taken over an unperturbed path for the period of 
intrinsic motion depends on the initial coordinate of the electron. 

For the derivation of mapping (iterative) forms of the classical equations of motion 
for hydrogenic atom in an oscillating electric field it is necessary to evaluate the energy 
change PE of the electron during the period of intrinsic motion (Gontis and Kaulakys 
1987). A E  may be evaluated according to the classical perturbation theory (Lichtenherg 
and Lieberman 1983) from the equation of motion 

E = $Gx (47) 
where 9= - d V / d x  is the force acting on the electron. Substitution of the potential 
(41) into equation (47) gives 

(48) E = -XFo COS(wt+ 6). 

Integration of equation (48) for half of the intrinsic motion period yields 

AE ( - f T, 0) = - F" i ( t )  cos(wt+ B )  dt  

=au'F,[J:(s)sin B-E:(s)cos 61 

A E ( O , f T ) = ~ v ~ F , [ J : ( s ) s i n i t + E ~ ( s ) c o s I 9 ]  
AE(fT, T )  = TU*F,[J:(S) sin(Zm+I9)-E:(s) cos(2vs+B)] 
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while for the complete period we have (Gontis and Kaulakys 1987) 

AE(-fT,tT)=2au2FJ:(s)sin 9 (52) 

AE(0, T ) = 2 a u 2 F J L , ( s )  sin(?rs+ 9).  ( 5 3 )  

u = ( - 2 € ) - 1 / 2  (54) 

In equations (42)-(53) 

3 s = w u  

and E is the energy of the electron. 
One should notice the similarity of the expressions (45)-(46) and ( 5 2 ) - ( 5 3 )  to the 

semiclassical expressions for the matrix elements of the perturbed hydrogenic atom 
(equations (23) and (24) in accordance with equation ( 3 7 ) ) .  As one can see from 
expressions ( 3 8 )  and (40). the matrix elements are related to the appropriate Fourier 
components of the electron coordinate and velocity taken for half of the intrinsic 
motion period. The comparison of expressions (45)-(46) and ( 5 2 ) - ( 5 3 )  with expressions 
(23 )  and (24) according with equation (40) shows that the matrix elements of the 
perturbed hydrogenic atom may also be expressed in terms of the appropriate Fourier 
components for the complete period of intrinsic motion. 

We see from equations ( 5 2 )  and ( 5 3 )  that the energy change ofthe electron during 
the period of intrinsic motion depends on the initial coordinate of the electron (Gontis 
and Kaulakys 1987) and for motion between two subsequent passages at the perihelion 
may be three times larger than for motion between two subsequent passages at the 
aphelion. However, equations (49)-(53) are only the perturbative approximation 
because, in general, the energy change depends on the initial energy of the electron 
(in terms of Y and s). So, equations (49)-(51) are more precise than equations (52)-(53). 
That is why the integration interval for equations (49)-(51) is twice as short than for 
equations (SZ)-(53). But in the high tield frequency limit 

b = 0.410 8 5 .  ( 5 5 )  J:(s) = b/s2/ ’  E:(s)= - b / 3 ’ / 2 s 2 / 3  

So, the energy changes AE(-fT,O) and AE(O,fT), according to equations (49) and 
(50), are energy independent and equations (49) and (50) may be added up. Therefore, 
for high frequencies, expression ( 5 2 )  is as exact as equations (49) and (50). On the 
contrary, expression ( 5 3 )  is less precise than equations (50) and (51) for all values of 
frequency (due to the energy dependency of the energy change AE(fT,  T )  according 
to equation (51)). 

Therefore, for low and medium frequencies of the harmonic field, equations 
(49)-(51) for the electron’s energy change during half of the intrinsic motion period 
represent more precisely the influence of the harmonic field on the excited atom than 
equations (52) and (53) for the complete period. This is especially significant for the 
strong electric fields. On the other hand, the stochastization process of the electron 
motion in a low frequency field takes place mainly in the relatively strong field, i.e. 
near the validity limit of the classical perturbation theory (see, e.g. Gontis and Kaulakys 
1987 and references therein). Moreover, at low frequencies the classical theory describes 
well the stochastic dynamics of the hydrogenic atom in a microwave field (Casati 
er a /  1987, 1988). So, the specification of the mapping equations of motion for the 
hydrogenic atom in a harmonic field, given in papers by Gontis and Kaulakys (1986, 
1987) is desirable. More precise iterative equations of motion may be obtained by 
analogy with Gontis and Kaulakys (1987) after scaling of the energy and electric field 
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amplitude in equations (49)-(51). As a result of this procedure one can write 

& h t I = E h - 2 ~ a 0 E ~ E ; ' ( J : ~ ( S C ) s i n  6h-E:,(sk)COS 6,) 

& * + z = & x + ~ - ~ ~ ~ " E ~ E ; : I ( J : ~ , , ( S C + ~ )  Sin6k+E:,+,(Sk+,) COS a k )  (56) 

ah+z= 6,+2T/Ei?z. 

Here ~ = S - ~ ~ ' = - ~ E / O ~ / '  and a"= F , / 4 E ;  are the scaled energy and electric field 
amplitude, respectively, with E, being the initial energy of the electron. 

The approximation of equations (56) for high frequencies or weak fields is equivalent 
to equations (10) by Gontis and Kaulakys (1987). These equations have been the first 
mapping form of the classical equations of motion for the hydrogenic atom in a 
harmonic field (see also Gontis and Kaulakys 1986) which greatly facilitated the 
numerical investigation of the stochasticity and the ionization process. On the basis 
of mapping equations the analytical estimations of the threshold field strengths for the 
onset of chaos, the diffusion coefficient for the electron in the energy space and the 
mean time for the classical diffusion ionization have been fulfilled. In addition, for 
the first time has been predicted the resonance structure in the dependence of the 
threshold field strengths on the frequency of the field in the high frequency region. 
Recent experiments (Galvez et a /  1988) revealed such a resonance structure, though 
the quantum analysis of the,ionization process in this case is more convenient. 

The system of equations (56) contains, as some approximations, both cases con- 
sidered in the paper by Gontis and Kaulakys (1987), i.e. the electron's energy changes 
between two subsequent passages of the aphelion as well as between two subsequent 
passages of the perihelion (equations (6) and (22) of Gontis and Kaulakys 1987, 
respectively), hut in fact it is more precise than those partial cases. This is the case, 
since one can as an approximation add up in equation (56) any of two subsequent 
energy changes for the half of the period, e.g. either E , + ~ - B ,  and E , + ~ - E , + ,  or 
E ~ + ~ - E , + ~  and E ~ + ~ - E * + ~ .  As equations (56) represent the interaction process of the 
atom with a microwave field more exactly and in more detail they may render more 
precisely and entirely the resonance structure of the atom-field interaction and the 
stochasticity feature for low and medium relative frequencies of the field ( S S  1). System 
(56) is rather complex for an analytical study but it  may he transformed to the 
area-preserving case (see for analogy Gontis and Kaulakys 1987) and investigated 
numerically. However, this is beyond the scope of this paper. In this section the 
relationship between the dipole matrix elements and the energy change of the classical 
atom in a harmonic field has been revealed and analysed and in addition the improved 
mapping equations of motion for the classical hydrogenic atom in a harmonic field 
have been derived. 

7. Conclusions 

Fulfilled theoretical analysis of the analytical expressions for dipole matrix elements 
between high atomic states with fractional effective principal quantum numbers shows 
the dependence of the matrix elements and transition probabilities on the nature of 
perturbation for the Coulomb potential. Thus, for the non-hydrogenic atoms the 
deviation of the atomic core potential from the Coulomb potential is appreciable only 
at small distances while for the hydrogenic atom in an electromagnetic field the 
perturbing potential is long-range. This difference results in different expressions for 
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the matrix elements of the non-hydrogenic atoms and perturbed hydrogenic atom. One 
can conclude from this, that analytical wavefunctions in the effective potential model 
(see, e.g. Kostelecky and Nieto 1985) are not general results for the non-hydrogenic 
atoms but only one possible approximation. 

The theoretical investigation is performed for discrete and continuum states as well 
as for the one-dimensional atom. The obtained results generalize and increase the 
accuracy of some known expressions for the hydrogenic and non-hydrogenic atoms 
and extend them for the perturbed hydrogenic atom. 

Furthermore, the analysis of the classical dynamics of the one-dimensional hydrogen 
atom in a harmonic field is fulfilled. The connection between the energy change of the 
classical atom in a harmonic field and expressions for the dipole matrix elements is 
revealed and the accurate iterative mapping equations of motion for the classical 
hydrogen atom in an oscillating electric field are derived. One can conclude that the 
mapping form of the classical equations of motion of the hydrogenic atom in a harmonic 
field, derived for the first time by Gontis and Kaulakys (1986, 1987) and widely used 
(see, e.g. Casati et ol 1987, 1988, Koch el a /  1989 and references therein) is exact in 
the high field frequency limit only, while for low and medium frequencies more precise 
equations (56) must be used. 

The results of the paper may contribute to the deeper understanding of the quantum- 
classical correspondence principle and adequate quasiclassical theory for Rydberg 
atoms as well as to the development of the stochastic dynamics theory of the hydrogenic 
atom in a microwave field. 
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